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Abstract

We present a procedure for the bounded unification of higher-order terms [24]. The procedure

extends G. P. Huet’s pre-unification procedure [11] with rules for the generation and folding of regular

terms. The concise form of the procedure allows the reuse of the pre-unification correctness proof.

Furthermore, the regular terms can be restricted in order to get a decidable unifiability problem.

Finally, the procedure avoids re-computation of terms in a non-deterministic search which leads to a

better performance in practice when compared to other bounded unification algorithms.

1 Introduction

The unification principle has many uses in Computer Science. Due to the undecidability of the higher-
order unification problem, many applications find it necessary to restrict the use of unification to
decidable classes only. This can either be done by applying unification on fragments of higher-order
logic problems, whose unifiability is known to be decidable or by restricting unification procedures to
search for an incomplete set of unifiers. Among the fragments of the first we can find higher-order
pattern unification [17, 19] and decidable sub-classes of context unification [20, 6, 14, 23]. When we
need to consider arbitrary higher-order unification problems, as is the case in higher-order resolution,
we must search for an incomplete set of unifiers.

Most higher-order theorem provers, such as Isabelle [18], TPS [2] and LEO II [4], rely on Huet’s
pre-unification procedure [11] for the unification of higher-order terms. Since the procedure does not
terminate, these theorem provers must search for incomplete finite sets of unifiers only. The most
common way to obtain such a set is by bounding the depth of the terms in the co-domain of the
unifiers. The next example, based on a similar example in [12] , gives a family of simple unification
problems where the depth of terms in the co-domain of unifiers grows exponentially while the size of
the problems grows linearly.

Example 1.1. The following monadic (right-associative) second-order equation has a unique unifier
σ such that σ(X1) = a3

n

but the size of the problem is only 6n+ 6.

{X1abX1bX2b . . . bXnc
.
= aX1bX2X2X2b . . . bXnXnXnbaaac} (1)

Another approach for obtaining incomplete sets of unifiers is by bounding the number of occurrences
of bound variables in the co-domains of unifiers. This approach, called bounded higher-order unification
[24], gives a more refined incompleteness as can be shown with regard to the example above, which
has only two bound variable occurrences per variable (one in the binder and one in the term). The
drawback of this method is that the computed (incomplete) set of pre-unifiers is now infinite although
it was shown that the unifiability problem is decidable [24]. This method was first proved for the case
of bounded second-order unification [21], which was also shown to be NP-complete [15].

When we are concerned not only with the unifiability problem, but with all most general unifiers,
such an approach is not enough and we have to revert to the non-terminating pre-unification procedure.
This problem arises in some applications of unification, most notably in the resolution calculus, where
both a search for all most general unifiers and a terminating unification procedure are desired properties.

In this paper we present a procedure that captures these two properties. First, we enumerate all
pre-unifiers by the use of regular terms using the Kleene star. Second, we can force the procedure to
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terminate by fixing the number of iterations allowed over the Kleene star, thus obtaining, not only
minimal unifiers, but in practice any possible pre-unifier.

Even when we are concerned with unifiability only, the procedure presented in this paper is of a
compact form, that smoothly extends Huet’s pre-unification procedure. This allows us, not only to
give a simpler procedure than current existing ones, but also simpler correction proofs.

The procedure presented in this paper takes many ideas from the algorithm for bounded higher-
order unification presented in [24] but differs, not only in its ability to enumerate all pre-unifiers and
its simpler correctness proofs, but in the use it makes of regular expressions in order to replace cycles.
This characteristic of the procedure will be discussed further in the conclusion section.

Other similar works includes the finite representation of all unifiers for sub-classes of the string
unification problem by using graphs and regular expressions [1] and the description of first-order cycles
using finite automata [13].

The paper is organized as follows. In the first section we give some definitions and notations which
will be used throughout the paper. At the end of this section we give an adaptation of Huet’s pre-
unification procedure to bounded higher-order unification problems. The second section is dedicated to
the presentation of the regular terms and a pre-unification procedure based on them. The correctness
of the procedure is given in the third section. In the fourth section we present a terminating variation
of the procedure from the previous section. In the last section we conclude the paper and suggest some
future work.

2 Preliminaries

2.1 Typed Lambda Calculus

In this section we will present the logical language that will be used throughout the paper. The language
is a version of Church’s simple theory of types [5] with an η-conversion rule as presented in [3] and [25]
and with implicit α-conversions. Most of the definitions in this section are adapted from [25].

Let T0 be a set of basic types, then the set of types T is generated by T := T0|T → T. Let Σ
be a signature of function symbols and let V be a countably infinite set of variable symbols. The
function ar denotes the arity of each function symbol and variable according to its type in the usual
way. Variables are normally denoted by the letters x, y, z and function symbols by the letters f, g, h.
We sometimes use subscripts and superscript as well. We sometimes add a superscript to symbols
in order to specify their type. In examples containing at most second-order variables we will denote
those variable using the capitalized letters X,Y, Z. The set Termα of terms of type α is generated by
Termα := fα|xα|λxβ .Termγ |Termβ→α(Termβ) where f ∈ Σ, x ∈ V and α = β → γ. We will sometimes
omit brackets in applications when the meaning is clear. The set Term denotes the set of all terms.
The function τ maps terms to their types. Subterms and positions are defined as usual. We denote
the subterm of t at position p by t|p. Bound and free variables are defined as usual. Given a term t,
we denote by hd(t) its head symbol and distinct between flex terms, whose head is a free variable and
rigid terms, whose head is a function symbol or a bound variable. Rigid positions are positions such
that no flex subterm is in a strict prefix position. We denote by t[s]p the term obtained from term t by
replacing its subterm at position p with the term s. We sometimes denote the fact that s is a subterm
of t by t[s]. The depth of a term t, denoted by d(t), is the size of the maximal rigid position in t.

Substitutions and their composition (◦) are defined as usual. We denote by σ|W the substitution
obtained from substitution σ by restricting its domain to variables in W . We extend the application of
substitutions to terms in the usual way and denote it by postfix notation. Variables capture is avoided
by implicitly renaming variables to fresh names upon binding. A substitution σ is more general than
a substitution θ if there is a substitution δ such that σ ◦ δ = θ.

A term t subsumes a term s, denoted t ≤s s if there is a substitution σ such that tσ = s. Given a
term t and a set of terms S, we denote by t ∈s S, the fact that there is a term in S which subsumes t.

We assume that all the terms considered in this paper, unless specified otherwise, are in β-normal
and η-expanded forms [25]. We further assume that all substitutions are idempotent [26] and contain
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only terms in β-normal and η-expanded forms in their co-domain. This allows us to deal with normal
forms implicitly (see [25] for more information). Equality between terms is always assumed to be
α-equality.

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn. We will sometimes refer
to the position i of a term s in the sequence by t1, . . . , s@i, . . . , tn.

2.2 Contexts and Pre-unification

The majority of the definitions in this section are taken from [25] and [24]. Since some of the definitions
in this section are given in an intuitive rather than formal presentation, we recommend to refer to these
sources for a better understanding of these definitions.

The set Contextα ⊂ Termα→α of contexts of type α contains all terms λzα.sα[z]p where z occurs
in s exactly once. We call such terms contexts and denote them by s[[.]]p where [.] is considered as
the ”hole” of the term. We denote by mpath(C) the main path of the context C which is the position
of the hole in the context C. Contexts of the same type can be composed and can denote prefixes of
terms. For example, the repeated composition of the context C = ff([.]), denoted by Ck, is a prefix
of the term λz.fffffgz for 0 ≤ k < 3

Unification problems (or systems) are sequences of terms t
.
= s, called equations, where t and s are

of the same type. Based on whether the terms in an equation are flex or rigid, we make a distinction
between flex-flex, flex-rigid and rigid-rigid equations. Systems are considered closed under symmetry
of

.
=.
A substitution σ unifies an equation t

.
= s if tσ = sσ. It unifies a system if it unifies all its

equations. We denote the set of all unifiers of a system S by Unifiers(S). Let =̃ be the least
congruence relation on Term which contains {(t, s) | hd(t), hd(s) ∈ V}. A substitution σ pre-unifies
an equation t

.
= s if tσ=̃sσ. It pre-unifies a system if it pre-unifies all its equations. The completing

substitution ξS for a system S maps every two variables in S of the same type to the same fresh
variable. It is simple to prove that if σ pre-unifies a system, then σ ◦ ξ unifies the system as well [25].
A complete set of pre-unifiers for a system S, denoted by PreUnifiers(S), is a set of substitutions
such that {σ ◦ ξS | σ ∈ PreUnifiers(S)} ⊆ Unifiers(S) and for every θ ∈ Unifiers(S) there exists
σ ∈ PreUnifiers(S) such that σ|dom(θ) ≤ θ.

Cycles in systems are, informally, sequences of flex-flex or flex-rigid equations where the same
variable occurs in head position and in some rigid position in any two sequential equations and in
the last and first equations. These variables are called the cycle’s variables. An example is the cycle
xa

.
= y, y

.
= zb, za

.
= fxa whose cycle’s variables are x, y and z. A formal definition is given in [24].

A cycle having exactly one non-flex-flex equation is called a standard cycle. A standard cycle having
at most one occurrence of any of its cycle’s variables in rigid positions in each side of an equation is
called a unique standard cycle. We can regard the position of the cycle’s variable in the rigid term as
the hole of a context. The cycle given above is a unique standard cycle containing the rigid term fxa.
We can consider this term as the context f([.]) (i.e. λz.fz). For each unique standard cycle, there is
one such context, which we call the cycle’s context and denote it by ccon(c) for a cycle c. The number
of equations in a cycle is denoted by size(c).

Let λsize(t) be the number of occurrences of λ-binders and bounded variables in t. The bounding
function b̂(x) maps all the variables x of a system to natural numbers, a b̂-bounded (pre-)unifier of a
system S is a (pre-)unifier σ of S such that for all x ∈ dom(σ), λsize(σ(x)) ≤ b̂(x). Bounded (pre-
)unification is the search for b̂-bounded (pre-)unifiers for a given b̂. A procedure which decides the
unifiability of bounded higher-order unification problems can be found in [24]. For a given bounding
function b̂, we denote the complete set of bounded pre-unifiers of S by PreUnifiersb(S).

An equation x
.
= t in η-normal form is called solved in system S if x does not occur elsewhere in S

and λsize(t) ≤ b̂(x). We call x a solved variable in S. An equation is pre-solved in a system S if it is
either solved in S or flex-flex. We denote by σS the substitution obtained from mapping x to t in all
solved equations in S.

Before presenting a version of Huet’s procedure for bounded unification and the notion of bounded
partial bindings on which it depends, we will repeat the definition of partial bindings as given in [25].
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Definition 2.1 (Partial bindings). A partial binding of type α1 → . . . → αn → β where β ∈ T0 is a
term of the form
λyn.a(λz1p1 .x1(yn, z1p1), . . . , λzmpm .xm(yn, zmpm)) for some atom a where

• τ(yi) = αi for 0 < i ≤ n.

• τ(a) = γ1 → . . .→ γm → β where γi = δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.

• τ(zij) = δij for 0 < i ≤ m and 0 < j ≤ pi.
• xi is a fresh variable and τ(xi) = α1 → . . .→ αn → δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.

• γ′1, . . . , γ′m ∈ T0.

Partial bindings fall into two categories, imitation bindings, which for a given atom a and type α, are
denoted by PB(a, α) and projection bindings, which for a given index 0 < i ≤ n and a type α, are
denoted by PB(i, α) and in which the atom a is equal to the bound variable yi. Since partial bindings
are uniquely determined by a type and an atom (up to renaming of the fresh variables xm), this defines
a particular term.

Definition 2.2 (Bounded partial bindings). Let λyn.a(λz1p1 .x1(yn, z1p1), . . . , λzmpm .xm(yn, zmpm)) be ei-
ther the imitation binding PB(f, α) for function symbol f (a = f) and type α or the ith projection
binding PB(i, α) (a = yi) for type α. Then, the bounded imitation (PBb(f, α)) and ith projection
(PBb(i, α)) bindings for a given function b̂, are the respective imitation and ith projection bindings
where in addition we update b̂ for the newly introduced variables x1, . . . , xm (and we denote the re-
placed variable by x) as follows:

• for all 0 < i ≤ m, n ≤ b̂(xi) ≤ b̂(x).

• if a is a function symbol or a free variable (an imitation binding), then Σ0<i≤m(b̂(xi) − n) ≤
b̂(x)− n.

• if a = yi for 0 < i ≤ n is a bound variable (a projection binding), then Σ0<i≤m(b̂(xi) − n) ≤
b̂(x)− n− 1.

Given a function b̂, the bounded pre-unification procedure PUAB is given in Fig. 1.

S ∪ {A .
= A}

S
(Delete)

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

S ∪ {λzk.s1
.
= λzk.t1, . . . , λzk.sn

.
= λzk.tn}

(Decomp)

S ∪ {λzk.x(zk)
.
= λzk.t} x 6∈ FV(t), σ = [λzk.t/x]

Sσ ∪ {x .
= λzk.t}

(Bind)

S λzk.x
α(sn)

.
= λzk.f(tm) ∈ S, u ∈ PBb(f, α), σ = [u/x]

Sσ ∪ {x .
= u}

(Imitate)

S λzk.x
α(sn)

.
= λzk.a(tm) ∈ S, 0 < i ≤ k, u = PBb(i, α), σ = [u/x]

Sσ ∪ {x .
= u}

(Project)

Figure 1: PUAB- Huet’s pre-unification rules for bounded unification

This procedure is a straightforward adaptation of Huet’s pre-unification procedure as presented in
[25] to bounded problems, with the additional modification that the application of (Bind) after calling
(Imitate) and (Project) is done implicitly within the rules (Imitate) and (Project) instead of being
called explicitly. Therefore, the following theorems from [25] apply also to this procedure.

Theorem 2.3 (Soundness). If S′ is obtained from a unification system S using PUAB and b̂ and is in
pre-solved form, then σS′ |FV(S) ∈ PreUnifiersb(S).

Theorem 2.4 (Completeness). If θ is a b̂-bounded pre-unifier of a unification system S, then there
exists a pre-solved system S′, which is obtainable from S using PUAB and b̂ such that σS′ |FV(S) ≤ θ.
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Remark 2.5. The procedure PUAB contains two kinds of non-determinism. On the one hand, we need
to choose an equation at each step and on the other, we need to choose which rule to apply to it. In
[25] it is argued that completeness is only affected by the second kind of non-determinism and more
precisely, by the choice between the (Imitate) and (Project) rules. We will use this fact in the rest
of the paper and allow ourselves to choose specific equations to process without harming completeness.

3 Pre-unification

The procedure PUAB given in Fig. 1 may not terminate. A classic example is the unification problem
xfa

.
= gxa, which is non-unifiable for any b̂ but the execution of PUAB will not terminate.

In this section we will introduce two kinds of tools for dealing with bounded higher-order unification
problems. We will introduce bounds for dealing with ”acyclic” components of the problem and we will
introduce regular terms for dealing with the ”cyclic” components of the problem.

Once we have introduced the bounds and regular terms, we would like to prove the soundness
and completeness of our procedure (which will be introduced later in this section). The proof of
completeness will be by induction on a measure over systems. We will introduce this measure now.

Definition 3.1 (Bounding measure [24]). Let S be a system, the bounding measure of S for b̂, which
is denoted by b-measure, is the multiset {b̂(x)− ar(x)|x ∈ V } where V is the set of unsolved variables
in S. Multi-sets are ordered according to multi-sets ordering [7].

By considering the function PBb we can see that any choice of a projection partial binding strictly
decreases the bounding measure while the application of no other rule increases it. By considering also
the bounds defined next, we will be able to show the decrease of the bounding measure.

3.1 First-order Bounds

When we disallow the application of the (Project) rule on an acyclic problem, any run of the procedure
can be simulated, in a sense, by a run of a first-order unification algorithm. The following definition is
motivated by the fact that the depth of terms generated during the execution of first-order unification
algorithms is bounded.

Definition 3.2 (Maximum depths). Given a system S, we denote the maximum depth d(t) for all
terms t in S by md(S).

Definition 3.3 (First-order bound). Given a system S, its first-order bound is (k + 1) · md(S), where
k is the number of unsolved variables in S. It is denoted by fbound(S).

3.2 Regular Terms and Contexts

Using the first-order bound, we can simulate a first-order unification algorithm on acyclic higher-order
systems. This approach will not work for cyclic problems and therefore we would like to eliminate
cycles from systems. We will introduce next regular contexts and terms which will serve as bounds to
the possible forms of contexts and terms.

Definition 3.4 (Regular contexts). The set Contextαr extends the set Contextα and is defined induc-
tively by

• if C ∈ Contextα then C ∈ Contextαr .

• if C ∈ Contextα and D ∈ Contextαr then C(D) ∈ Contextαr .

• if C ∈ Contextα and D ∈ Contextαr then C∗(D) ∈ Contextαr where ∗ is the Kleene star.

The set of all regular contexts is defined as the union of Contextαr for all α ∈ T. Note that C∗1 (C∗2 ) is
a regular context while (C∗1 (C2))∗ is not.
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Definition 3.5 (Regular terms). The set Termnr for a given arity n is defined as λzn.C(t) where

• C is a regular context.

• the bound variables zi for 0 < i ≤ n cannot occur in the scope of starred sub-contexts of C.

• t is a term which may contain bound variables.

Example 3.6. The following term is regular: λz.(f([.], w))∗(f([.], z))(f([.], a))∗(f(z, a))

We will now show that some variables occurring in cycles must be mapped, in pre-unifiers, to a
form which can be described by regular terms. For the rest of this section we deal only with unique
standard cycles. We will show how one can transform a arbitrary cycle to this form in Sec. 4.

We first define the set of regular terms for a given context and variable.

Definition 3.7 (reg). Given a variable x and a context C, the finite set of regular terms is defined as
the set reg(x,C) containing all terms of the form λzm.C

∗C′(t(zm)) where

1. C′ is a context satisfying C = C′f(v1, . . . , C
′′
@k, . . . , vn) for some C′′, f, v1, . . . , vn.

2. τ(x) = α1 → . . .→ αm → β for some β and τ(zi) = αi for 0 < i ≤ m.

3. we have one of the followings:

(a) t ∈ PBb(f, τ(x)) and b̂(xi) < b̂(x) for all new variables xi which were introduced by the
function PBb.

(b) there is 0 < i ≤ m such that t ∈ PBb(i, τ(x)).

Example 3.8. The members of the set reg(x, hg(ef(y, [.]), b)) for τ(x) = α → α are given in the
following list:

λz.(hg(ef(y, [.]), b))∗h(x1(z))
λz.(hg(ef(y, [.]), b))∗z
λz.(hg(ef(y, [.]), b))∗(hg(x1(z), x2(z)))
λz.(hg(ef(y, [.]), b))∗hz
λz.(hg(ef(y, [.]), b))∗(hg(e(x1(z)), b))
λz.(hg(ef(y, [.]), b))∗(hg(z, b))
λz.(hg(ef(y, [.]), b))∗(hg(ef(x1(z), x2(z)), b))
λz.(hg(ef(y, [.]), b))∗(hg(e(z), b))

where 0 < b̂(x1), b̂(x2) < b̂(x).

For a given context and variable, the following infinite set contains all the instantiations of their
regular terms.

Definition 3.9 (Instantiations of regular terms (insts1)). Given a variable x and a context C, the
infinite set insts1(x,C) is obtained from the finite set reg(x,C) by replacing each Kleene star ∗ with
some k ≥ 0.

A key definition for the termination proof of the algorithm in [24] is that of a maximal context with
no bound variable occurrences.

Definition 3.10 (Maximal contexts). Let x be a variable and σ a substitution, then D is called a
maximal context of σ(x) if D is a maximal prefix of σ(x) such that it does not contain bound variable
occurrences. If there is a context C such that D is of the form (Cσ)lC′ for some l ≥ 0 and C′ a prefix
of Cσ then D is called a maximal context of σ(x) for C.

Example 3.11. Let σ = [λz.f(g(f(z, f(z, a))), f(a, a))/x, f(a, a)/y] then the maximal context for x
and σ is f(g([.]), f(a, a)). This is a maximal context for the context f(g([.]), y) but not for f([.], f(a, a))
or f(g(f([.], a)), f(a, a)).
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The first property we will prove for the case σ(x) has a maximal context for a context C is that
σ(x) is subsumed by insts1(x,C).

Lemma 3.12. Let λzm1 .x1(t1n1
)
.
= λzm1 .x2(s1n2

), . . . , λzmk .xk(tknk )
.
= λzmk .C[x1(skn1

)], be a cycle in
system S with cycle context C and σ a pre-unifier for S. Let σ(xi) = λzn.Dt for any index 0 < i ≤ k,
a context D and a term t. If D is a maximal context for C then σ(xi) ∈s insts1(xi, C).

Proof. Since D is a maximal context for C, we have D = (ClC′)σ for l ≥ 0. We need now to show that
the requirements of Def. 3.7 hold. The first two requirements hold by assumption. We now consider
the following three cases:

• t = f(v1, . . . , vr) and there are at least two indices 0 < i1, i2 ≤ r such that λsizer(vi1),
λsizer(vi2) > 0. Let t′ = PBb(f, τ(xi)) such that t′θ = λzn.t for some θ, then t′ must contain
at least two new variables, yi1 , yi2 , such that b̂(yi1), b̂(yi2) > n and we satisfy requirement 3a.
Therefore, λzn.Dt

′(zn) ∈ insts1(xi, C) and σ(xi) ∈s insts1(xi, C).

• hd(t) = zr for 0 < r ≤ k and let t′ ∈ PBb(r, τ(t)) such that t′θ = λzn.t for some θ and we satisfy
requirement 3b and have σ(xi) ∈s insts1(xi, C).

• otherwise t = f(v1, . . . , vr) where we have only one index 0 < j ≤ r such that λsizer(vj) > 0. In
this case D is not maximal as it should include f as well and we get a contradiction.

Note that we did not consider the case λsizer(ti) = 0 for all 0 < j ≤ ar(f). A simple counting of the
symbols occurring on each side of the unification constraint will give us that σ is not a pre-unifier in
this case.

We will now prove, for unique standard cycles containing only one equation, that we can give a
regular term which describes the mappings of the cyclic variable in all ground unifiers of the system.

Lemma 3.13. Given a unique standard cycle {λym.x(tn)
.
= λym.C[x(sn)]} in system S, then for every

ground unifier σ of S, σ(x) ∈s insts1(x,C).

Proof. Let σ(x) = λzn.C
0[t] such that C0 is the maximal context. Let k be the depth of σ(x) and let A

be the greatest common prefix of (Ck+1)σ and C0. Then A = (Cσ)l(C′) for some l ≤ k where C′ is a
proper prefix of Cσ and let C′′ be a context such that C′(C′′) = Cσ. We will first prove that A = C0.
Assume otherwise, then A must be a proper prefix of C0 and therefore, C0 = A(f(t1, . . . , D@k, . . . , tn))
for some context D where A(f(t1, . . . , [.]@k, . . . , tn)) is not a prefix of (Ck+1)σ. Applying σ to the
unification constraint, we get

λym.A(f(t1, . . . , t
′
k, . . . , tn)) = λym.(Cσ)(A(f(t1, . . . , t

′′
k , . . . , tn))),

where t′k, t
′′
k are terms. Applying (Decomp)s we get

λym.f(t1, . . . , t
′
k, . . . , tn)

.
= λym.C

′′(C′(f(t1, . . . , t
′′
k , . . . , tn)))

Now we consider the head component of the main path of C′′. If it is k, then we get a contradiction
to the maximality of A as σ is a ground unifier and A should include f as well. Otherwise, it is l 6= k
and let C′′[.] = f(s1, . . . , D

′
@l, . . . , sn), then we get from the constraint, after one (Decomp), that

tl
.
= D′(C′(f(t1, . . . , tl, . . . , tn)))

which is a contradiction to the unifiability of the pair as the positions of the holes in D′ and C′ are
rigid (according to the definition of standard cycles). We therefore assume that A = C0 and by Lemma
3.12, we get that σ(x) ∈s insts1(x,C)

The case is more complex for bigger standard cycles. The following example for b̂(x1) = b̂(x2) = 3:

{x1f(a, a)
.
= x2a, x2b

.
= f(x1a, f(b, b))} (2)
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demonstrates this as the ground unifier given next maps the two variables to terms which are not
described as above.

[λz.f(f(z, z), f(a, a))/x1, λz.f(f(f(a, a), f(a, a)), f(z, z))/x2] (3)

The reason for that is the possible ”derailing” [24] of the bound variables in the ground unifiers
from the hole in the cycle’s context.

The following definitions will take this derailing into account when considering larger standard
cycles.

Definition 3.14 (Derailing). Given a context C let p be a prefix of its main path such that hd(C|p) = f
and ar(f) = n > 1 and let 0 < k ≤ n be the head component of the main path of C|p. Then, the
context C[f(y1, . . . D@k, . . . , yn)]p is called a derailing of C where D = C|p.k and the yi for 0 < i ≤ n
are new first-order variables. We call the context C[f(y1, . . . , [.]@k, . . . , yn)]p the pre-context of the
derailing and the context D the post-context of the derailing. We denote by one-derail(C) the set of
all possible derailings of a context C. This set always includes also the empty derailing, i.e. the context
C itself. In this case the pre-context is empty and the post-context is equal to C. Note that this set is
finite and its size is equal to the number of non-unary symbols occurring at prefix positions of the main
path. Given a derailed context D, we sometimes denote by Dpre and Dpost its pre and post-contexts.

Example 3.15. The set of all derailings for the context hg([.], b) is {hg([.], b), hg([.], y)}. The context
hg([.], y) is the pre-context and [.] is the post-context of the non-trivial element in the set.

Definition 3.16 (Iterated derailing). Let λzm1 .x1(t1n1
)

.
= λzm1 .x2(s1n2

), . . . , λzmk .xk(tknk )
.
=

λzmk .C[x1(skn1
)] be a unique standard cycle with a context C, then the set derail(xi,m,C) of the

iterated derailed regular terms for the cycle context C and an index 0 < i ≤ k is defined as follows:

• if m = 1 then derail(xi, 1, C) = reg(xi, C).

• if m > 1 then derail(xi,m,C) = {λzn.C∗(Dpre(Cr)) |
D ∈ one-derail(C), λzn.C

r ∈ derail(xi,m− 1, Dpost(Dpre))}

Example 3.17. The following table shows the construction of all (non-trivial) iterated derailings for
the cycle context hg(ef(a, [.]), b) of the system:

{x1t1
.
= x2s1, x2t2

.
= hg(ef(a, x1s2), b)} (4)

In order to simplify the example, we consider the types of both variables to be equal.
For m = 1 we follow Ex. 3.8. For m = 2 we have

C Dpre Dpost λz.Crz

hg(ef(a, [.]), b) hg([.], y) ef(a, [.]) ∈ derail(xi, 1, ef(a, hg([.], y))
hg(ef(y, [.]), b) [.] ∈ derail(xi, 1, hg(ef(y, [.]), b)

Definition 3.18 (Instantiations of regular terms). Let C be a context and x a variable, then the
infinite set insts(x,C,m) = {t′|t ∈ derail(x,m,C)} such that t′ is obtained from t by replacing each
of the n occurrences of the Kleene stars in t with the natural numbers k1, . . . , kn respectively.

Next, we will prove some properties of instantiations of regular terms.
The first property is that if a term is subsumed by an instantiation using n iterations, then it also

does so using m > n iterations.

Lemma 3.19. Let S be a system containing a standard cycle with a cycle context C and variable x
and assume that for some pre-unifier σ of S, σ(x) ∈s insts(x,C, l) for l > 0 then σ(x) ∈s insts(x,C, k)
for all k > l.

Proof. For the corresponding iterations we replace the Kleene star with 0 and choose an empty prefix.
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The next property asserts that any term subsumed by insts1 is also subsumed by insts after one
iteration.

Lemma 3.20. Let S be a system containing a standard cycle with a cycle context C and let σ be a
pre-unifier of S, if σ(x) ∈s insts1(x,C) then σ(x) ∈s insts(x,C, 1).

Proof. Clear from the definitions of insts and insts1.

The following lemma unfolds one iteration and relate terms obtained using different iterations of
insts.

Lemma 3.21. Let C be a context, C′ and C′′ contexts such that C′C′′ = C and C′′ =
f(v1, . . . , D

′
@k, . . . , vn). Assume that

• λzm.t0 ∈s insts(x,D′C′f(y1, . . . , [.], . . . , yn),m) for some variable x and

• λzm.t1 ≥s λzm.(ClC′f(y1, . . . , t0, . . . , yn)) such that ClC′ does not contain any bound variable.

Then, λzm.t1 ∈s insts(x,C,m+ 1).

Proof. From the assumptions we know that there are substitutions θ1 and θ2 and a term t′ such that

• t′ ∈ insts(x,D′C′f(y1, . . . , [.], . . . , yn),m).

• λzm.t0 = t′θ1.

• λzm.t1 = (λzm.(C
lC′f(y1, . . . , t0, . . . , yn)))θ2.

Furthermore, since t′ ∈ insts(x,D′C′f(y1, . . . , [.], . . . , yn),m), we know that there is a regular term
λzm.t

1
0 ∈ derail(x,m,D′C′f(y1, . . . , [.], . . . , yn)). Let Dpre = C′f(y1, . . . , [.], . . . , yn) and Dpost =

D′, then DpreDpost ∈ one-derail(C) and λzm.C
∗C′f(y1, . . . , t

1
0, . . . , yn) ∈ derail(x,m + 1, C). Let

t′′ = λzm.(C
lC′f(y1, . . . , t

′, . . . , yn)), then t′′ ∈ insts(x,C,m + 1). We now have that t1 = t′′θ2 and
therefore, that t1 ∈s insts(x,C,m+ 1).

We can now prove the main lemma in this section, which is based on taking the greatest common
prefix of the maximal contexts mapped to the cycle variables. This essential step is taken from [24].

Lemma 3.22. Let S be a system containing a unique standard cycle
λzm1 .x1(t1n1

)
.
= λzm1 .x2(s1n2

), . . . , λzmk .xk(tknk )
.
= λzmk .C[x1(skn1

)], then for any ground unifier σ of
S there is an index 0 < i ≤ n such that σ(xi) ∈s insts(xi, C, k).

Proof. First, we compute the maximal contexts Di of σ(xi) for 0 < i ≤ k. Let A be the greatest
common prefix of Di and (σ(C))h for 0 < i ≤ k where h is the minimal depth of all Di. Then,
A = σ(C)q(C′) for q ≤ h where C′ is a proper prefix of σ(C) and let C′′ be a context such that
C′(C′′) = σ(C). By induction on the number of constraints in the cycle.

• for k = 1 we first use Lemma 3.13 in order to obtain that σ(x1) ∈s insts1(x1, C) and then Lemma
3.20 in order to show that σ(x1) ∈s insts(x1, C, 1).

• for k > 0, if there is 0 < i ≤ k such that Di = A, then we can use lemmas 3.12 and 3.20 in order
to prove that σ(xi) ∈s insts(xi, C, 1) and by using Lemma 3.19 we have σ(xi) ∈s insts(xi, C, k).
We now assume that Di 6= A for all 0 < i ≤ k, i.e. that Di = Af(vi1, . . . , v

i
n) for all 0 < i ≤ k

and n the arity of f . Clearly, there are at least two terms vqi and vrj for 0 < i, j ≤ n, 0 < q, r ≤ k
and i 6= j such that both contain bound variables as otherwise f will be common to all Di for
0 < i ≤ k (note that σ is a ground unifier). Now consider two cases

– there is an index 0 < p ≤ k such that vpi and vpj contain bound variables for i 6= j. In this
case σ(xp) can be written as λznp .Af(θ(x′1)(znp), . . . , θ(x′n)(znp)) for θ = [vp1/x

′
1, . . . , v

p
n/x

′
n]

such that b̂(x′i), b̂(x
′
j) < b̂(xp) and therefore we satisfy requirement 3a in Def. 3.7 and have

that σ(xp) ∈s insts1(xp, C). We can now use lemmas 3.20 and 3.19 to have σ(xp) ∈s
insts(xp, C, k).
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– in this case for each 0 < i ≤ k, there is only one index 0 < li ≤ n such that vili contains
bound variables and vij does not contain any bound variable for 0 < j ≤ n and j 6= li. The
standard cycle, after the application of σ, can now be represented as

λzm1 .Af(v11 , . . . , D
1
@l1

(t1n1
), . . . , v1n)

.
= λzm1 .Af(v21 , . . . , D

2
@l2

(s1n2
), . . . , t2n), . . . ,

λzmk .Af(vk1 , . . . , D
k
@lk

(tknk ), . . . , vkn)
.
= λzmk .C(Af(v11 , . . . , D

1
@l1

(skn1
), . . . , v1n))

where vili = λzni .D
i(zni) are new terms and are the only terms containing bound variables.

Let C′′ = f(t1, . . . , D
′
@l, . . . , tn) and let I = {i1, . . . , ip} contain all the indices 0 < i ≤ k such

that li = l. (i.e. the head component of the position of the hole in f is l). Consider now the
cycle after applications of the (Decomp) rule only

λzm1 .u1
.
= λzm1 .u

′
1, . . . , λzmk .uk

.
= λzmk .u

′
k (5)

where

∗ for every 0 < i ≤ k, ui = Di(tini) if i ∈ I and ui = vil otherwise.

∗ for every 0 < i < k, u′i = Di+1(sini+1
) if i+ 1 ∈ I and u′i = vi+1

l otherwise.

∗ u′k = D′C′f(v11 , . . . , D
1
@l1

(skn1
), . . . , v1n).

Now let us consider the substitution δ such that δ(yi) = vil for 0 < i ≤ k where yi are fresh
variables and consider the equations

λzm1 .r1
.
= λzm1 .r

′
1, . . . , λzmk .rk

.
= λzmk .r

′
k (6)

where

∗ for every 0 < i ≤ k, ri = Di(tini) if i ∈ I and ri = yi otherwise.

∗ for every 0 < i < k, r′i = Di+1(sini+1
) if i+ 1 ∈ I and r′i = yi+1 otherwise.

∗ r′k = D′C′f(v11 , . . . , D
1
@l1

(skn1
), . . . , v1n).

Clearly, this cycle is pre-unifiable by σ ◦ δ. After applying (Bind) on all equations containing
yi, we get

λzmi1 .D
i1(ti1ni1 )

.
= λzmi1 .D

i2(si1ni2 ), . . . ,

λzmip .D
ip(t

ip
nip

)
.
= λzmip .D

′C′f(v11 , . . . , D
i1
@l(s

ip
ni1

), . . . , v1n) (7)

where, i1, . . . , ip is some permutation of 1, . . . , p, which is forced by the application of (Bind).
Let us take now the substitution θ such that θ(wij ) = λznij .D

ij (znij ) for 0 < j ≤ p where

wij are fresh variables and consider the standard cycle

λzmi1 .w
i1(ti1ni1 )

.
= λzmi1 .w

i2(si1ni2 ), . . . ,

λzmip .w
ip(t

ip
nip

)
.
= λzmip .D

′C′f(v11 , . . . , w
i1
@l(s

ip
ni1

), . . . , v1n) (8)

which is clearly pre-unifiable by σ ◦ θ. Assume further that we have the substitution η such
that η(zi) = v1i for 0 < i ≤ n, then the standard cycle

λzmi1 .w
i1(ti1ni1 )

.
= λzmi1 .w

i2(si1ni2 ), . . . ,

λzmip .w
ip(t

ip
nip

)
.
= λzmip .D

′C′f(z1, . . . , w
i1
@l(s

ip
ni1

), . . . , zn) (9)

is pre-unifiable by σ ◦ θ ◦ η. Since p < k, we can apply the induction hypothesis in or-
der to obtain that there is and index 0 < j ≤ p such that θ(wij ) = λznij .D

ij (znij ) ∈s
insts(wij , D′C′f(zi, . . . , [.]@l, . . . , zn)), p). Since σ(xij ) =

λznij .Af(v
ij
1 , . . . , D

ij (znij ), . . . , v
ij
n ) = λznij .(Cσ)qC′f(v

ij
1 , . . . , D

ij (znij ), . . . , v
ij
n ), we can

use Lemma 3.21 in order to obtain that σ(xij ) ∈s insts(xij , C, p + 1) and therefore, using
Lemma 3.19, that σ(xij ) ∈s insts(xij , C, k).
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3.3 Pre-unification using Regular Terms

In this section we will give a procedure for the pre-unification of bounded higher-order problems, which
will be based on PUAB .

The procedure will differ from PUAB by using an environment in order to constraint the possible
rule applications.

Definition 3.23 (Environments and constraints). A bounding constraint is an equation of the form
b̂(x) = n and allows us to represent and monitor the b̂ values of the unification problem using the
environments. An environment E contains possibly three constraints for each variable in the problem
as follows:

• E[d(x) = n] constraints mappings for x to be of maximal depth of n. These constraints are called
depth constraints.

• E[r(x) = t] constraints mappings for x to be subsumed by the set described by the regular term
t. These constraints are called binding constraints.

• E[b̂(x) = n] stands for b̂(x) = n.

• let ρ ∈ {d, r, b̂} then

– E[ρ(x) = ε] means there is no such constraint for x in E.

– when we write E[ρ(x) = u] we also mean the environment obtained from E by replacing the
constraint ρ for x with the new one. If there was no old constraint, we just insert a new
constraint into the new environment.

– E[ρ1(x1) = v1, . . . , ρn(xn) = vn] stands for E[ρ1(x1) = v1] . . . [ρn(xn) = vn].

Since we have at most one constraint of each type for each variable in the environment, the new notation
is well defined.

Definition 3.24 (The set of rules BUA (Bounded unification procedure)). Let S be a unification system
and E an environment, then the set of rules BUA are defined in Fig. 2. We use reset(E,S) to denote
the environment E ∪ {d(x) = 2 · fbound(S)} for each unsolved variable in S. These depth constraints
represent the maximal depth which can be obtained by simulating a first-order unification algorithm.
The initial environment is equal to reset(b̂, S). The function scy returns all unique standard cycles in
S.

The three distinct imitation rules denote the following three cases:

• if the variable we imitate is not cyclic and therefore does not have a regular term associated with
it in the environment, then we apply the same imitation as in the procedure in Fig. 1.

• if the variable is cyclic and the regular term in the environment starts with a starred context,
then we apply (Imitate∗).

• if the variable is cyclic and the regular term starts with a non-starred context, then we apply
(Imitate0).

The following lemma, which will be used in the completeness proof, confirms that cyclic variables
can indeed be mapped by BUA to terms subsumed by sets obtained from the cycles’ contexts.

Lemma 3.25. Let x be a variable in a cycle in system S with cycle context C and cycle size n and
let t ∈ insts(x,C, n), then we can derive using BUA a system S′ such that σS′(x) = t.

Proof. According to the definition of insts there is a regular term tr corresponding to t. By applying
the four cyclic rules (Skip), (Imitate0), (Imitate∗) and at the end (Project) and by choosing the
right partial bindings, we can simulate any instantiation of tr (by insts).

The following example shows how the unification procedure unfolds cyclic problems.
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Example 3.26. Let S be the following monadic (right-associative) problem.

{X1abX1bX2bX3bX4c
.
= aX1bX2X2X2bX3X3X3bX4X4X4baaac} (10)

Fig. 3 shows how we can obtain the unifier

[λz.a81z/X1, λz.a
27z/X2, λz.a

9z/X3, λz.a
3z/X4] (11)

Please note that some constraints are removed in order to simplify presentation. We also remove the
bounding constraints from the environment as clearly they will be satisfied, in monadic problems, for
b̂(X) > 1 for all variables X in the problem.

4 Correctness and Termination

4.1 Soundness and Completeness

In this section we will prove the soundness and completeness of BUA with regard to PUAB .

Theorem 4.1 (Soundness). If S′ is obtained from a unification system S using BUA and b̂ and is in
pre-solved form then σS′ |FV(S) ∈ PreUnifiersb(S).

Proof. The rules in BUA are the same rules as in PUAB but pose more restrictions on the generated
substitutions. First, we restrict the depth of terms using the depth constraints and second, we generated
partial bindings which are less general than the ones generated in PUAB due to the use of the binding
constraints. Therefore, each run of the procedure can be simulated by PUAB .

Our first result towards the completeness of the procedure is the relationship between the depth of
terms mapped to variables and the bound fbound in acyclic systems. Before we prove that, though,
we need some further definitions.

Definition 4.2 (Relation on variables). Given a system S, the relation <0
c for S is a relation on the

variables in S if for all constraints t
.
= s ∈ S and positions p1 and p2 such that hd(t|p1) = x and

hd(s|p2) = y and p1 is a proper prefix of p2, then y <0
c x. We define =0

c in a similar way but require
that p1 = p2. =c is the symmetric, transitive closure of =0

c . We now define the relation <Tc inductively

• if x <0
c y then x <Tc y.

• if x =c z and z <Tc y then x <Tc y.

• if <Tc z and z <Tc y then x <Tc y.

<c is any arbitrary extension of <Tc into a total order, such that if <Tc is acyclic, so is <c (otherwise,
the relation is not an ordering).

Example 4.3. Given the system {f(Xa, g(w, y))
.
= f(h(z), Xb), y

.
= Xc, y

.
= w}, then <0

c=
{(z,X), (w,X), (y,X)} and =0

c= {(y,X), (y, w)}. The relation <Tc then is a superset of the set
{(z,X), (w,X), (y,X), (X,X)}.

Definition 4.4 (Repeated variables). Let S be a system. A variable x in S is called a repeated variable
in S if there exists a system S′ obtainable from S using PUAB via any sequence of transformations not
including (Project) such that d(σS′(x)) > fbound(S).

Example 4.5. Assume we can obtain, from the system S containing the constraint Xa
.
= t and having

fbound = 4, a system with the solved constraint X
.
= f5([.]), then X is called a repeated variable in S.

Lemma 4.6. Let S be a system such that all variables in it are acyclic according to <c and x be a
variable in S. Then, for any system S′ obtainable from S by using PUAB without the application of a
(Project), we have d(σS′(x)) ≤ fbound(S).

39



Bounded Higher-order Unification Using Regular Terms Tomer Libal

E
`
S
∪
{
A
.=
A
}

E
`
S

(
D
e
l
e
t
e
)

E
`
S
∪
{
λ
z
k .f

(s
n
)
.=
λ
z
k .f

(t
n
)}

E
`
S
∪
{
λ
z
k .s

1
.=
λ
z
k .t

1 ,...,λ
z
k .s

n
.=
λ
z
k .t

n }
(
D
e
c
o
m
p
)

E
[r(x

)
=
λ
z
k .C
∗(C

r )]`
S

E
[r(x

)
=
λ
z
k .C

r ]`
S

(
S
k
i
p
)

E
`
S
∪
{
λ
z
k .x

(z
k )

.=
λ
z
k .t}

x
6∈
F
V
(t),σ

=
[λ
z
k .t/x

]

E
σ
`
S
σ
∪
{
x
.=
λ
z
k .t}

(
B
i
n
d
)

E
`
S

λ
z
k .x

α
(s
n
)
.=
λ
z
k .a

(t
m

)∈
S
,0
<
i≤

k
,u

=
P
B
b(i,α

),σ
=

[u
/x

]

r
e
s
e
t
(E
,S
σ

)`
S
σ
∪
{
x
.=
u}

(
P
r
o
j
e
c
t
)
2

E
[r(x

)
=
ε]`

S
c
∈
s
c
y
(S
,E

),x
∈
c,t∈

d
e
r
a
i
l
(x
,s
i
z
e
(c),c

c
o
n
(c))

E
[r(x

)
=
t]`

S
(
R
e
c
)

E
[d

(x
)

=
m
>

0,r(x
)

=
ε]`

S
λ
z
k .x

α
(s
n
)
.=
λ
z
k .f

(t
m

)∈
S
,u

=
P
B
b(f

,α
),σ

=
[u
/x

]

E
[d

(x
1 )

=
m
−

1,...,d
(x

1 )
=
m
−

1
]σ
`
S
σ
∪
{
x
.=
u}

(
I
m
i
t
a
t
e
p
b )

1

E
[r(x

)
=
λ
z
n
.t ∗(tr)]`

S
λ
z
k .x

α
(s
n
)
.=
λ
z
k .f

(v
p )∈

S
,t

=
f

(t
1 ,...,t ′([.]),...,t

p ),u
=

P
B
b(f

,α
),σ

=
[u
/x

]

E
[r(x

1 )
=
t
1 ,...,r(x

k )
=
t ′(t ∗(tr)),...,r(x

1 )
=
t
p ]σ
`
S
σ
∪
{
x
.=
u}

(
I
m
i
t
a
t
e
∗ )

1

E
[r(x

)
=
λ
z
n
.t]`

S
λ
z
k .x

α
(s
n
)
.=
λ
z
k .f

(v
p )∈

S
,t

=
f

(t
1 ,...,t

p ),u
=

P
B
b(f

,α
),σ

=
[u
/x

]

E
[r(x

1 )
=
t
1 ,...,r(x

1 )
=
t
p ]σ
`
S
σ
∪
{
x
.=
u}

(
I
m
i
t
a
t
e
0 )

1

1
.
x
1 ,...,x

p
are

all
fresh

variab
les

in
tro

d
u

ced
b
y
P
B
b.

2
.
a

is
eith

er
a

fu
n

ctio
n

sy
m

b
o
l

o
r

a
b

ou
n

d
va

ria
b
le.

F
ig

u
re

2
:
B
U
A

-
B

o
u

n
d

ed
u

n
ifi

ca
tio

n
ru

les

40



Bounded Higher-order Unification Using Regular Terms Tomer Libal

{
d
(
X

1
,2
,3
,4

)
=

2
0
}
`
{
X

1
a
b
X

1
b
X

2
b
X

3
b
X

4
c
. =
a
X

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
}

r
e
c

{
d
.
.
.
,
r
(
X

1
)
=
λ
z
.a
∗
z
}
`
{
X

1
a
b
X

1
b
X

2
b
X

3
b
X

4
c
. =
a
X

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
}

(
I
m
i
t
a
t
e
∗
)

{
d
(
X

1 1
)
=

2
0
,
d
(
X

2
,3
,4

)
=

2
0
,
r
(
X

1 1
)
=
λ
z
.a
∗
z
}
`
{
a
X

1 1
a
b
a
X

1 1
b
X

2
b
X

3
b
X

4
c
. =
a
a
X

1 1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a
X

1 1
z
}

(
D
e
c
o
m
p
)

{
d
.
.
.
,
r
(
X

1 1
)
=
λ
z
.a
∗
z
}
`
{
X

1 1
a
b
a
X

1 1
b
X

2
b
X

3
b
X

4
c
. =
a
X

1 1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a
X

1 1
z
}

(
I
m
i
t
a
t
e
∗
)
,(
D
e
c
o
m
p
)
×

8
0

{
d
.
.
.
,
r
(
X

8
1

1
)
=
λ
z
.a
∗
z
}
`
{
X

8
1

1
a
b
a
8
1
X

8
1

1
b
X

2
b
X

3
b
X

4
c
. =
a
X

8
1

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
X

8
1

1
z
}

(
S
k
i
p
)

{
d
.
.
.
,
r
(
X

8
1

1
)
=
λ
z
.z
}
`
{
X

8
1

1
a
b
a
8
1
X

8
1

1
b
X

2
b
X

3
b
X

4
c
. =
a
X

8
1

1
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
X

8
1

1
z
}

(
P
r
o
j
e
c
t
)

{
d
(
X

2
,3
,4

)
=

6
7
2
}
`
{
a
b
a
8
1
b
X

2
b
X

3
b
X

4
c
. =
a
b
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

8
1

1
. =
λ
z
.z
}

(
D
e
c
o
m
p
)
×

2

{
d
.
.
.}
`
{
a
8
1
b
X

2
b
X

3
b
X

4
c
. =
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

8
1

1
. =
λ
z
.z
}

r
e
c

{
d
.
.
.
,
r
(
X

2
)
=
λ
z
.a
∗
z
}
`
{
a
8
1
b
X

2
b
X

3
b
X

4
c
. =
X

2
X

2
X

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

8
1

1
. =
λ
z
.z
}

(
I
m
i
t
a
t
e
∗
)
,(
D
e
c
o
m
p
)
×

2
7

{
d
(
X

2
7

2
)
=

6
7
2
,
d
(
X

3
,4

)
=

6
7
2
,
r
(
X

2
7

2
)
=
λ
z
.a
∗
z
}
`
{
a
5
4
b
a
2
7
X

2
7

2
b
X

3
b
X

4
c
. =
X

2
7

2
a
2
7
X

2
7

2
a
2
7
X

2
7

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
a
2
7
X

2
7
z
}

(
S
k
i
p
)

{
d
.
.
.
,
r
(
X

2
7

2
)
=
λ
z
.z
}
`
{
a
5
4
b
a
2
7
X

2
7

2
b
X

3
b
X

4
c
. =
X

2
7

2
a
2
7
X

2
7

2
a
2
7
X

2
7

2
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
X

2
7
z
}

(
P
r
o
j
e
c
t
)

{
d
(
X

3
,4

)
=

5
0
4
}
`
{
a
5
4
b
a
2
7
b
X

3
b
X

4
c
. =
a
2
7
a
2
7
b
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
}

(
D
e
c
o
m
p
)
×

5
5

{
d
.
.
.}
`
{
a
2
7
b
X

3
b
X

4
c
. =
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
}

r
e
c

{
d
.
.
.
,
r
(
X

3
)
=
λ
z
.a
∗
z
}
`
{
a
2
7
b
X

3
b
X

4
c
. =
X

3
X

3
X

3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
}

(
I
m
i
t
a
t
e
∗
)
,(
D
e
c
o
m
p
)
×

9

{
d
(
X

9 3
)
=

5
0
4
,
d
(
X

4
)
=

5
0
4
,
r
9
(
X

3
)
=
λ
z
.a
∗
z
}
`
{
a
1
8
b
a
9
X

9 3
b
X

4
c
. =
X

9 3
a
9
X

9 3
a
9
X

9 3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
X

9 3
z
}

(
S
k
i
p
)

{
d
.
.
.
,
r
9
(
X

3
)
=
λ
z
.z
}
`
{
a
1
8
b
a
9
X

9 3
b
X

4
c
. =
X

9 3
a
9
X

9 3
a
9
X

9 3
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
X

9 3
z
}

(
P
r
o
j
e
c
t
)

{
d
(
X

4
)
=

1
2
0
}
`
{
a
1
8
b
a
9
b
X

4
c
. =
a
9
a
9
b
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
}

(
D
e
c
o
m
p
)
×

1
9

{
d
.
.
.}
`
{
a
9
b
X

4
c
. =
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
}

r
e
c

{
d
.
.
.
,
r
(
X

4
)
=
λ
z
.a
∗
z
}
`
{
a
9
b
X

4
c
. =
X

4
X

4
X

4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
}

(
I
m
i
t
a
t
e
∗
)
,(
D
e
c
o
m
p
)
×

3

{
d
(
X

3 4
)
=

1
2
0
,
r
(
X

3 4
)
=
λ
z
.a
∗
z
}
`
{
a
6
b
a
3
X

3 4
c
. =
X

3 4
a
3
X

3 4
a
3
X

3 4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
,
X

4
. =
λ
z
.a

3
X

3 4
z
}

(
S
k
i
p
)

{
d
(
X

3 4
)
=

1
2
0
,
r
(
X

3 4
)
=
λ
z
.z
}
`
{
a
6
b
a
3
X

3 4
c
. =
X

3 4
a
3
X

3 4
a
3
X

3 4
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
,
X

4
. =
λ
z
.a

3
X

3 4
z
}

(
P
r
o
j
e
c
t
)

∅
`
{
a
6
b
a
3
c
. =
a
3
a
3
b
a
a
a
c
,
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
,
X

4
. =
λ
z
.a

3
z
}

(
D
e
l
e
t
e
)

∅
`
{
X

1
. =
λ
z
.a

8
1
z
,
X

2
. =
λ
z
.a

2
7
z
,
X

3
. =
λ
z
.a

9
z
,
X

4
. =
λ
z
.a

3
z
}

F
ig

u
re

3
:

R
u

n
n

in
g
B
U
A

o
n

E
q
.

1
0

41



Bounded Higher-order Unification Using Regular Terms Tomer Libal

Proof. By induction on the number m of variables, ordered by <c. If m = 1, we can apply (Decomp)

exhaustively until we get a constraint t
.
= s in a system S′ such that hd(t) = x and clearly, for all

systems S′′ obtainable from S without an application of (Project) we have d(σS′′(x)) ≤ md(S′) ≤
md(S) < fbound(S). Otherwise, let x be a maximal variable according to ≤c. Then, there is no other
variable y in S, such that there is an equation t

.
= s ∈ S, hd(t|p1) = y, hd(s|p2) = x with p1 a proper

prefix of p2. Let S0 be the problem after the removal of all equations containing x in rigid positions. By
induction hypothesis, for any system S′0 obtainable from S0 without the application of (Project) and
for all variables y in S other than x, d(σS′0(y)) ≤ fbound(S0). Since md(S) ≥ md(S0), we get that for all
variables y other than x, d(σS′0(y)) ≤ fbound(S0) ≤ fbound(S)− md(S). Since we can choose the order
of equations to be processed in PUAB freely (see Remark 2.5), then also d(σS′(y)) ≤ fbound(S)−md(S).
Now, let t

.
= s ∈ S be an equation containing x and t′

.
= s′ the equation after applying several (Decomp)s

such that hd(t′) = x. Let V0 be the set of all variables in s′, then d(σS′(x)) ≤ d(s′)+maxy∈V0(d(σS′(y))).
Since d(s′) ≤ md(S) and d(σS′(y)) ≤ fbound(S)− md(S), we get that d(σS′(x)) ≤ fbound(S).

Definition 4.7 (Sub-equations). Given a rigid-rigid constraint t
.
= s, its set of sub-equations is {t′ .=

s′ | t|p = t′, s|p = s′, p ∈ rigid-pos(t) ∩ rigid-pos(s)} where rigid-pos(t) is the set of all rigid
positions in t. For a given constraint e, we denote its set of sub-equations by sub(e).

Example 4.8. sub(f(XgXa, gb)
.
= f(ga, gz) is {f(XgXa, gb)

.
= f(ga, gz), XgXa

.
= ga, gb

.
= gz, b

.
=

z}.

Definition 4.9 (Problem Restriction). Let S be a system, then a restriction of S with regard to a
variable set V 0 ⊆ FV(S) is the set of all sub-equations of equations in S such that a variable from V 0

is the head of one of the terms in the sub-equation.

Example 4.10. The restriction to V 0 = {X} of the above system is the problem {XgXa .
= ga}.

Lemma 4.11. If σ unifies a system S, then it unifies a problem restriction S′ of S.

Proof. S′ is just a subset of the equations generated from S after the application of (Decomp) trans-
formations, which preserves the set of unifiers [25].

The next lemma states that if a variable is mapped in some pre-unifier to a large term, then this
variable or a smaller one can be related to a standard cycle.

Lemma 4.12. If a variable x in a system S is repeated, then it is either cyclic or there is a smaller
variable in S, according to <c, which is cyclic.

Proof. Let V0 be the set of all smaller variables including x and assume none of them is cyclic, then
the order <c is well-founded over the set V 0 and we consider the problem restriction S′ of S with
regard to V 0. We know that there is a derivation ϕ in PUAB such that we obtain S′ with d(σS′(x)) >
fbound(S) ≥ fbound(S′). We would like to get a contradiction to the existence of such a unifier which
will imply that no such (extension of a) unifier also exists for S using Lemma 4.11. We choose ϕ such
that it does not contain a (Project) call. We can do so as (Project) resets repeatability so we can
choose ϕ starting after the last (Project) before obtaining S′. Now, as all the variables in S′ are
acyclic, we can use Lemma 4.6 to get a contradiction.

The next lemmas show that if we have a cyclic variable, a unique standard cycle can be obtained
using BUA.

Lemma 4.13. Given a system S with an environment E and assume S contains a cyclic variable
and for all unsolved higher-order variables x ∈ FV(S) there is v ≥ fbound(S) such that [d(x) = v],
then we can obtain a system S′ and environment E′ using the rules (Delete), (Decomp), (Bind) and
(Imitatepb) such that S′ contains a cycle over the variables x1, ., , xn and E′[d(xi) = v] for 0 < i ≤ n.

Proof. We can obtain such a cycle with the application of (Decomp) and (Bind) only and these two
rules do not affect depth constraints.
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Lemma 4.14. Given a system S with an environment E and assume S contains a cycle λzm1 .x1(t1n1
)
.
=

λzm1 .t1, . . . , λzmk .xk(tknk )
.
= λzmk .tk, and assume further that for all 0 < i ≤ k there is vi ≥ fbound(S)

such thatE[d(xi) = vi], then we can obtain a system S′ and environment E′ using the rules (Delete),
(Decomp), (Bind) and (Imitatepb) such that S′ contains a standard cycle over the variables y1, . . . , yk
and such that E′[d(yi) = ui] for 0 < i ≤ k and ui > md(S).

Proof. We prove this by induction on l = Σk−1
i=1 i ∗Mi where Mi is the size of the minimal position

of xi+1 in ti for 0 < i ≤ k − 1. If l = 0, then we are done as X1
.
= t1 cannot be a flex-flex

constraint (see next) and we already have a standard cycle. If l > 0, then we apply (Imitatepb) on an

equation λzmj .xj(t
j
nj )

.
= λzmj .tj with 0 < j < m maximal such that hd(tj) 6∈ V. Assume further that

tj = f(t′1, . . . , t
′
p) and that xj+1 occurs in t′q for 0 < q ≤ p. The result, after applying (Decomp), is again

a cycle with a new variable x′j instead of xj . l is decreased in the new cycle as either j > 1 and then we
get that Mj is decreased by 1 and Mj−1 is increased by 1, or j = 1 and then M1 is decreased by 1. In the
second case, Mm is increased but we don’t count it. Therefore, we can apply the induction hypothesis
in order to obtain a standard cycle. The reason E′ is as above is that we apply at most l (Imitatepb)
steps and each one of these steps decreases one depth constraint by 1, so at worst case one constraint
will be decreased by l. As we assumed the constraints to be of the form E′[d(xi) = vi] before we start,
we will obtain, in the worst case, one constraint of the form E′[d(x′i) = v] with v ≥ fbound(S) − l.
Since Mi ≤ md(S) for 0 < i ≤ k, fbound(S) = (K + 1) · md(S) (K = size(FV(S))) and k ≤ K we obtain
that v > md(S).

Lemma 4.15. Given a system S with an environment E and assume S contains a standard cycle
λzm1 .x1(t1n1

)
.
= λzm1 .x2(s1n2

), . . . , λzmk .xk(tknk )
.
= λzmk .tk, and assume further that E[d(xi) = v] for

0 < i ≤ k and v > v0 where v0 is the size of the minimal position of x1 in tk, then we can obtain a
system S′ with a unique standard cycle using the rules (Delete), (Decomp), (Bind) and (Imitatepb).

Proof. First, if the standard cycle is also unique, then we are done. Otherwise, let pm be the minimal
position in tk of x1. The way to achieve a unique standard cycle is similar to what was done in the
proof of the previous lemma. By applying size(pm) times the rule (Imitatepb) on the last equation
we will obtain a unique standard cycle. Applying the rule size(pm) times is possible according to the
depth constraints.

Lemma 4.16. Let S0 be a system with a cyclic variable, then there is a system S with a cyclic
variable and with an environment E such that S0 is obtainable from S using no application of the rule
(Project) and for all unsolved variables x in S, E[d(x) = v] where v ≥ fbound(S).

Proof. Let ϕ be the derivation of S0 and let S1 be the last system in the derivation which is either an
initial system or immediately after the application of a (Project). If there is a cyclic variable in S1,
then we choose S = S1 and have E[d(x) = 2 · fbound(S)] for all unsolved variables x in S1 and we are
done. Otherwise, since S1 is acyclic, let S = S0 and we can use Lemma 4.6 in order to obtain S such
that E[d(x) = v] for all unsolved variables x in S where v ≥ fbound(S).

So far we considered all cycle’s contexts to be indeed contexts, i.e. terms of type α → α. Clearly,
we might have cycles where this term is of type α→ β for β 6= α. This means that the cyclic variable
at this position is preceded by a λ-binder, a fact which strictly reduces the λsize of the term mapped
to the variable and therefore the b̂ values in the partial binding. Let us call the first kind of cycles
pure, we deal with both kinds in the following lemma.

Lemma 4.17. Given a system S with an environment E and assume it contains a cyclic variable, then
we can obtain either

• a pure unique standard cycle using BUA while applying only the rules (Delete), (Decomp), (Bind)
and (Imitatepb) or

• for every pre-unifier σ of S, we can obtain a system S′ such that b-measure(S′, E′[b̂]) <
b-measure(S,E[b̂]) and σ ◦ θ is a pre-unifier of S′ for some substitution θ.
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Proof. We first use Lemma 4.16 in order to obtain a system with a cyclic variable such that for all
x ∈ FV(S) there is v ≥ fbound(S) such that E[d(x) = v]. We use now Lemma 4.13 in order to obtain a
cycle without having the environment changed. We now consider two cases

• if the cycle is pure, then we obtain a standard cycle over the variables x1, . . . , xk such that
E′[d(xi) = v] for 0 < i ≤ n and v > md(S) using Lemma 4.14. The last step is to obtain a
standard cycle using Lemma 4.15 and here we note that the size of the minimal position of x1
in tk must be smaller than md(S). This is because the rigid positions of variables cannot become
deeper by applying the (Imitatepb) rule.

• if the cycle is impure, then we consider the constraint λzmj .xj(t
j
nj )

.
= λzmj .tj where tj is impure

for some 0 < j ≤ k. In order to preserve completeness, we must consider both applications
of (Project) and (Imitatepb). Since an application of (Project) will decrease the bounding
measure, we assume we apply (Imitatepb) only, but after at most d(tj) applications, where d(tj) ≤
md(S) ≤ fbound(S), we will get a solved constraint xj

.
= t′j where t′j contains unsolved variables

x′1, . . . , x
′
l and since tj was impure, b̂(x′i) < b̂(xj) for 0 < i ≤ l and therefore b-measure(S′, E′[b̂]) <

b-measure(S,E[b̂]).

In the following lemma we show that for any pre-unifier σ of a problem containing a pure standard
cycle, we can derive a problem with a reduced bounded measure which is unifiable by σ.

Lemma 4.18. Given a system S with an environment E and a pure unique standard cycle, then for
any ground unifier σ of S, there is a derivation S′ of S using BUA such that S′ is unifiable by σ and
b-measure(S′, E′[b̂]) < b-measure(S,E[b̂]).

Proof. We first use Lemma 3.22 in order to obtain that there is a variable x such that σ(x) ∈s
insts(x,C′, n) for C′ the standard cycles’ context and n its size. Assume there is a term t ∈
insts(x,C′, n) and a substitution θ such that σ(x) = tθ. We now use Lemma 3.25 in order to obtain
a system S′ such that σS′(x) = t and therefore σS′ ≤ σ. Since the definition of insts is based on reg

which strictly reduces the b-measure, we get that b-measure(S′, E′[b̂]) < b-measure(S,E[b̂]).

Theorem 4.19 (Completeness). If a bounded unification system S is pre-unifiable by a b̂-bounded
substitution θ, then there exists a pre-solved system S′, which is obtainable from S using BUA and b̂
such that σS′ |FV(S) ≤ θ.

Proof. We will prove by induction over the bounding measure b-measure, that each pre-solved form
obtainable using PUAB can be also obtained by BUA. The induction hypothesis is therefore for a given
system S having bounding measure m, if it is possible to obtain a pre-unifier of S using PUAB , then
it is possible to obtain the same pre-unifier using BUA. Induction base (m = ∅) - we can replace all
variables by first-order variables and clearly cyclic systems are not unifiable. Therefore, we can simulate
any run of the complete PUAB with BUA. Induction step - once we apply (Project) in PUAB , we can
use the induction hypothesis so we assume we need to simulate, using BUA, the remaining rules only.
We notice that all rules except (Imitate) are the same. (Imitate) differs from (Imitatepb) in BUA

with regard to cyclic variables only. We consider the following two cases. If (Imitate) is applied on
a variable which is not repeated and is not cyclic, then we can use Lemma 4.6 and obtain the same
system using the rule (Imitatepb) of BUA. Now, assume we apply (Imitate) in PUAB on a variable that
is either cyclic or repeated. Using Lemma 4.12 we know that if the variable is repeated, then there is
a cyclic variable in the system. We now show that without losing any pre-unifier, we can reduce the
bounding measure and therefore apply the induction hypothesis. Since the only two non-deterministic
rules to apply are (Imitatepb) and (Project) and an application of (Project) will allow us to use the
induction hypothesis, we can use Lemma 4.17, without losing any pre-unifier, in order to obtain either
a system with a smaller bounding measure or a system with a pure standard cycle. We use Lemma
4.18 and the fact that a pre-unifier can be extended easily into a ground unifier in order to derive, in
the second case, a system using BUA which is unifiable by θ and which has a smaller bounding measure.
Either way, we can use the induction hypothesis.
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4.2 Termination

In this section we give a proof, based on a restriction of our procedure, of the decidability of the
unifiability question of bounded higher-order problems [24]. This is done by restricting the set of
enumerated unifiers and is possible due to the following result [22].

Definition 4.20 (Minimal unifiers). Given a system S, a unifier σ of S is called minimal if there is no
other unifier σ′ of S with Σx∈FV(S)size(σ′(x)) < Σx∈FV(S)size(σ(x)).

Definition 4.21 (Exponent of periodicity). A ground unifier σ has an exponent of periodicity n iff n
is the maximal number such that there is some variable x and ground contexts A and B as well as a
term t such that σ(x) = λzm.AB

nt for m ≥ 0.

We define eop(S) for a system S to be some value based on S which satisfies the next lemma. The
precise value can be found in [24].

Lemma 4.22 ([24]). For every unifiable system S and for every minimal unifier σ of S, its exponent
of periodicity is less than eop(S).

The exponent computed in the lemma above allows us to replace the Kleene stars in the regular
terms with a concrete value.

Definition 4.23 (Restricted derail). Given a system S, the restricted derail function for S (derailS)
is defined as derail but instead of introducing the Kleene star, the function introduce the number
eop(S). The produced terms are called restricted regular terms or just regular terms.

Definition 4.24 (Restricted instantiations). Similarly to Def 3.18, we define a restricted instantiation
of a restricted regular term t as the term obtained by replacing the n occurrences of the exponent e
by values k1, . . . , kn such that ki ≤ e for 0 < i ≤ n. In addition we define the set of all instantiations
of a restricted regular term t as the finite set containing all possible restricted instantiations. This set
is finite as the set of iterated derailings is finite and once we put a bound on the maximal number of
repetitions of the Kleene star, the number of instantiations is finite as well. In the remaining of this
section insts will refer to its restricted version.

Example 4.25. The term λz.(f([.], w))4f(x1(z), x2(z)) is a restricted instantiation of the restricted
regular term λz.(f([.], w))ef(x1(z), x2(z)) for e = 8.

Definition 4.26 (Environments and constraints). The notions of environments and of binding and
depth constraints are the same as for BUA. The only difference is that we identify each binding constraint
over a restricted regular term t with a natural number such that this number is the maximal size of
an mpath of all maximal contexts of terms contained in insts(t) +2. The intuition behind this value
is to describe the maximal depth of a bound variable in the regular term. Since the language is (now)
finite, it is possible to compute this value. We call this number the value of the constraint.

Example 4.27. Assume we have a constraint E[r(x) = t] where t is the restricted regular context from
the previous example, then the value of this constraint is 8 + 2 = 10.

Definition 4.28 (Restricted BUA (RBUA)). The restricted BUA (RBUA) has the same rules as BUA from
Fig. 2 where we use the rules from Fig. 4 in order to replace those with the same name.

Example 4.29. By replacing all the Kleene stars in Ex. 3.26 with the exponent of periodicity of the
problem we can obtain exactly the same derivation using RBUA.

Lemma 4.30 (Soundness). If S′ is obtained from a unification system S using RBUA then
PreUnifiers(S′) ⊆ PreUnifiers(S).

Proof. Following from Thm. 4.1.
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Lemma 4.31. If θ is a minimal unifier of a unification system S, then there exists a pre-solved system
S′, which is obtainable from S using RBUA such that σS′ |FV(S) ≤ θ.

Proof. From the completeness of BUA we know that we can obtain such a pre-unifier for each unifier of
S. By using Lemma 4.22 we can show that we do not need to seek pre-unifiers with term depth bigger
than the exponent of periodicity, which is exactly the bound we use in the algorithm.

Definition 4.32 (Regular measure). Let E be an environment and let d1, . . . , dn be the values of
the binding constraints in E for all unsolved variables in S, then the regular measure of E is the sum
Σ0<i≤ndi.

Definition 4.33 (Depth measure). Let E be an environment and let m1, . . . ,mn be all the numbers
occurring in depth constraints in E for all unsolved variables in S, then the depth measure of E is the
sum Σ0<i≤nmi.

We can now prove the termination of the algorithm RBUA. Note that termination is obtained by
replacing the Kleene stars with the exponent of periodicity of the problem. While BUA enumerates all
pre-unifiers and is non-terminating, RBUA enumerates only minimal unifiers and is terminating.

Theorem 4.34. Given a system S and environment E, RBUA terminates on S.

Proof. The algorithm is finitely branching. We will show termination of a specific run by taking the
lexicographic ordering of the following measure µ =< m1,m2,m3,m4,m5,m6 > where

• m1 is the bounding measure b-measure(S,E[b̂]),

• m2 is is the multiset {b̂(x)− ar(x)|x ∈ V } where V contains all variables which do not occur also
in a binding constraint in E.

• m3 is the regular measure,

• m4 is the depth measure,

• m5 is the number of unsolved variables x with b̂(x) = 0 and

• m6 is the number of symbols other than
.
= in the problem.

We prove that the measure µ is decreased after any application of RBUA.

• An application of (Delete) or (Decomp) decreases m6 and does not increase any other measure.

• An application of (Bind) either decreases m1 and m2 if b̂(x) > 0 or decreases m5 if b̂(x) = 0. It
does not increase m1, m2 or m4. It also does not increase m3 since the size of mpath of maximal
contexts is not affected by (Bind).

• An application of (Imitatepb) decreases m4 and does not increase m1 or m2 (although it might
decrease them). It does not increase m3 following the previous argument.

• An application of (Skip), (Imitate0) and (Imitate∗) decreases m3 as we decrease the size of
the mpath of the maximal context in the new constraint by at least 1. It does not increase m1 or
m2.

• An application of a (Project) decreases m1.

• An application of a (Rec) decreases m2 as it introduces a binding constraint for a variable and is
applicable only if one did not exists. It does not increase m1.

Therefore, the measure µ decreases after each application of RBUA.

Theorem 4.35. The unifiability question of bounded unification problems is decidable.

Proof. Following lemmas 4.30 and 4.31 and Thm. 4.34.

Corollary 4.36. The monadic second-order unification problem [8] is decidable.
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Proof. Since the problem is second-order, bounded variables must be of basic type only and as the
signature contains only monadic function symbols and constants, any ground unifier of the problem
will map the variables of the problem to terms with at most 1 bounded variable occurrence. The
maximal number of λ-binders can be deduced from the original variables in the problem and hence
a fixed bound can be given for such a problem and we can use Thm. 4.35 in order to decide its
unifiability.

5 Conclusion

The general higher-order unification question is undecidable [9]. One of the two ways to deal with this
undecidability is to consider the unifiability question instead. This was done for several sub-classes of
higher-order logic from string unification [16] to bounded higher-order unification [24]. In this paper a
new procedure for bounded higher-order unification is introduced. The three main differences between
this procedure and the one introduced in [24] are the enumeration of all pre-unifiers, the similarity to
Huet’s procedure, which implies a simpler set of rules and the re-use of its correctness proofs, and the
use of regular terms for replacing cycles in the unification problems. We will discuss each of these points
in the remaining of this section. The fact the procedure enumerates all pre-unifiers, in the same way as
the Huet’s procedure, has the obvious benefit that this procedure is complete. On the other hand, as
is shown in the paper, it is possible to sacrifice completeness for gaining termination, in the same way
as is done in [24]. This study of the relationship between completeness and termination might allow
for specialized procedures which sacrifice the termination on some classes for greater completeness and
vice-versa. This study also has implications on understanding possible non-terminating searches for
unifiers in the Huet’s procedure.

The similarity to Huet’s procedure and the (relative) simplicity of the correctness proof suggest an
easier implementation and accessibility to the procedure outside the field of higher-order unifiability
algorithms.

The most interesting difference lies in the encoding of cycles using regular expressions. The most
obvious advantage is when used in automated deduction, where the search for proof requires back-
tracking. We might need not recompute the encodings in cases the cycles do not change. This is the
case when we only add equations to the problems, as happens in the constrained resolution calculus
[10].

There is a more interesting result of this encoding, which is the one-to-one mapping between regular
expressions and (cycles in) unification problems. The definitions and results in this paper show how
to obtain a regular expression for each possible cycles in higher-order unification. Moreover, one can
use the results to obtain a unification problem for a given regular expression. This direction, which is
planned as future work, might have implications in numerous fields, like text compression, automated
deduction, the proving of undecidability problems by reductions from higher-order unification and
decidability problems by reduction to bounded higher-order unification.
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