
EPiC Series in Computing
Volume 73, 2020, Pages 465–482

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Finding Periodic Apartments via

Boolean Satisfiability and Orderly Generation

Jarkko Savela, Emilia Oikarinen, and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland
{jarkko.savela, emilia.oikarinen, matti.jarvisalo}@helsinki.fi

Abstract

Motivated by Gromov’s subgroup conjecture (GSC), a fundamental open conjecture
in the area of geometric group theory, we tackle the problem of the existence of partic-
ular types of subgroups—arising from so-called periodic apartments—for a specific set of
hyperbolic groups with respect to which GSC is currently open. This problem is equiv-
alent to determining whether specific types of graphs with a non-trivial combination of
properties exist. The existence of periodic apartments allows for ruling the groups out as
some of the remaining potential counterexamples to GSC. Our approach combines both
automated reasoning techniques—in particular, Boolean satisfiability (SAT) solving—with
problem-specific orderly generation. Compared to earlier attempts to tackle the problem
through computational means, our approach scales noticeably better, and allows for both
confirming results from a previous computational treatment for smaller parameter values
as well as ruling out further groups out as potential counterexamples to GSC.

1 Introduction

Automated reasoning has proven effective as a means of providing further understanding of
fundamental open mathematical conjectures. Motivated by recent successes in applying Boolean
satisfiability (SAT) based techniques in settling various forms of conjectures [20, 28, 17, 27, 22,
4, 5, 21, 3, 2], in this paper we tackle a fundamental open conjecture in the area of geometric
group theory [12, 13] via a combination of SAT solving [1] and orderly generation [30].

In particular, we focus on the Gromov subgroup conjecture (GSC) which states—in group-
theoretic terms—that every one-ended hyperbolic group contains a subgroup isomorphic to the
fundamental group of a closed surface of genus at least 2. Adding to the interest in hyperbolic
groups, isomorphism, word and conjugacy problems—while undecidable for groups in general—
are decidable for hyperbolic groups [11, 10]. Despite its seemingly involved statement, GSC
has received a fair amount of attention in terms of classical mathematical treatment as well as
recently from a computational angle.

GSC has been established to hold for various hyperbolic groups [16, 8, 18, 26, 19], and it
is even known that a randomly chosen (one-ended hyperbolic) group almost always contains a
surface subgroup [9]. A subclass for which GSC remains open are non-right-angled hyperbolic
groups, which hence may still provide counterexamples disproving GSC. Within this class of

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 465–482

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

hyperbolic groups, a set of 23 counterexample candidates were recently identified [24]. As shown
in [25], the question of whether a particular one of these groups contains a surface subgroup
arising from so-called periodic apartments is equivalent to determining whether a specific type
of graph (with a non-trivial combination of properties) exists. Of interest from the view point
of computational mathematics is the fact that ruling each individual group of the 23 out as
counterexamples to GSC boils down to determining whether there exist bipartite, 3-regular,
connected multigraphs that both decompose exactly into sets of cycles of specific lengths and
admit a type of a labeling using a representation of the group in question [25].

In the rest of this paper, we will refrain from requiring in-depth background on geometric
group theory from the reader, and will focus on the task of determining whether small graphs
with the just-mentioned properties exist. In particular, as first recently considered in [25], this
graph search problem admits computational approaches towards ruling out counterexamples
candidates to GSC. The size of the graphs of interest is controlled by a parameter called the
genus, arising from the classification of surfaces in topology. Towards ruling out the 23 groups as
potential counterexamples to GSC, a specialized computational approach was developed in [25]
for exhaustively searching over all graphs under the smallest genus value g = 2. The approach
consisted of generating all of the bipartite, 3-regular multigraphs for g = 2, with 16(g−1) = 16
nodes and 24(g− 1) = 24 edges, and performing a specialized depth-first search for each of the
graphs. As a results, 5 of the 23 groups of interest were ruled out from the set of remaining
counterexample candidates, leaving 18 groups for further inspection. However, the approach
was reported not to scale beyond g = 2.

In this work, we harness an intricate combination of automated reasoning and orderly gen-
eration for pushing towards larger genus values, with the aim of ruling out further groups as
potential counterexamples to GSC. It should be noted that the sheer number of graphs to be
considered increases drastically as the value of genus increases: while for g = 2 there are 773
bipartite, 3-regular, connected multigraphs, already for g = 3 the number is ≈ 13 · 109. Fur-
thermore, the number of cycles the graphs need to compose of also increases with g; and an
individual graph may allow for decomposing into several different cyclesets, each of which need
to be considered. We will show that our approach scales further to g = 3 and, with the help of
massive parallelization, even to g = 4. We study the applicability of SAT solving for both the
task of decomposing the graphs of interest into cyclesets as well as the final task of labeling the
graphs oriented according to their cyclesets. For scaling to g = 4, we apply a combination of
orderly generation of the graphs and their cyclesets (obtaining strong symmetry breaking), and
employ SAT solving for the final labeling task. As whole, this combination of techniques pro-
vides massive scalability improvements over the specialized approach of [25]. In terms of GSC,
we are able to rule out further 4 groups from the remaining set of possible counterexamples to
GSC. Our results also serve as an independent validation of the results in [25] for g = 2.

The rest of this paper is organized as follows. We start by explaining the graph-theoretic
characterization in Section 2. We then detail SAT encodings for the subproblems of finding
cyclesets and labelings in Sections 3 and 4, respectively. We develop an orderly generation
algorithm for pruning the search space of graphs of interest in Section 5. Finally, we provide
an overview of the new empirical findings obtained using combinations of the SAT encodings
and orderly generation in Section 6.

2 Combinatorial Characterization

With the aforementioned motivations, we focus on the 23 groups identified and studied by
Kangaslampi and Vdovina [24]. Recall that the question of whether a particular one of these

466

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

T15 T16 T17 T18

(x1, x15, x1) (x1, x15, x1) (x1, x15, x1) (x1, x15, x1)
(x10, x2, x1) (x10, x2, x1) (x10, x2, x1) (x10, x2, x1)
(x11, x5, x2) (x11, x5, x2) (x11, x4, x2) (x11, x4, x2)
(x14, x4, x2) (x14, x3, x2) (x14, x6, x2) (x14, x3, x2)
(x3, x6, x3) (x8, x4, x3) (x3, x12, x3) (x9, x5, x3)
(x15, x12, x3) (x14, x9, x3) (x8, x5, x3) (x13, x7, x3)
(x7, x8, x4) (x6, x6, x4) (x8, x13, x4) (x8, x6, x4)
(x15, x13, x4) (x15, x13, x4) (x14, x14, x4) (x14, x8, x4)
(x8, x7, x5) (x7, x7, x5) (x9, x7, x5) (x6, x12, x5)
(x14, x9, x5) (x15, x12, x5) (x11, x9, x5) (x15, x13, x5)
(x9, x11, x6) (x14, x11, x6) (x7, x8, x6) (x7, x9, x6)
(x11, x13, x6) (x11, x13, x7) (x15, x12, x6) (x11, x10, x7)
(x10, x9, x7) (x9, x12, x8) (x10, x13, x7) (x14, x12, x8)
(x12, x12, x8) (x10, x9, x8) (x11, x10, x9) (x13, x11, x9)
(x13, x14, x10) (x13, x12, x10) (x15, x13, x12) (x15, x12, x10)

Table 1: The relations xixjxk = 1 of groups T15, T16, T17, and
T18, represented as triplets (xi, xj , xk) where the generators
are x1, . . . , x15.

Figure 1: Tesselation with
hyperbolic triangles whose
angles are π

4 .

groups contains a surface subgroup arising from so-called periodic apartments is equivalent to
determining whether a specific type of a graph (with a non-trivial combination of properties)
exists. More specifically, the existence of a periodic apartment implies the existence of a surface
subgroup, which implies that the particular group in question is provably not a counterexample
to Gromov’s subgroup conjecture.

Towards determining whether periodic apartments exist for one of the 23 groups, we modu-
larize the search for the witnessing graph structures into three consecutive steps: (i) generating
connected, bipartite, and 3-regular multigraphs of specific size; (ii) for each of the graphs from
(i), determining whether the graph admits a directed decomposition into a set of cycles of length
8, and if it does, enumerating all of such cyclesets; and (iii) for each of the graphs admitting a
cycleset decomposition from (ii), checking whether the graph oriented by its cyclesets admits a
specific type of a labeling. For (i), one can apply available orderly generation tools directly. For
(ii) and (iii), we present SAT encodings using which the enumeration/checking can be delegated
to a SAT solver (as described in Sections 3 and 4, respectively). As an alternative to separately
computing (i) and (ii), we also present an alternative approach which allows for orderly gener-
ation of all graphs admitting a cycleset decomposition and all of the cyclesets (as described in
Section 5). In the remainder of this section, we will more precisely define each of these tasks.

We denote the 23 groups from [24] by T1, . . . , T23. Each of the 23 groups is finitely repre-
sented using 15 generators x1, . . . , x15 and 15 relations of length 3 represented using triplets of
the form (xi, xj , xk), with the meaning xixjxk = 1. As examples, the relations of groups T15,
T16, T17 and T18 are listed in in Table 1. A complete listing of the representations of each of
the 23 groups is provided in [24]. Observe that the relations may contain multiple instances of
the same generator; the group T15 serves as an example.

Let g > 1 be a fixed natural number and Ti one of the 23 groups. Each relation (xj , xk, xl)
of Ti determines an oriented triangle whose edges are labeled with xj , xk and xl. A periodic
apartment of genus g is then a surface of genus g (“donut with g holes”) constructed from these

467

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

triangles in a way that the labels and orientations match. The graph we wish to find is the
dual graph of this triangulation, i.e., a graph whose nodes represent the triangles with an edge
between two nodes if the respective triangles share an edge, see Figure 1.

We next explain briefly how the relevant properties of these graphs arise and define families
of (multi)graphs that will be useful to characterize and modularize the problem. We refer the
reader to [25] for a complete description. Observe that the graphs must be 3-regular since
they represent a triangulation, and bipartite because every other triangle must have “opposite”
orientation. Here we consider the triangles to be hyperbolic with all angles π

4 from which it
follows that exactly 8 triangles intersect at every corner. The number of vertices and edges can
be deduced to be 16(g − 1) and 24(g − 1) using Euler’s formula V − E + F = 2− 2g [25].

Definition 1. Let G = (V,E) be an undirected graph with the set V of nodes and the multiset
E of edges {u, v} with u, v ∈ V . Denote by edges(v) the set of edges that are incident to a node
v ∈ V . Furthermore, let g > 1 be a natural number. Then G ∈ base(g) if |V | = 16(g − 1),
|E| = 24(g − 1), and G is connected, bipartite, and 3-regular, i.e., |edges(v)| = 3 for all v ∈ V .

Hence step (i) reduces to enumerating base(g) for a given genus g. Observe that, due to
3-regularity and connectedness of graphs in base(g), two nodes can have at most two edges
between them. These pairs of parallel edges are called double edges. We assume that the edges
have unique names (in addition to their set of nodes), so that they are identifiable.

Next, for step (ii), we consider graphs in G = (V,E) ∈ base(g) which admit a cycleset. Let
directed(E) = {(v1, v2), (v2, v1) | {v1, v2} ∈ E} denote the decomposition of E into directed
edges. A cycleset for G = (V,E) ∈ base(g) is a set of 6(g − 1) cycles of length 8 in directed(E)
covering the directed decomposition. Formally, an 8-cycle in G is a sequence (e0, . . . , e7), where
for each i ∈ {0, . . . , 7}, ei ∈ directed(E) and the end-points of the consecutive edges ei = (v′, v)
and e(i+1) mod 8 = (v, v′′) are distinct nodes v, v′, v′′ ∈ V . Note that each undirected edge is
traversed twice (once in each direction) since a cycleset covers the entire directed decomposition.

Definition 2. Let G = (V,E) be an undirected graph such that G ∈ base(g) for some g > 1.
Then G ∈ cycles(g) if G contains a cycleset, i.e., a set of 6(g − 1) 8-cycles, where each edge in
directed(E) is traversed exactly once.

There may be several cyclesets for G ∈ cycles(g); we denote by cyclesets(G) the set of all
cyclesets of G. Hence cyclesets(G) = ∅ implies G 6∈ cycles(g) and vice versa. Observe that a
cycleset covers all the edges in G, and this allows one to uniquely order the incident edges of

Figure 2: The 2 possible
orientations of a node.

(a) (b) (c)

(d) (e) (f)

Figure 3: Examples of valid labelings in (a)–(c) and invalid
labelings (d)–(f), see Example 2.

468

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

Figure 4: Graph G2
7

Table 2: A cycleset of graph G2
7.

1 3 2 1 4 5 6 7

2 14 15 12 16 17 14 3

4 7 8 9 10 11 12 13

5 13 15 17 18 19 10 20

6 20 9 21 22 23 21 8

11 19 24 22 23 24 18 16

Figure 5: Invalid (left) and valid (right) adja-
cent triangles.

each node. There are exactly two ways in which the cycles can pass through a node (see Figure
2), and hence each node has an orientation determined by the cycles passing through it. The
orientation of a node v is represented using an order function Ov mapping each e ∈ edges(v) to
its successor. For instance, in the topmost case in Figure 2 the order function Ov is defined as
Ov(e1) = e3, Ov(e2) = e1, and Ov(e3) = e2.

Example 1. Consider the graph G2
7 shown in Figure 4. Observe that G2

7 is a non-simple graph
with two double edges. Now, G2

7 ∈ base(2), i.e., G2
7 is bipartite, connected, 3-regular and has 16

nodes and 24 edges. The nodes of the graph are colored black/white to indicate bipartiteness.
Furthermore, G2

7 ∈ cycles(2), i.e., cyclesets(G2
7) 6= ∅. One of the cyclesets of G2

7 is listed
in Table 2 (using the names of undirected edges to avoid obscuring the figure too much). Each
node is passed through exactly three times by the cycles (in the case of double edges the node is
passed twice by the same cycle and once by another). Each undirected edge is traversed twice
(once in each direction). The orientations arising from the cycleset in Table 2 are denoted using
arrows around the nodes in Figure 4.

We are now ready to define the graphs that represent periodic apartments of the hyperbolic
building corresponding to some group Ti. Recall that the nodes of any such graph represent
triangles whose sides have labels xi and edges between nodes the adjacency of the triangles.
To represent the action of group Ti on the apartment, we need to define conditions for a valid
labeling for G ∈ cycles(g), which corresponds to a labeling of the sides of the triangles.

Definition 3. Let G = (V,E) ∈ cycles(g) for some g > 1. A labeling of G using a group Ti,
denoted by (Lv, Le), consists of two functions:

• Lv mapping v ∈ V to relations (xi, xj , xk) of Ti, and

• Le mapping e ∈ E to generators xi of Ti,

in a way that the label of node v matches the labels of e ∈ edges(v), i.e., for all v ∈ V it holds
that if Lv(v) = (xi, xj , xk), then {Le(e) | e ∈ edges(v)} = {xi, xj , xk}.

The acceptability of a labeling depends on the orientations of the nodes of G. The orienta-
tions are determined by the cyclesets of G ∈ cycles(G) together with a chosen 2-coloring (due to

469

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

bipartiteness). We assume here a fixed 2-coloring of G using colors black and white. Intuitively,
the labeling of a white node has to match the orientation of the node, and the labeling of a black
node has to match the inverted orientation of the node. Furthermore, two adjacent nodes in G
cannot be labeled with the same triplet unless (1) the triplet contains two occurrences of the
same generator, (2) the connecting edge is labeled with the duplicated generator, and (3) the
index of the generator in the triplet is different for both nodes. For a detailed discussion on how
exactly these constraints arise, we refer the reader to [25]. For an intuition of the conditions
(1)–(3), recall that the triangles tesselating the “surface with g holes” are oriented and have
their sides labeled with elements xi (generators of Ti), and the sides of two adjacent triangles
that overlap must have the same label. Additionally, due to the nature of the group action,
two triangles of the same type (i.e., labelled using the same triplet of Ti) cannot share the same
side. This means that two triangles of the same type with three different labels xi, xj and xk
cannot be adjacent. Two triangles of the same type can, however, be adjacent if their labels
are xi, xi and xj , since then they may be attached from different sides which have the same
label, see Figure 5.

Definition 4. Let G = (V,E) ∈ cycles(g) for some g > 1 and W ∈ cyclesets(G). A labeling
(Lv, Le) of G using Ti respects the orientation induced by W if the following conditions hold for
each v ∈ V with edges(v) = {e1, e2, e3} and orientation Ov(e1) = e2, Ov(e2) = e3, Ov(e3) = e1
in W .

(i) Lv(v) = (Le(e1), Le(e2), Le(e3)) if v is white.

(ii) Lv(v) = (Le(e3), Le(e2), Le(e1)) if v is black.

(iii) For each e = {v, w} ∈ E, if Lv(v) = Lv(w), then this label (triplet) has two occurrences
of the same generator xi, Le(e) = xi, and the orientations of v and w are such that e has
different position (index) in Lv(v) and Lv(w).

Given W ∈ cyclesets(G), a labeling using Ti is valid with respect to W if it satisfies conditions
(i)–(iii) of Definition 4, and otherwise invalid.

Example 2. Figure 3 illustrates examples of valid and invalid labelings. In (a)–(c), valid
labelings in the neighborhood of a white node, a black node, and for two adjacent nodes which
are assigned the same triple, respectively, are illustrated. Invalid labels are illustrated in (d)–(f).
In (d) the labels of the edges do not match the triple; in (e) the labels match the triplet but in
the wrong order; and (f) illustrates how a labeling of two adjacent nodes which are assigned the
same triplet may fail. Here the generators x1 in bold in (c) and (f) denote the elements of the
triplets corresponding to the label of the connecting edge.

Finally, we define the set of graphs that admit a valid labeling.

Definition 5. Let G = (V,E) be an undirected graph such that G ∈ cycles(g) for some g > 1,
and let Ti be one of the 23 groups constructed in [24]. We say that G ∈ labels(Ti, g), if for some
set W ∈ cyclesets(G) there exists a valid labeling (Lv, Le) of G using Ti with respect to W .

Observe that labels(Ti, g) ⊆ cycles(g) ⊆ base(g) for all g > 1 and Ti such that i ∈ {1, . . . , 23}.
The existence of a graph G ∈ labels(Ti, g) is connected to the existence of surface subgroups in
Ti as follows.

Theorem 1. [25] Let Ti be one of the 23 groups constructed in [24] and g > 1 a natural
number. If labels(Ti, g) 6= ∅, then there exists a periodic apartment in the hyperbolic building
corresponding to Ti that is invariant under the action of a genus g surface.

470

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

The existence of a periodic apartment in the hyperbolic building implies the existence of a
surface subgroup of genus g. Hence, if labels(Ti, g) 6= ∅, then Gromov’s subgroup conjecture
holds for Ti.

1

Corollary 1. Let Ti and g be as defined in Theorem 1. If labels(Ti, g) 6= ∅, then there exists a
subgroup in Ti isomorphic to the fundamental group of a genus g surface.

3 Enumerating Cyclesets via SAT

We develop a SAT encoding φcycles(G, g) for checking whether a given graph G = (V,E) in
base(g) (for an arbitrary genus g > 1) is in cycles(g). The encoding allows for the enumeration of
cyclesets as it captures all W ∈ cyclesets(G). Note that for a fixed genus g, all graphs in base(g)
can be generated using off-the-shelf tools, in particular Multigraph [6, 7] implementing an
approach to generating isomorph-free lists of multigraphs of specified size and degree sequence.

For the following, let G = (V,E) be an undirected graph in base(g) for some g > 1. Recall
that directed(E) denotes the decomposition of undirected edges of E into directed ones. Finding
a cycleset of G boils down to partitioning directed(E) into N = 6(g − 1) mutually disjoint sets
of size 8 while ensuring that each partition forms a cycle (recall Definition 2).

We use the following variables in φcycles(G, g): orient(v) indicates which one of the two
possible orientations node v is assigned (recall Figure 2), and inCycle(e, p) and index(e, i),
respectively, indicate into which cycle p and index i in that cycle, respectively, the directed
edge e ∈ directed(E) is assigned. The SAT encoding φcycles(G, g) is detailed in Figure 6. The
encoding is composed of two parts: one ensuring unique assignment of edges into cycles, and the
other checking that the orientations of nodes are compatible with the partitioning of directed(E).
The constraints (1)–(4) ensure that directed(E) is partitioned into N subsets of size 8. The
cardinality constraints (1) and (2) encode that each edge is assigned to exactly one cycle and
one index, respectively.2 The constraint (3) ensures that each partition is non-empty, whereas
the constraint (4) blocks two distinct edges e1, e2 ∈ directed(E) from being assigned to the same
partition at the same index. Note that our encoding works with both simple and non-simple
graphs as long as edges between the same nodes are given distinct names.

The remaining constraints (5)–(8) encode that the partitions of directed(E) are cycles, i.e., an
edge e = (x, y) at index i in partition p implies the edge at index i+ 1 mod 8 starts at y. Here
we need to take into account that there are two possible orientations for a node. Let us consider
the edges incident to a node v, i.e., edges(v) = {e1, e2, e3}. We denote the corresponding directed
edges by eouti and eini where eouti refers to the directed edge going outwards from v and vice versa
for eini . Furthermore, let Ov(e1) = e2, Ov(e2) = e3, and Ov(e3) = e1 correspond to orientation
1, and Ov(e1) = e3, Ov(e2) = e1, and Ov(e3) = e2 correspond to orientation 0 (recall Figure
2). We then denote by pairs1(v) the successor pairs of the directed edges corresponding to
orientation 1, i.e., pairs1(v) = {(ein1 , eout2), (ein2 , e

out
3), (ein3 , e

out
1)} and by pairs0(v) the successor

pairs corresponding to orientation 0, i.e., pairs0(v) = {(ein1 , eout3), (ein3 , e
out
2), (ein2 , e

out
1)}. The

constraint (5) then encodes, for each v ∈ V , that each pair of directed edges appearing in
pairs1(v) is assigned to the same partition if v has orientation 1; the constraint (6) encodes the
same for pairs0(v) and orientation 0. The constraint (7) ensures that for each v ∈ V the edges
in the pairs pairs1(v) have subsequent indices (i, i+ 1 mod 8) if v has orientation 1, while the
constraint (8) encodes the same for pairs0(v) and orientation 0.

1It is not known if the existence of a surface subgroup of genus g implies the existence of a periodic apartment.
2We use the standard pairwise SAT encoding for the exactly-one constraints, which is suitable here as the

number of variables in the constraints is small.

471

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

for each e ∈ directed(E) :
∑

p∈{0,...,N−1}

inCycle(e, p) = 1 (1)

∑
i∈{0,...,7}

index(e, i) = 1 (2)

for each p ∈ {0, . . . , N − 1} :
∨

e∈directed(E)

inCycle(e, p) (3)

for each p ∈ {0, . . . , N − 1}, i ∈ {0, . . . , 7}, e1, e2 ∈ directed(E) such that e1 6= e2 :

¬inCycle(e1 , p) ∨ ¬index(e1 , i) ∨ ¬inCycle(e2 , p) ∨ ¬index(e2 , i) (4)

for each v ∈ V, p ∈ {0, . . . , N − 1}, (e, e′) ∈ pairs1(v) :

¬orient(v)→ (inCycle(e, p)↔ inCycle(e ′, p)) (5)

for each v ∈ V, p ∈ {0, . . . , N − 1}, (e, e′) ∈ pairs0(v) :

orient(v)→ (inCycle(e, p)↔ inCycle(e ′, p)) (6)

for each v ∈ V, i ∈ {0, . . . , 7}, i′ = (i+ 1) mod 8, (e, e′) ∈ pairs1(v) :

¬orient(v)→ (index(e, i)↔ index(e ′, i ′)) (7)

for each v ∈ V, i ∈ {0, . . . , 7}, i′ = (i+ 1) mod 8, (e, e′) ∈ pairs0(v) :

orient(v)→ (index(e, i)↔ index(e ′, i ′)) (8)

for each p ∈ {0, . . . , N − 1}, e, e′ ∈ directed(E) such that e′ < e :

inCycle(e, p) ∧ index(e, 0)→ ¬inCycle(e′, p) (9)

for each p ∈ {1, . . . , N − 1}, e, e′ ∈ directed(E) such that e′ < e :

inCycle(e′, p) ∧ index(e′, 0)→
∧
p′<p

¬(inCycle(e, p′) ∧ index(e, 0)) (10)

Figure 6: SAT encoding of cyclesets.

We additionally break the symmetries underlying this cycleset representation via enfocing
ordering constraints to rule out all but one assignment corresponding to each distinct cycleset.
Specifically, under a fixed linear ordering of directed(E), constraints (9) enforce that each cycle
p ∈ {0, . . . , N − 1} must have its least edge at index 0 (breaking rotation symmetry in each
cycle), and constraints (10) enforce that the cycles p ∈ {0, . . . , N − 1} are in increasing order
according to their edges at index 0.

All in all, the encoding provided in Figure 6 captures cyclesets(G) for any given G, and in
particular, any satisfying assignment of φcycles(G, g) can be projected into W ∈ cyclesets(G).

Proposition 1 (Correctness of the cycleset encoding.). Let g > 1 be a natural number and
G ∈ base(g). There exists a bijective mapping between the satisfying assignments of φcycles(G, g)
and W ∈ cyclesets(G).

Hence, if φcycles(G, g) is unsatisfiable, then G 6∈ cycles(g), and if φcycles(G, g) is satisfiable,
then G ∈ cycles(g) and the satisfying assignments, when projected, yield exactly cyclesets(G).

4 Labeling Oriented Graphs via SAT

We next consider the problem of determining whether a given graph G = (V,E) ∈ cycles(g) can
be labeled using some Ti ∈ {T1, . . . , T23}, i.e., whether G ∈ labels(Ti, g). To solve this problem,

472

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

for each e ∈ E :
∑
l∈L

edgeLabel(e, l) = 1 (11)

for each v ∈ V :
∑
t∈T

nodeLabel(v , t) = 1 (12)∑
o∈{0,1,2}

offset(v , o) = 1 (13)

for each v ∈ V, o ∈ {0, 1, 2}, t ∈ T :

nodeLabel(v , t) ∧ offset(v , o)→
∧

i∈{0,1,2}

edgeLabel(ei , li) (14)

where ei = O′(v)[i], li = t[(i+ o) mod 3]

for each {v1, v2} ∈ E, t = (l1, l2, l3) ∈ T such that l1 6= l2 6= l3 6= l1 :

¬nodeLabel(v1 , t) ∨ ¬nodeLabel(v2 , t) (15)

for each e = {v1, v2} ∈ E, t = (l, l, l′) ∈ T such that l 6= l′ :

nodeLabel(v1 , t) ∧ nodeLabel(v2 , t)→ edgeLabel(e, l) (16)

for each e = {v1, v2} ∈ E, (o1, o2) ∈ bad offsetsGW (e), t = (l, l, l′) ∈ T such that l 6= l′,

nodeLabel(v1 , t) ∧ nodeLabel(v2 , t)→ ¬offset(v1 , o1) ∨ ¬offset(v2 , o2) (17)

Figure 7: SAT encoding of labeling.

we formulate a SAT encoding which can be used to decide for any suited graph G, group Ti
and cycleset W ∈ cyclesets(G) whether there exists a valid labeling of G using Ti with respect
to W . We refer to the encoding as φlabels(G,Ti,W). If there exists W ∈ cyclesets(G) such that
φlabels(G,Ti,W) is satisfiable, then G ∈ labels(Ti, g), whereas if φlabels(G,Ti,W) is unsatisfiable
for all W ∈ cyclesets(G), then G 6∈ labels(Ti, g).

Assume thatG = (V,E) ∈ cycles(g) for fixed g > 1. Recall that cyclesets(G) can be obtained,
e.g., via the cycleset encoding presented in the previous section, or alternatively through orderly
generation, as outlined later in Section 5. Let W ∈ cyclesets(G) be one of the cyclesets. We
denote the generators and relations of a fixed group Ti by L and T , respectively. Let (VB , VW) be
a 2-coloring of G, i.e., VB ∪VW = V and VB ∩VW = ∅ such that there is no edge in E consisting
of nodes only in VB or only in VW . We use here a compact triplet representation for the order
functions arising from W . Let O : V → E3 denote the orientations of nodes as triplets such that
O(v) = (e1, e2, e3), if Ov(e1) = e2, Ov(e2) = e3, and Ov(e3) = e1. To make the encoding more
uniform we define the adjusted orientations O′ : V → E3 by flipping the orientations of black
nodes, i.e., O′(v) = O(v) for all v ∈ VW and O′(v) = (O(v)[2], O(v)[1], O(v)[0]) for all v ∈ VB .
In particular, using the adjusted orientations, items (i) and (ii) in Definition 4 coincide.

From the adjusted orientation O′(v) = (e1, e2, e3) representing a cyclic ordering of edges(v),
we derive an ordering of the labels of the edges as (l1, l2, l3), where li ∈ L is the label of ei for
i ∈ {1, 2, 3}. The label of node v, on the other hand, is also a triplet t = (x, y, z) ∈ T of elements
in L. Since also the triplets (y, z, x) and (z, x, y) represent the same cyclic ordering of the labels,
we use a Boolean variable offset(v, o), where o ∈ {0, 1, 2}, to indicate which representative of
triplet t the node v takes. The other variables used in the encoding are edgeLabel(e, l) and
nodeLabel(v , t) indicating that edge e ∈ E has label (generator) l ∈ L and node v ∈ V has label
(triplet) t ∈ T , respectively.

The SAT encoding φlabels(G,Ti,W) is detailed in Figure 7. The constraints (11)–(13) ensure

473

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

that each edge e ∈ E has a unique label (generator) and that each node v ∈ V a unique triplet
(relation) and an offset. The constraints (14) ensure that the chosen representative of triplet t
of node v matches the triplet (l1, l2, l3) of the labels of edges(v). Constraints (14) together with
cardinality constraints in (11)–(13) rule out cases (d) and (e) in Figure 3. Constraints (15)–
(17) together with the cardinality constraints (11)–(13) rule out cases where adjacent nodes are
assigned triples inconsistently, such as case (f) in Figure 3. Intuitively, constraint (15) blocks
any pair {v1, v2} of adjacent nodes from taking the same triplet t with three distinct labels.
Constraint (16) ensures that any edge e = {v1, v2} such that the nodes v1 and v2 take the same
triplet t = (l, l, l′) takes the duplicated label l.

As stated in Definition 4, the position of the label of an edge between two nodes must be
different in the triplets of the nodes, see cases (c) and (f) in Figure 2. The offsets of the nodes
along with the chosen triplet determine the positions of the label. We thus define the set of
illegal pairs of offsets for e ∈ E as

bad offsetsGW (e) = {(o1, o2) | e = {v1, v2}, o1, o2 ∈ {0, 1, 2}, i1 + o1 = i2 + o2 mod 3

where O′(v1)[i1] = e and O′(v2)[i2] = e},

and rule them out via constraint (17). Here i1 and i2 are the indices of the connecting edge
e in the orientations of v1 and v2, respectively. Further, the sums i1 + o1 and i2 + o2 (mod
3) represent the indices of the label of e in the triplets of v1 and v2, respectively. The set
bad offsetsG(e) thus contains the pairs of offsets that would give the label of e = {v1, v2} the
same index in both v1 and v2.

Proposition 2 (Correctness of the labeling encoding). Let G ∈ cycles(g) for g > 1, and Ti
be one of the 23 groups constructed in [24] . It holds that G ∈ labels(Ti, g) iff there exists
W ∈ cyclesets(G) such that φlabels(G,Ti,W) is satisfiable.

A valid labeling for G with respect to W using Ti can be directly extracted from a satis-
fying assignment to φlabels(G,Ti,W). This allows for constructing a periodic apartment in the
hyperbolic building corresponding to Ti that is invariant under the action of a genus g surface.

5 Orderly Generation of Graphs having Cyclesets

In this section we develop an algorithm for the exhaustive generation of graphs in cycles(g)
and cyclesets(G) for each G ∈ cycles(g). We achieve this by generating configurations which
can be mapped to pairs (G,W) where G ∈ cycles(g) and W ∈ cyclesets(G). Our approach
builds on Read’s orderly generation method [30] which we adapt to our problem setting and
into which we integrate optimizations specific to our configurations for empirical efficiency. In
orderly generation the explicit removal of duplicates in the isomorph-free collection is avoided
by generating configurations in a specific order and outputting only canonical configurations
lexicographically greater than the previous ones.

To implement an orderly generation algorithm we need a formal definition of a configuration
and linear ordering of configurations, a notion of canonicity, as well as a depth parameter and
a method of augmentation. The idea of the construction is to take N = 6(g − 1) directed
cycles of length 8 and glue the directed edges together (into undirected edges) while preserving
connectedness and bipartiteness of the induced graph, in the end resulting in a 3-regular graph.
We number the cycles with elements c ∈ C = {0, 1 . . . N − 1}, and for each cycle, its directed
edges i ∈ I = {0, . . . , 7}. Hence each directed edge is identified by a pair (c, i) ∈ C × I. We set
the source node of each directed edge at even (odd) index black (white).

474

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

(a) (b)

Figure 8: (a) Glueing edges (0, 7) and (1, 2) is allowed since one index is odd while the other is
even. (b) Glueing (0, 7) to (1, 1) is not allowed since both indices are odd.

Formally a configuration X is a list of ordered pairs xi = 〈e1, e2〉 of edge identifiers e1 =
(c1, i1) and e2 = (c2, i2), representing the directed edges that have been glued together to form
undirected edges. We take the depth parameter to be the length of a configuration. There are
8N distinct edge identifiers since there are N 8-cycles, and therefore the maximal length of a
configuration is 4N . Let C(N) be the set of configurations of length 4N built from N 8-cycles.

We define an ordering of C(N) by lifting the natural lexicographic ordering of edge identifiers
e = (c, i) to lists of pairs of edge identifiers, i.e., configurations. Thus e1 = (c1, i1) ≤ e2 = (c2, i2)
iff c1 < c2 or c1 = c2 and i1 < i2. Now x = 〈e1, e2〉 ≤ x′ = 〈e′1, e′2〉 iff e1 < e′1 or e1 = e′1
and e2 < e′2. The ordering of configurations takes into account their varying length, i.e.,
X = (x0, . . . , xl) ≤ Y = (y0, . . . , yk) iff (i) X = Y, (ii) l < k, or (iii) l = k and ∃i such that
xi < yi and xj = yj for all j < i.

Observe that configurations X ,Y ∈ C(N) may be syntactically different representations of
the same graph-cycleset pair. Specifically, the names of cycles and their edges bear no relevance
to the induced graph-cycleset pair. We may thus permute the cycle names arbitrarily and the
indices of edges in steps of two (due to bipartiteness). Stated group-theoretically, the symmetry
group of C(N) is the direct product of the symmetric group on N elements SN (corresponding
to permuting the names of cycles) and the N -wise product of the cyclic group of 4 elements
(corresponding to permuting the indices). Thereby X and Y are equivalent iff there exists a
permutation π ∈ SN × CN4 such that X = π(Y). We denote by [X] the equivalence class of
X ∈ C(N), i.e., [X] = {Y ∈ C(N) | Y and X are equivalent}. The canonical representative of
[X] is then the least Y ∈ [X].

Our orderly generation algorithm is outlined as Algorithm 1. The recursive algorithm starts
with an initial configuration X of length l and incrementally constructs a list of canonical
configurations of maximal length (4N) having X as their prefix. Hence, starting from the
empty configuration, we obtain the list of canonical configurations built from N 8-cycles. The
main parts of the algorithm are the augmenting and canonicity checking steps. Augmenting adds
a new pair 〈e1, e2〉 to the end of configuration X thereby increasing its length by 1. Canonicity
checking consists of determining whether a given configuration is the canonical representative of
its equivalence class, and is performed greedily after each augmentation step since this efficiently
prunes the search space. It can be shown that our algorithm satisfies the following conditions,
which are a stronger variant of Read’s necessary and sufficient conditions [30] for the correctness
of orderly generation.

(i) Each canonical configuration of length l + 1 can be produced from exactly one canonical
configuration of length l.

(ii) If X and Y are configurations of length l and X < Y, the configurations produced by
augmenting X must precede the ones produced by augmenting Y.

475

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

Algorithm 1: Orderly generation algorithm orderly(X , l, N)

Input: configuration X , level l, number of 8-cycles N
Output: the list of canonical representatives of C(N) having X as their prefix
G ← () /* empty list */

if l = 4N then
if canonical(X) then G ← append(G,X)

else
A← augmentations(X)
while A 6= () do

a← pop(A) /* returns first element while removing from A */

X ′ ← append(X , a)
if canonical(X ′) then G ← append(G, orderly(X ′, l + 1, N))

return G

(iii) The augmenting operation produces the new configurations in order.

Augmenting Let X = (x0, . . . xl−1) be a configuration of length l. The augmenting sub-
routine produces a list of pairs 〈e1, e2〉 used in the main algorithm to extend X , denoted by
augmentations(X). To ensure correctness the list augmentations(X) should contain every ele-
ment p = 〈e1, e2〉 for which append(X , p) is canonical. Note that if augmentations(X) contains
elements yielding non-canonical configurations, correctness is still maintained, but empirical
performance may degrade. Also note that any canonical configuration not having X as a prefix
will be produced by augmenting some other suitable configuration X ′.

We denote the free edges of X by Efree
X = (C × I) \ edges(X), where edges(X) consists of

all the edge identifiers appearing in the ordered pairs xi ∈ X . The list augmentations(X) thus
consists of pairs 〈e1, e2〉 where e1, e2 ∈ Efree

X . For each pair, we set e1 to the least element in
Efree
X , denoted by emin. For e2 we consider a subset E′ of the remaining elements Efree

X \ {emin},
i.e., augmentations(X) = (〈e1, e2〉 | e1 = emin, e2 ∈ E′) with the pairs listed in order.

For E′ ⊆ Efree
X \ {emin} we observe the following. Denote e1 = (c1, i1), e2 = (c2, i2), and

let cmax be the largest cycle number appearing in X . To ensure bipartiteness we include
in E′ only edges e2 such that i2 has different parity to i1, see Figure 8 for examples. If
edges(X) = {0, . . . , cmax} × I, then all the edges currently in X have already been paired. In
this case augmenting with a new pair would yield a configuration with a disconnected underlying
graph, and hence if edges(X) = {0, . . . , cmax} × I, we set E′ = ∅. Finally, E′ is reduced by
observing that we need to ensure that any partial configuration can be augmented to a full
configuration so that the underlying graph is 3-regular. Two types of nodes can prevent this:
(i) nodes with degree > 3 or (ii) nodes with degree 1 or 2 such that their degree cannot be
increased by augmenting. Hence we exclude from E′ all edges that would result in such nodes
in the underlying graph, guaranteeing the 3-regularity of the induced graph in a configuration
of maximal length 4N . Observe that while these considerations are enough to guarantee that
only augmentations yielding connected, bipartite, eventually 3-regular underlying graphs are
produced, E′ can be reduced even further by excluding pairs that would necessarily yield a
non-canonical configuration (details omitted due to space constraints).

Canonization While the question of whether graph isomorphism is polynomial-time decidable
is open in general, checking isomorphism of degree-bounded graphs is polynomial-time com-
putable [29]. In our case, the underlying graphs are 3-regular, and hence it is not surprising
that configurations can be canonized in polynomial-time.

476

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

Algorithm 2: Canonicity checking algorithm canonical(X)

Input: configuration X
Output: Boolean indicating whether X is canonical
cmax ← largest cycle number in X
for c ∈ {0, . . . , cmax} do

for a ∈ {0, 2, 4, 6} do
π ← {〈(c, i), (0, i+ a mod 8)〉 | i ∈ {0, . . . , 7}}
π ← extend(π,X) /* extend π to a full permutation */

Y ← π(X) /* compute Y */

if Y < X then return false

return true /* No equivalent configuration smaller than X was found */

We outline our canonicity checking procedure as Algorithm 2. Given a configuration X =
(x0, . . . xq−1) of length q, the algorithm iterates through X while constructing the permutation
minimizing the configuration. If this permutation produces a configuration smaller than X ,
we conclude that X is not canonical. The algorithm goes through permutations mapping each
cycle to 0 with different offsets. Once it is decided which cycle maps to 0 and with which offset,
there is only one way to extend the permutation in a way that minimizes Y = π(X). Hence it
suffices to iterate through every value for c and a instead of trying every element of SN ×CN4 .
Recall that any configuration X produced by the augmentation in our algorithm is connected.

The extending of a partial permutation π in extend(π,X) works as follows. Assume that
permutation π maps cycle c to 0 with offset a. The pairs of X containing edges from cycle c
will become the prefix of the permuted configuration Y = π(X) since 0 is the least cycle. Let
cindex(π,X) = {c} and cindex(π,Y) = {0} be the sets of cycle indices currently mapped by
π in X and Y, respectively. Since the configuration X is connected, there is at least one pair
of edges 〈(c1, i1), (c2, i2)〉 in X such that (i) c1 ∈ cindex(π,X) and c2 6∈ cindex(π,X) or (ii)
c1 6∈ cindex(π,X) and c2 ∈ cindex(π,X). Out of these pairs we choose the one whose permuted
element is the smallest. Let us assume that this pair is 〈(c1, i1), (c2, i2)〉 and c1 ∈ cindex(π,X)
(the other case where c2 ∈ cindex(π,X) can be treated in a similar fashion). We extend π
to map c2 to c′, where c′ = max(cindex(π,Y)) + 1, in order to produce the smallest possible
Y. The corresponding offset is chosen in a way that makes the index i′ in π(c2, i2) = (c′, i′)
as small as possible. After updating cindex(π,X) = {c2} ∪ cindex(π,X) and cindex(π,Y) =
{c′} ∪ cindex(π,Y), the permutation π can be extended in this way as long as X contains pairs
in which one of the cycle identifiers has already been permuted and the other has not. If at any
point X contains only pairs where both cycle indices are either permuted or not permuted, and
|cindex(π,Y)| 6= cmax + 1, where cmax is the largest cycle number appearing in X , then none of
the cycles in the range of π are attached to cycles outside its range. This would mean that the
graph corresponding to the configuration consists of at least two disjoint components, which
contradicts the fact the augmentation algorithm we use only produces connected configurations.

6 Experiments

We report on results obtained by employing different combinations of orderly generation (recall
Section 5) and the SAT encodings for enumerating cycleset decompositions and labeling graph-
cycleset pairs (recall Sections 3 and 4, respectively). In particular, we confirm the results
earlier reported in [25] for genus g = 2 using two semi-independent ways. Furthermore, we

477

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

Table 3: Statistics for different steps of the approaches.

Approach Genus Orientable graphs Labelable graphs Pairs Hits

G+SAT2 2 12 4 274 152

OG+labelSAT 2 12 4 84 15

OG+labelSAT 3 1399 26 5 872 67

OG+labelSAT 4 – 127 6 125 906 491

exhaustively treat the cases of g = 3 and g = 4, altogether ruling out 4 further groups out of
the 23 Ti’s. We also report on the runtime distribution of employing the MiniSAT solver [14]
through the PySAT interface [23] for finding cyclesets and labelings. All experiments were
run on computing nodes with Xeon E5-2680 v4 2.4-GHz processors and 256-GB RAM under
CentOS 7. Our implementation, empirical data and witness graphs found are available via
https://bitbucket.org/coreo-group/periodic-apartments/.

In the following, we will refer by G+SAT2 to the approach consisting of (i) generating all
connected, bipartite, and 3-regular graphs with 16(g−1) nodes and 24(g−1) edges (for a given
genus g) using the off-the-shelf Multigraph tool; (ii) using the SAT encoding of Section 3 to
enumerate the cyclesets of the graphs in (i); and (iii) using the SAT encoding of Section 4 to
determine the existence of a labeling for the graph-cycleset pairs from (ii). In contrast, we will
refer by OG+labelSAT to the approach consisting of (i) generating the graph-cycleset pairs
directly with the orderly approach of Section 5 followed by (ii) SAT checking the existence of
a labeling for each pair.

Confirmation of Earlier Results for Genus 2 Kangaslampi and Vdovina exhaustively
treated the genus–2 case [25]. Their approach consisted of (i) generating all connected, bipartite,
3-regular graphs with 16 nodes and 24 edges while treating simple and non-simple graphs
separately; (ii) for each of these 773 graphs a depth-first search for determining the sets of 6 8-
cycles, and (iii) specialized depth-first search over each of the graph-cycleset pairs to determine
if the pair admits a labeling. As reported in [25], this approach does not scale beyond g = 2.
Our approach differs in terms of generating directly a more strict set of graphs and in employing
a SAT solver for checking the existence of labelings.

We exhaustively treated the case of genus g = 2 using both G+SAT2 and OG+labelSAT,
and checked that the results obtained with both methods agree with those reported in [25], i.e.,
we found that exactly the same five groups (T1, T2, T7, T9, and T18) are ruled out at g = 2.
Table 3 gives more detailed statistics on the different steps on the approaches. The numbers
of graphs for which cyclesets exists (column Orientable graphs) and which admit a valid
labeling (Labelable graphs) are the same for G+SAT2 and OG+labelSAT (as should be). The
total number of graph-cycleset pairs and the number of ones admitting a labeling are listed in
columns Pairs and Hits, respectively. The lower numbers in these columns for OG+labelSAT
compared to G+SAT2 witness the stronger symmetry-breaking in OG+labelSAT resulting in
a noticeably smaller average number of cyclesets per graph. The SAT-based labeling phase of
both approaches was quite efficient for genus 2, with cumulative runtimes of 420 seconds for
G+SAT2 and 143 for OG+labelSAT. The SAT-based cycleset generation phase of G+SAT2 over
the 773 graphs from phase (i) took a total of 348 seconds, while the orderly generation phase
of OG+labelSAT took 3 seconds. This suggests that OG+labelSAT scales better of the two to
large genera. We will report on new results for genera 3 and 4 focusing on OG+labelSAT.

New Results beyond Genus 2 Kangaslampi and Vdovina were unable to scale their approach
beyond genus 2. In contrast, our OG+labelSAT approach, using trivial parallelization, allowed
for an efficient exhaustive analysis of genera 3 and 4. As a result, we are able to rule out four

478

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

 0

 4

 8

 12

 0 2000 4000 6000

t(s)

Figure 9: Runtime distribution of the labeling phase of OG+labelSAT for genus 3 (left) and
genus 4 (right). The total runtime of 23 sat calls (one for each Ti) per graph-cycleset pair is
plotted.

more groups (summarized in Table 4). Concrete witnesses (labeled oriented graphs) for these
four groups T6, T13, T15, and T16 are provided in Figure 10.

We are able to rule out three more groups at genus 3, and a further group at genus 4. While
Multigraph (phase (i) of G+SAT2) would generate 13 703 003 409 graphs at genus 3, orderly
generation at genus 3 resulted in 5872 graph-cycleset pairs, out of which 81 admit a labeling;
see Table 3. For genus 4 we generated 6 125 906 graph-cycleset pairs, out of which 491 admit
a labeling. At genus 3, orderly generation took approximately 14 hours and the labeling phase
less than 8 hours. Orderly generation of genus 4 configurations, on the other hand, took 883
500 hours, and checking them for labeling took 7 241 hours. Figure 9 shows the total runtime of
the labeling phase per graph-cycleset pair over the 23 Ti’s for genus 3 (left) and genus 4 (right).
Each individual SAT call took less than 2 seconds at genus 3 and 12 seconds at genus 4.

7 Conclusions

We presented a computational study of the applicability of combinations of SAT solving and
orderly generation to a problem arising from geometric group theory, dealing in particular with
determining whether one of 23 specific groups earlier put forth by Kangaslampi and Vdovina [24]
would serve as a counterexample to the famous subgroup conjecture of Gromov. While earlier
computational treatment of this problem setting was restricted to genus 2 [25], we showed that
a combination of SAT solving and orderly generation allows for scaling to the significantly
larger search spaces induced by genera 3 and 4. As a result, we both provided an independent
confirmation of the earlier results for genus 2 [25], and ruled out four more groups out of the 23
as counterexamples to Gromov’s subgroup conjecture by exhaustively treating genus 3 and 4.

Acknowledgments This work was financially supported by Academy of Finland (grants
276412, 312662, and 322869). Computational resources were provided by Finnish Grid and
Cloud Infrastructure [15]. The authors thank Riikka Kangaslampi for discussions and Markus
Meringer and Gunnar Brinkmann for correspondence on orderly generation and Multigraph.

Table 4: Groups ruled out at genus g with those not ruled out at smaller value of g in bold.

Approach Genus 2 Genus 3 Genus 4

G+SAT2 T1, T2, T7, T9, T18

OG+labelSAT T1, T2, T7, T9, T18 T1, T2, T6, T7, T9, T13, T16, T18 T1, T2, T7, T9, T15, T18

479

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

(a) G3
2668 (b) G3

2211

(c) G3
2056 (d) G4

1988473

Figure 10: A graph labeled using (a) T6, (b) T16, (c) T13, and (d) T15. The arrows around the
nodes of the graphs denote the orientations arising from the cycleset allowing the graph to be
labeled. Bipartiteness is indicated using colors black and white, and the xi’s denote the labels
of edges. The triplet of each node can be deduced from the labels of its incident edges.

480

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

References

[1] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[2] Joshua Brakensiek, Marijn Heule, and John Mackey. The resolution of Keller’s conjecture. CoRR,
abs/1910.03740, 2019. http://arxiv.org/abs/1910.03740.

[3] Florian Brandl, Felix Brandt, Manuel Eberl, and Christian Geist. Proving the incompatibility of
efficiency and strategyproofness via SMT solving. Journal of the ACM, 65(2):6:1–6:28, 2018.

[4] Felix Brandt and Christian Geist. Finding strategyproof social choice functions via SAT solving.
Journal of Artificial Intelligence Research, 55:565–602, 2016.

[5] Felix Brandt, Christian Geist, and Dominik Peters. Optimal bounds for the no-show paradox via
SAT solving. Mathematical Social Sciences, 90:18–27, 2017.

[6] Gunnar Brinkmann. Minibaum webpage. http://caagt.ugent.be/minibaum/. Accessed: 2020-01-
24.

[7] Gunnar Brinkmann. Fast generation of cubic graphs. Journal of Graph Theory, 23(2):139–149,
1996.

[8] Danny Calegari. Surface subgroups from homology. Geometry & Topology, 12(4):1995–2007, 2008.

[9] Danny Calegari and Alden Walker. Random groups contain surface subgroups. Journal of the
American Mathematical Society, 28(2):383–419, 2015.

[10] François Dahmani and Vincent Guirardel. Foliations for solving equations in groups: free, virtually
free, and hyperbolic groups. Journal of Topology, 3(2):343–404, 2010.

[11] François Dahmani and Vincent Guirardel. The isomorphism problem for all hyperbolic groups.
Geometric and Functional Analysis, 21(2):223–300, 2011.

[12] Pierre de La Harpe. Topics in geometric group theory. Chicago Lectures in Mathematics. University
of Chicago Press, 2000.

[13] Cornelia Druţu and Michael Kapovich. Geometric group theory, volume 63 of Colloquium Publi-
cations. American Mathematical Society, 2018.

[14] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International Conference,
SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919
of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[15] Finnish Grid and Cloud Infrastructure, 2019. urn:nbn:fi:research-infras-2016072533.

[16] David Futer and Anne Thomas. Surface quotients of hyperbolic buildings. International Mathe-
matics Research Notices, 2012(2):437–477, 2011.

[17] Christian Geist and Ulrich Endriss. Automated search for impossibility theorems in social choice
theory: Ranking sets of objects. Journal of Artificial Intelligence Research, 40:143–174, 2011.

[18] Cameron Gordon, Darren Long, and Alan Reid. Surface subgroups of coxeter and artin groups.
Journal of Pure and Applied Algebra, 189(1):135 – 148, 2004.

[19] Cameron Gordon and Henry Wilton. On surface subgroups of doubles of free groups. Journal of
the London Mathematical Society, 82(1):17–31, 2010.

[20] Paul R. Herwig, Marijn J.H. Heule, Martijn van Lambalgen, and Hans van Maaren. A new
method to construct lower bounds for Van der Waerden numbers. The Electronical Journal of
Combinatorics, 14(1), 2007.

[21] Marijn Heule. Schur number five. In Sheila McIlraith and Kilian Weinberger, editors, Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pages 6598–6606. AAAI Press, 2018.

[22] Marijn Heule, Oliver Kullmann, and Victor Marek. Solving and verifying the boolean pythagorean

481

Finding Periodic Apartments via SAT and Orderly Generation Savela, Oikarinen, and Järvisalo

triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre, editors, Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages
228–245. Springer, 2016.

[23] Alexey Ignatiev, António Morgado, and João Marques-Silva. Pysat: A python toolkit for proto-
typing with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
volume 10929 of Lecture Notes in Computer Science, pages 428–437. Springer, 2018.

[24] Riikka Kangaslampi and Alina Vdovina. Cocompact actions on hyperbolic buildings. International
Journal of Algebra and Computation, 20(4):591–603, 2010.

[25] Riikka Kangaslampi and Alina Vdovina. Hyperbolic triangular buildings without periodic planes
of genus 2. Experimental Mathematics, 26(1):54–61, 2017.

[26] Sang-hyun Kim and Sang-il Oum. Hyperbolic surface subgroups of one-ended doubles of free
groups. Journal of Topology, 7(4):927–947, 2014.

[27] Boris Konev and Alexei Lisitsa. Computer-aided proof of erdős discrepancy properties. Artificial
Intelligence, 224:103–118, 2015.

[28] Oliver Kullmann. Green-tao numbers and SAT. In Ofer Strichman and Stefan Szeider, editors,
Theory and Applications of Satisfiability Testing - SAT 2010, 13th International Conference, SAT
2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer
Science, pages 352–362. Springer, 2010.

[29] Eugene Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal
of computer and system sciences, 25(1):42–65, 1982.

[30] Ronald Read. Every one a winner or how to avoid isomorphism search when cataloguing combi-
natorial configurations. Annals of Discrete Mathematics, 2:107–120, 1978.

482

	Introduction
	Combinatorial Characterization
	Enumerating Cyclesets via SAT
	Labeling Oriented Graphs via SAT
	Orderly Generation of Graphs having Cyclesets
	Experiments
	Conclusions

