
EPiC Series in Computing

Volume 70, 2020, Pages 173–181

Proceedings of the 12th International Conference
on Bioinformatics and Computational Biology

Epileptic Focus Localization Based on iEEG Plot Images

by Using Convolutional Neural Network

Xuyang Zhao1,2,∗, Linfeng Sui1,∗, Toshihisa Tanaka3,2,
Jianting Cao1,2 and Qibin Zhao2,4

1 Department of Electronic Engineering,
Saitama Institute of Technology, Fukaya, Japan

e7001gct, n8007dov, cao@sit.ac.jp
2 Tensor Learning Unit,

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
qibin.zhao@riken.jp

3 Department of Electrical and Electronic Engineering,
Tokyo University of Agriculture and Technology, Tokyo, Japan

tanakat@cc.tuat.ac.jp
4 Ningbo Haizhi Institute of Materials Industry Innovation, Ningbo, China

Abstract

Patients with epilepsy need to locate the lesion before surgery. Currently, clinical
experts diagnose the lesions through visual judgment. In order to reduce the workload
of clinical experts, many automatic diagnostic methods have been proposed. Usually,
the automatic diagnostic methods often use only one feature as the basis for diagnosis,
which has certain limitations. In this paper, we use multiple feature fusion methods for
automatic diagnosis. For the cause of epilepsy: abnormal discharge, we use the filter and
entropy to capture the energy features of epilepsy discharge. Due to the epilepsy brain
waves contain spike and shape waveforms, short time Fourier transform (STFT) is used to
analysis the time-frequency features. In feature fusion, we plot the color map of entropy
and spectrogram get from STFT together to combine the different types of features. After
the feature extraction and fusion steps, each brain signal is converted into an image. Next,
we use the visual analysis capabilities of the convolutional neural network (CNN) to classify
the plot image. With the visual recognition ability of CNN, in the experiment, we got a
classification accuracy of 88.77%. By using automatic diagnostic methods, the workload
of clinical experts is greatly reduced in actual clinical practice.

1 Introduction

Epilepsy is a brain disease caused by abnormal discharges of brain cells. According to the
World Health Organization (WTO) statistics, approximately 50 million people worldwide have
epilepsy. Epilepsy disease brings a variety of social problems, such as patients need long-term
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medication, some pediatric patients will face the chilean development, neurological diseases and
other problems during their growth. At present, epilepsy patients can control the seizures by
taking medications, and some patients can reach a complete cure and stop taking medications.
Some patients require long-term medication to control their condition. But there are still some
patients with drug resistance. For this part of the patient, the current plan is to remove the
lesion by surgery.

Before epilepsy surgery, we need to determine the location of the lesion through physical
examination. Intracranial Electroencephalography (iEEG) is the most commonly used exam-
ination method. In current clinical practice, iEEG signal is analyzed by a clinical expert’s
visual diagnosis [1]. Here are some points that need improvement. iEEG recording time is at
least two-three days, usually one week. These massive amounts of iEEG data require manual
visual diagnosis by clinical experts. Vision diagnosis is an experience dependent process and
often requires several years of training. Nevertheless, the diagnostic results given by different
experts are not completely consistent, final diagnosis often required by a vote of the diagnostic
committee.

In view of the problems and difficulties in the diagnosis process, some automatic diagnosis
systems have been proposed. These methods mainly include two steps, feature extraction and
classification. In feature extraction, wavelet transform [2, 3, 4, 5] empirical mode decompo-
sition (EMD) [6, 7], entropy [8, 9, 10] time-frequency [11, 12] methods are often be used. In
classification work, from traditional classifiers support vector machine (SVM) to current neural
network based methods EEGNet [13] are often used

At present, the diagnosis of clinical expert in hospitals is often performed in a variety of ways,
visual judgment of brain waves at different scales and frequency domain analysis. However, in
the proposed automatic diagnosis methods, a single feature is mainly used, which has limitations
on the model. In this paper, we use two different features and fuse the features together to
form a new feature image. By this way, two features are combined. Time-series brain signals
are converted into pictures, so we can use CNN models for visual recognition. In the feature
extraction method, we start from the point that energy is contained in the over discharge, and
select a variety of entropy as the features. When clinical experts make visual judgments,
they often make judgments based on whether the brain waves contain spike waves
and shape waves. Brain waves of healthy people are mainly composed of four wave bands:
δ: 0.5-4 Hz, adult slow-wave sleep and baby. θ: 4-8 Hz, drowsiness in adults and teens. α:
8-13 Hz, relaxed/reflecting. β: 13-30 Hz, focus, high alert, anxious and so on. The frequency
range of spike wave is 14-50 Hz and the frequency range of shape wave is 5-14 Hz. According to
the difference in frequency distribution between normal brain wave and spike, shape wave, we
use short time Fourier transform to analyze the frequency domain information. During feature
fusion, we choose to fuse two different features into a image, so that we can use the powerful
visual recognition capabilities of CNN

The rest of the article is organized as follows: Section 2 describes the feature extraction
method include entropy & filter, STFT and plot images. Section 3 describes the CNN model
used as a classifier. The results are presented in Section 4, The discussion and summary are
described in Section 5.

2 Methods

We start with the pathogenesis of epilepsy and the characteristics of the brain wave, use two
different feature extraction methods of entropy and STFT, and fuse the two features into one
image. By fusing two features into an image, we convert the brain wave signal into an image, so
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we can use the powerful classification capabilities of a convolutional neural network to classify
the brain wave.

2.1 Dataset

Bern Barcelona dataset [14] is used to evaluate our method. The dataset is built by the
Department of Information and Communication Technologies of the Universitat Pompeu Fabra
and the Department of Neurology of the University of Bern. The dataset includes five patients
and each patient has long standing pharmacoresistant temporal lobe epilepsy and is a candidate
for epilepsy surgery. The iEEG data is recorded by using the device of AD-TECH (Racine, WI,
USA). A total of 15,000 samples, 7,500 focal samples and 7,500 non-focal samples. each sample
is 20 seconds with a sampling rate of 512 Hz and filtered by a bandpass filter (0.5-150 Hz,
fourth-orders Butterworth filter). You can find more information on the website 1. An example
of the focal and non-focal iEEG samples are shown in Fig. 1, respectively.
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Figure 1: Samples of focal and non-focal iEEG (Bern Barcelona Dataset).

2.2 Entropy & Filter

Consider the cause of epileptic seizures: abnormal discharge of brain cells. The abnormal
discharge releases a lot of energy, and we use entropy [15] as a feature extraction method and
combined with the filter to extract the features of the iEEG signal. First, we use six bandpass
filters (third-order Butterworth) to filter the iEEG data. The bandpass frequencies used are
Delta 0.5-4 Hz, Theta 4-8 Hz, Alpha 8-13 Hz, Beta 13-30 Hz, Gamma 30-80 Hz and Ripple 80-
150 Hz. After filtering, we calculate eight different entropies for each filtered iEEG data. Eight
different entropies are Shannon entropy, Renee entropy, Generalized entropy [16] [17], Phase
entropy (two types) [18], Approximate entropy [19], Sample entropy [20] and Permutation
entropy [21] After these two steps, we extract a feature matrix from each sample with a size of
6× 8. The flowchart of feature extraction procedure is shown in Fig. 2.

2.3 Short Time Fourier Transform

When clinical experts diagnose epilepsy, they mainly judge whether the brain waves contain
waveforms such as spike and shape waves from the visual point of view. Usually, the frequency
of shape is between 5-14 Hz and the spike wave is between 14-50 Hz. Because of the instability

1http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-nonlinear-
dependence-and
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Figure 2: Flowchart of feature extract procedure: Filter & Entropy.

of the iEEG signal, we use the STFT method to replace the Fourier transform [22] for the
feature extraction. x(t) is a timing signal, the time-frequency spectrogram can be calculate by
(1)

STFT{x(t)}(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−jωt dt (1)

where w(t) is the Hann window function centered around zero.

2.4 Image Plot

In order to use the visual method to classify the extracted data features. We plot the entropy
and spectrogram obtained by the STFT into an image with 224× 224 pixels. The example of
feature fusion image is shown in Fig. 3, images are randomly selected from the dataset.

Figure 3: Each image contains two parts, the upper part is the spectrum obtained by STFT,
and the lower part is drawn by the feature matrix (color map). The left half is the focal signal,
and the other half is non-focal signals.
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3 Convolutional Neural Network

The ultimate obtained STFT & Entropy images are fed into CNN model shown as Fig. 4.
The proposed CNN architecture has four convolutional layers following three fully connected
neural network (FCNN) layers, a max-pooling and a batch normalization layer are set after
each convolutional layer to lower the calculation complexity and prevent overfitting. The last
layer of the architecture to execute the classification process, in this layer, the input is classified
as focal or non-focal.
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Figure 4: Architecture of CNN model.

4 Experimental Results

In this section, Bern Barcelona dataset is used to evaluate our method. In the dataset, a total
of 15,000 samples, focal and non-focal has 7,500 samples, respectively. We use a 10-fold cross-
validation method to evaluate the model. Every time, 10% data are selected as a test set, the
rest are training sets, at last, every data has been tested once.

As a comparison, we only use entropy feature with a three layers fully connected neural
network model, the result is shown in Fig. 5. Another model for comparison is STFT feature
with one layer of maxpool and five layers of fully connected neural network, each fully connected
layer is followed by a batch normalization layer, the result is shown in Fig. 6. The result of
fused features with FCNN model is shown in Fig. 7. The result of fused features with CNN
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model is shown in Fig. 8. Comparison of the results of the three models are shown in Table 1.

Figure 5: Results of the FCNN model with entropy features. Left: test accuracy vs. number
of epochs, red line: Average of classification test accuracy (10-folds), gray area: Standard
deviation. Right: Train loss vs. number of epochs, blue line: Average of train loss (10-folds),
gray area: Standard deviation.

Figure 6: Results of the FCNN model with STFT features. Left: test accuracy vs. number
of epochs, red line: Average of classification test accuracy (10-folds), gray area: Standard
deviation. Right: Train loss vs. number of epochs, blue line: Average of train loss (10-folds),
gray area: Standard deviation.

5 Discussion and Summary

In the article, we proceed from the principle of epilepsy disease, use entropy and short-time
Fourier for feature extraction, which corresponds to the abnormal discharge (energy) and spike,
shape wave (frequency characteristics) of epilepsy brain signals, respectively. In the traditional
method, the extracted feature matrix is usually input into a classifier. In this paper, we plot
the extracted feature matrix into an image and then use a convolutional neural network for
classification. By this way, we can use the visual analysis capabilities of the CNN model.
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Figure 7: Results of the FCNN model with plot image. Left: test accuracy vs. number
of epochs, red line: Average of classification test accuracy (10-folds), gray area: Standard
deviation. Right: Train loss vs. number of epochs, blue line: Average of train loss (10-folds),
gray area: Standard deviation.

Figure 8: Results of the CNN model with plot image. Left: test accuracy vs. number of epochs,
red line: Average of classification test accuracy (10-folds), gray area: Standard deviation. Right:
Train loss vs. number of epochs, blue line: Average of train loss (10-folds), gray area: Standard
deviation.

Comparison of algorithm performance with other articles are shown in Table 2. The results
show that the performance of the model is improved by multi-feature fusion.

Table 1: Results of three models (Mean ± standard deviation).

Model
FCNN

Entropy
FCNN
STFT

FCNN
Plot Image

CNN
Plot Image

Result [%] 80.06± 0.16 78.14± 0.11 85.47± 0.19 88.77± 0.16
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Table 2: Localization results of focal and non-focal iEEG data of published articles by using
the Bern-Barcelona dataset (accuracy in [%]).

Author Method proposed Performance

[5] SVM & DWT 83.07

[3] LS-SVM & EMD, Entropy 87

[23] LS-SVM & DWT, Entropy 84

[9] LS-SVM & TQWT, Entropy 84.67

[6] SVM & BEMD 86.89

Proposed CNN & Plot Image 88.77± 0.16
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