EPiC Series in Computing Sl
omputing

Volume 72, 2020, Pages 92-106
GCAI 2020. 6th Global Conference

on Artificial Intelligence (GCAI 2020) E ; ii

Guided Inductive Logic Programming:

Cleaning Knowledge Bases with Iterative User Feedback

Yan Wu'?, Jinchuan Chen?, Plarent Haxhidauti?, Vinu E. Venugopal?, and
Martin Theobald?

L College of Computer and Information Science, Southwest University, China
2 Department of Computer Science & Communications, University of Luxembourg, Luxembourg
3 School of Information, Renmin University of China, China

Abstract

Domain-oriented knowledge bases (KBs) such as DBpedia and YAGO are largely con-
structed by applying a set of predefined extraction rules to the semi-structured contents
of Wikipedia articles. Although both of these large-scale KBs achieve very high average
precision values (above 95% for YAGO3), subtle mistakes in a few of the underlying ex-
traction rules may still impose a substantial amount of systematic extraction mistakes for
specific relations. For example, by applying the same regular expressions to extract per-
son names of both Asian and Western nationality, YAGO erroneously swaps most of the
family and given names of Asian person entities. For traditional rule-learning approaches
based on Inductive Logic Programming (ILP), it is very difficult to detect these system-
atic extraction mistakes, since they usually occur only in a relatively small subdomain of
the relations’ arguments. In this paper, we thus propose a guided form of ILP, coined
“GILP”, that iteratively asks for small amounts of user feedback over a given KB to learn
a set of data-cleaning rules that (1) best match the feedback and (2) also generalize to a
larger portion of facts in the KB. We propose both algorithms and respective metrics to
automatically assess the quality of the learned rules with respect to the user feedback.

1 Introduction

There are a number of recent approaches that specifically tackle the problem of learning con-
sistency constraints from a given KB (or, respectively, from a fixed training subset of the KB)
for data-cleaning purposes (see [21] for a recent overview). The kinds of constraints considered
for data cleaning traditionally comprise functional dependencies, conditional functional de-
pendencies [6], equality-generating dependencies [5], denial constraints and more general Horn
clauses [9, 22]. The common rationale behind these learning approaches is that “unusual implies
incorrect”. That is, constraints are established if they are followed by most data items and thus
receive a high confidence according to the traditional rule-mining metrics [23]. Ttems violating
the constraints will thus be regarded as “unusual” and subsequently be marked as incorrect
by the data-cleaning framework. For example, if we observe that 95% of all unemployment
rates are inside the range of 0 to 100 percent, we might indeed correctly conclude that “un-
employment rates should be between 0 and 100” and remove all data items outside this range.

G. Danoy, J. Pang and G. Sutcliffe (eds.), GCAI 2020 (EPiC Series in Computing, vol. 72), pp. 92-106

Guided Inductive Logic Programming (GILP) Wu et al.

However, “usual” does not necessarily guarantee for the correctness of a data item, either. If
an extraction rule is overly general or contains a logical mistake, which is quite common in
practice, many incorrect tuples will be extracted from just a single such rule. For example, in
YAGO3, about 44% of all unemployment rates are actually incorrect (i.e., less than 0 or larger
than 100), stating, for example, that “the unemployment rate of Italy is 2014”. These mistakes
seem to be produced by an extraction strategy which erroneously interprets years as unem-
ployment rates. As another example, the family and given names of most Asian people have
mostly been swapped in YAGO3. These mistakes are due to an extraction rule which extracts
the first token of a person’s name as his/her given name and conversely assigns the last token
as the family name. Clearly, this extraction strategy is most likely wrong for people from Asian
countries like China, Japan, Korea, etc. Hence, the idea of “unusual implies incorrect” cannot
be applied within this particular subdomain of person entities. Unfortunately, it is very difficult
to detect such kinds of systematic mistakes from the given KB only. Thus, one solution is to
resort to asking for explicit user feedback, as it is shown in the following (running) example.

Example 1. Suppose a user is browsing for people’s family names and posts the feedback'
depicted in Table 1. A general conclusion we could draw from the above feedback is that “all

Fact Feedback
hasFamilyName(Yao-Ming, Ming) X
hasFamilyName(Li-Na, Na) X
hasFamilyName(Lionel _Mercy, Mercy) v
hasFamilyName(Yi_Jianlian, Jianlian) X

Table 1: Initial user feedback Fy

family names are incorrect”. This looks quite reasonable with respect to the initial feedback
because it is consistent with most of the user comments, except for the third one. However,
generalizing and applying this rule to the entire KB would obviously be rather keen at this point.
A better strategy would be to first carefully generalize and then immediately again specialize
the rule [17] into multiple descendent rules before applying these descendent rules to clean
the KB. For erxample, descendent rules such as “the family names of all Chinese people are
incorrect”, “the family names of all Japanese people are incorrect”, and so on, would be much
more reasonable conclusions to draw. On the other hand, the descendent rule “the family
names of all American people are correct” could be derived from the positive feedback about the
family name of Lionel Mercy. The respective conditions “Chinese people”, “Korean people” and
“American people” can be automatically extracted from the KB by joining the facts about the
family names of the given person entities with the respective facts about their nationalities. To

Fact Feedback
hasFamilyName(LiuXiang, Xiang) X
hasFamilyName(Deng-Yaping, Yaping) X
hasFamilyName(Jimmy_Hendrix, Hendrix) v
hasFamilyName(Janis_Joplin, Joplin) v

Table 2: First iteration of user feedback JF;

verify and apply our refined conclusions to a larger set of entities captured by the KB, we need
more feedback. Thus, we choose a small amount of related facts from the KB and ask the user
to comment on them. The new feedback for our running example is listed in Table 2. Generally,
we may need to iteratively learn rules and pull user feedback until a set of sufficiently qualified
descendent rules is found.

1User feedback is assumed to consist of binary true/false assessments of facts contained in the KB.

93

Guided Inductive Logic Programming (GILP) Wu et al.

Our problem setting falls within the area of Inductive Logic Programming (ILP) [16], which
investigates the inductive construction of first-order formulas from a given training set. How-
ever, the induction process in our problem will be guided by iterative user feedback, such that
the training set is not fixed and the termination condition for the learning algorithm is not given
a-priori. Hence, we refer to this new problem as Guided Inductive Logic Programming (GILP).
The goal of GILP is to learn a targeted set of consistency constraints from much less train-
ing data (i.e., user feedback in our case) than what is required by traditional ILP techniques.
Figure 1 illustrates the workflow of our system. First, a user browses the KB and sends an

Initial
Feedbacks

tuples

Rule
Engine

Knowledge
. Base '

feedbacks

Figure 1: Iterative GILP workflow

initial, small amount of binary feedback assessments. Then, the rule engine derives a number
of generic seed rules from this initial feedback by using the assessed facts as anchors. Next,
the rule engine aims to refine the seed rules based on the KB. During the refinement process,
the rule engine may ask the user to comment on a few additional facts in order to verify the
candidate rules and thereby also learn new rules from the additional feedback. Finally, a set of
qualified rules will be produced.

There are several challenges to be addressed by GILP. First of all, the number of candidate
rules may grow exponentially with the number of refinement conditions attached to an initial
seed rule, which limits the number of possible refinement conditions to a very small amount.
Notice that GILP is a form of interactive learning, and we cannot expect the user to spend too
much time on waiting between the feedback iterations. Furthermore, since each rule should be
verified by pulling feedback from users, the learning process will become too laborious if large
volumes of additional facts need to be assessed. Another major challenge arises due to the fact
that the training set of GILP is not fixed but will expand during the learning phase. All recent
works in the context of rule learning, such as [9, 18, 22|, take an entire knowledge base as the
training set (thus following the assumption that “wnusual implies incorrect”) and inductively
learn rules until a fixpoint condition is reached. In GILP, we have to rely on a possibly small
but growing amount of user feedback to both induce and verify the candidate rules, and hence
we also aim to discover systematic extraction mistakes that could not be uncovered by tradi-
tional ILP approaches. Contributions. We summarize the novel contributions of our work as

follows.

o GILP allows users to interactively browse a KB and thereby detect systematic extraction
mistakes that usually only cover a small subdomain of a predicate’s arguments.

e GILP can learn targeted constraints very quickly, with just a few iterations and small
amounts of user feedback at each iteration.

e GILP can learn consistency constraints that cannot be learned with standard ILP approaches
that take an entire KB as their basis for learning constraints. This typically results in a higher
accuracy (both in terms of precision and relative recall) for the cleaned KB than what existing
ILP techniques can achieve.

94

Guided Inductive Logic Programming (GILP) Wu et al.

2 Background & Preliminaries

In this section, we formally define our data model and introduce the basic notation that is
used through the rest of the paper. Our goal is to iteratively learn consistency constraints,
represented as Horn clauses, over a relational representation of a KB. We also provide a unifying
approach to represent relations and constraints as first-order literals and first-order rules that
capture both positive and negative feedback, respectively.

Relations. We represent a relation schema R by a logical predicate of arity k > 1. For a fixed
unwverse of constants U, a relation instance R is a finite subset R C U*. We call the elements of
R tuples, and we write R(f) to refer to a tuple in R, where ? is a vector consisting of constants
in U. Moreover, R(X) refers to an atomic formula (or just “atom”, for short) over the relation
schema R, where X is a vector that may consist of both constants and variables. We write
Var(X) to denote the set of variables in X. By writing ¢ [x, we denote the restriction (i.e., the
“projection”) of a tuple £ onto a subset of variables X C Var(X) (see the Appendix A for an

example).

Feedback. Formally, we consider a knowledge base K as a set of tuples. We write K(R,?)
to denote that tuple R(f) € K. The feedback F for a tuple R(f) € K indicates that R(?) is
either correct or incorrect. Thus, the two sets F© C K and F~ C K contain all tuples that
received either positive or negative feedback, respectively, where we assume that FT N F~ =0
and FT U F~ = F holds. Moreover, we write 7= C K and 7~ C K to denote the sets of
facts, which are found to be correct or incorrect by the consistency constraints we learn over
K. In analogy to the feedback, we assume that 7t N7~ =0 and TTUT~ = T holds. The
embeddings of these sets within each other are illustrated in Figure 2. The key goal of our work
is to learn constraints based on a limited amount of user feedback F+ and F~, while expanding
T+ and 7~ over the set of tuples in K as much as possible.

Figure 2: Embeddings of set predicates F*, F~, 7T, 7~ into the knowledge base K

Set Predicates. To simplify our notation of constraints, we will focus on Horn clauses for
the following steps (see Appendix A for a detailed definition of various classes of constraints
commonly used in data cleaning). Specifically, we denote K, F*, F~, T and T~ as set
predicates, and we introduce a new binary predicate of the form 7 (R,#) which will serve as a
short-hand notation for 71 (¢) A R(¢) (and using a similar construction for the remaining four
set predicates).

Definition 1. An atomic formula (or “atom”, for short) in our GILP framework either is of
the form

e P(R, X), where P is one of the set predicates K, F+*, F~, T or T—, and X is a vector
consisting of variables and constants;

95

Guided Inductive Logic Programming (GILP) Wu et al.

‘o

e or (ufv), where 6 is a comparison operator (including “=7, “>7, “<” etc.), and u, v are

either variables or constants.

That is, a relational atom in this notation is a set predicate which has a given relation R and
a vector X consisting both of variables and constants as arguments. For example, 7+ (R, X)
is an atom denoting that all constants that may become bound to the variables in Var(X) are
inferred to be correct by a rule, while 7~ (R, X) denotes the set of facts that are inferred to be
incorrect.

GILP Rules. The final step to define our reasoning framework is to specify which kinds of
rules we allow to be learned by GILP.

Definition 2. A GILP rule, denoted by ¢, is a Horn clause of the form

where o(X) is a conjunction of atoms, W(X) is a single atom (see Definition 1) and x4, ..., xy
are the variables in Var(X).

By using the above form of Horn clauses over set predicates, we unify all classes of constraints
commonly considered for data cleaning (see Appendix A) into a single notation. Moreover, by
wrapping the relational predicates into five set predicates, we are able to distinguish which of
the rule atoms address facts in the given KB, which ones are derived from either positive or
negative feedback facts, and which inferred facts should be considered to be either correct or
incorrect. Specifically, since feedback is either positive or negative in our framework, we focus
on the following two kinds of GILP rules.

Exclusive Rules. An exclusive rule is of the form
V.. Vo, (e(X) = T (R, X))

where 1, ...,z are the variables in Var(X).

Inclusive Rules. An inclusive rule is of the form

Vay ... Vg (SD(X) - TJF(R’X))

where z1, ...,z are the variables in Var(X).

Example 2. The following inclusive rule specifies that “The given names of all people with US
nationality are correct.”

K(hasGivenName, (z1,vy1)) A K(hasNationality, (x1, USA)) — Tt (hasGivenName, (z1,y1))

Conversely, the following exclusive rule specifies that “The given names of all people with
Chinese nationality are incorrect.”

K(hasGivenName, {x1,y1)) N K(hasNationality, (x1, China)) — T~ (hasGivenName, (x1,y1))

Language Bias. Our GILP framework adopts the following language bias which is common in

(relational) ILP settings. This ensures that the grounding procedure of the rules terminates, and

it additionally helps to prune the search space of rules accepted by our GILP algorithm.

e We only allow safe rules, i.e., the relation R and all variables in the head of a rule ¢ must also
appear in the body of ¢. Moreover, all variables occurring as an argument of a comparison
operator in ¢ must also occur as an argument of a set predicate in the body of ¢.

96

Guided Inductive Logic Programming (GILP) Wu et al.

e We focus on mining connected rules. We say that two atoms are connected iff they share
a variable. A rule ¢ is connected iff every pair of atoms in the body of ¢ is transitively
connected by one or more shared variables.

o We only allow non-repeating rules, i.e., a same atom must not occur repeatedly in each ¢.

e Finally, to both avoid overfitting and to limit the runtime of the induction step, the rules
learned by our system must not be too long, i.e., the number of atoms in the body should
not exceed a predefined mazximum length L.

3 GILP Algorithm

In this section, we outline our GILP algorithm that implements the iterative learning of rules
and pulling of user feedback as it is depicted by the workflow of Figure 1. Specifically, we
illustrate how to initialize our framework by generating seed rules ®(; from an initial set of
(both positive and negative) user feedback Fy, and we define our refinement operators to derive
the overall set of candidate rules from the seed rules. Finally, we propose our basic quality
measures for either accepting or rejecting these candidate rules.

3.1 Basic Algorithm

Algorithm 1 illustrates our basic GILP algorithm. We generate the set of seed rules ®g (see
Section 3.2) from the initial user feedback Fo (Line 1). The sets of accepted rules ®q4cc and
predicted facts T (which will be based on all rules in ®,..) are initially set to be empty (Lines 2
& 3). Similarly, we initialize the iteratively merged sets of overall rules ® and feedback facts F
to g and Fy, respectively (Lines 4 & 5). At each GILP iteration, the set of accepted rules @,
is selected from the current ® based on the union of all feedback facts F we collected so far
(Line 7). Similarly, 7 is expanded by the facts predicted by ®,.. at the current iteration (Line
8). Next, we expand the set of all rules ® by using any general ILP subroutine [9, 8] which
supports the refinement operations for the kinds of constraints we wish to learn (see Section
3.3) based on the current set of feedback facts F over the knowledge base K (Line 9). Finally,
pullFeedback(T) collects the next round of user feedback as a randomly chosen subset of the
currently predicted facts 7 (Line 10). We terminate the GILP iterations either when no rules
in ® could initially be generated, or when 7 remains unchanged among two iterations.

Dy := generateSeedRules(Fy);
Dy := ®a
T :=0;
P := Py;
F = Fo;
while ® # () or T changed do
®,cc := all rules in ® which are accepted based on F;
T := facts predicted by ®gec;
& := & UILP(F, K);
F := F U pullFeedback(T);

return ¢,..;

© 00 N O Gk W N =

[uny
o

[ary
=

Algorithm 1: GILP(Fy, K)

3.2 Generating Seed Rules

Ground Seed Rules. Given the initial user feedback F;, we first generate a set of ground seed
rules, one for each tuple R(t) in Fy that received either positive or negative feedback.

97

Guided Inductive Logic Programming (GILP) Wu et al.

e FH(R,t) = TT(R,t): a tuple with positive feedback must be correct.

o F~(R,t) — T (R,1): a tuple with negative feedback must be incorrect.

Notice that in the beginning of our learning algorithm, both 7+ and 7~ are empty. The ground
seed rules thus first of all copy the sets of tuples with either positive or negative feedback into
T+ and 7, respectively. First-Order Seed Rules. Next, to also induce a set of first-order

seed rules from the initial user feedback, we generalize each tuple ﬁ(f) into a first-order atom
R(X) by replacing all constants in ¢ with a distinct variable in X according to the relation
schema R. These first-order seed rules will be the basis for our further GILP steps. The

generation of seed rules from the initial user feedback is summarized in Algorithm 2. According
to the language bias of our GILP framework (see Section 2), each first-order rule we learn must
be both safe, connected and non-repeating. The seed rules generated by Algorithm 2 are the
most specific ones (i.e., ground seed rules) and the most general ones (i.e., first-order seed rules)
satisfying this language bias, respectively.

(I)Q = @;
for each tuple R(t) € F do
o: FH(R.D) > T+ (R D)
insert ¢ into Py;
for each tuple R(t) € F, do
¢: F(Rt) = T (R,1);
insert ¢ into ®g;
8 for each relation schema R such that 3t Fif (R,t) do
9 ¢: FHR,X)— TT(R,X);
10 insert ¢ into ®g;

11 for each relation schema R such that 3t F; (R,t) do
12 ¢p: F (R,X)—=>T (R X);
13 | insert ¢ into Po;

NI VI

o o

14 return &;
Algorithm 2: generateSeedRules(Fj)

3.3 Refinement Operators

Before we actually populate the sets 7+ and 7~ with facts inferred from rules in ®, we aim
to refine the first-order seed rules in ®(to a set of candidate rules ® that capture the user
feedback as precisely as possible, while remaining general enough to also cover a large part of
the underlying KB. To do so, our inductive learning approach implements a top-down search,
in which a first-order seed rule ¢ € @ is iteratively specialized by appending a set of atoms
(see Definition 1) to the body of ¢. In analogy to [9, 8], the following two refinement operators
help to prune the search space but are also adapted to our GILP setting by starting from the
particular type of seed rules and the language bias we consider in our framework.

Definition 3. Beginning with the set of seed rules in ®g, we iteratively apply the following
refinement operators to each first-order seed rule ¢ € .

e Add Relational Atom. This operator adds a new atom into ¢, which is of the form of
R(X), where R is a relational predicate and X is a vector consisting of both variables and
constants, such that at least one variable in X already appears in another relational atom
(including the head) of ¢.

98

Guided Inductive Logic Programming (GILP) Wu et al.

e Add Comparison Atom. This operator adds a new atom into ¢, which is of the form of
x 0y, where 0 is a comparison operator. Here, either x,y € V are both variables that must
already appear in a set predicate of ¢, or x € V is a variable that must already appear in
another atom of ¢ and y € U is a constant.

Rules with repeating atoms are pruned immediately. We add every refined rule that is
both safe and connected to the set of candidate rules ®. Moreover, we prune the search space
by dropping all candidate rules that are either not safe or not connected when we reach a
maximum length of L. Only relational atoms in a rule’s body are counted for the length of
the rule. Comparison Atoms with Constants. There are a number of classical ways for

constructing atoms with comparisons of variables to constants (or so-called “features” in the
context of rule learning). In this paper, we adopt the one in [10]. For a numerical attribute X,
such as “Age”, we first sort all distinct values of X and then compute an intermediate value
(e.g., the arithmetic mean) between each pair of successive values. We then create intervals
(a,b) based on every pair of intermediate values a and b (with a < b). Next, we enumerate all
of these intervals and add two comparison atoms (xz > a) and (z < b) for each such range.
For a categorical attribute X, such as “Nationality”, we generate a comparison atom using the
comparison operator “=" thus using (x = a), for each distinct value a of X.

3.4 Quality Measures
3.4.1 Feedback-Based Coverage and Accuracy

Recall that we infer whether tuple R(f) is correct or incorrect, i.e., belongs to T+ or 7, by a
rule ¢, based on whether there exist a set of tuples in K which can be used to ground the body
of ¢ and thus imply that R(%) should be inside T or 7, respectively. Next, we formally define
an indicator function, Ir(t, ¢), one for each relation R, to indicate whether the correctness of
R(t) can be deduced by a rule ¢ of the form p(X) — TH(R,t) or p(X) — T~ (R,1).

1 if 321,00, 2m (9(X) = TH(R, 1)
]R(t_7¢): —1 ifdzq,...,z;m @(X)%T_(R,a
0 otherwise
Here, 21, ..., 2y, are variables in Var(X). Thus, the assignments of constants to z1,..., 2,

imply whether R(¢) € T+ or R(t) € T, or whether R(f) is in none of the two sets.

However, the actual accuracy of the predictions generated by a rule ¢ still needs to be
verified by the user feedback F = F* U F~. There are four cases of when a tuple may be
assigned to 7+ or 7~ with respect to F* and F~ by a rule ¢. These four cases of true/false
positives/ negatives very naturally translate to our feedback-based GILP framework as follows.

TP(¢, F)={R(t)|R(t) € F* AN Ir(t,¢) = 1} “true positives”
TN(¢, F) ={R(t)|R(t) € F~ NRg(t,¢) = —1} “true negatives”
FP(¢,F) ={R(t) | R(t) € F~ NIg(t,¢) =1} “false positives”
FN(¢,F)={R()|R(t) € F" Ng(,¢) = —1} “false negatives”

Based on these four cases, we define the coverage, denoted Cov(¢,F), of a rule ¢ with
respect to the feedback F as the union of the above four sets.

Cov(¢, F) = {R(t) | R(t) € F NR(t,¢) # 0}

99

Guided Inductive Logic Programming (GILP) Wu et al.

Similarly, we define the accuracy, denoted Acc(¢,F), of a rule ¢ with respect to the feedback
F as the following ratio.

[TP(¢, F)| + TN (¢, F)|
Acc(p, F) =
(:7) [Coul, 7)
Example 3. Consider the following exclusive seed rule which rather boldly claims that “The
given names of all people are incorrect.”

K(hasFamilyName, (x1,y1)) — T (hasFamilyName, (x1,y1))

Based on the initial user feedback Fo depicted in Table 1, the coverage Cov(¢, Fo) of ¢ is 4,
while its accuracy Acc(p, Fo) is 3/4. Conversely, the coverage Cov(p, Fo U F1) and accuracy
Acc(p, Fo U F1) of ¢ with respect to both the initial and first iteration of feedbacks shown in
Tables 1 and 2 are 8 and 5/8, respectively.

3.4.2 Confidence Intervals for Precision

As can be seen from the above example, a major challenge in evaluating a rule’s overall precision
with respect to KC is given by the lack of a fixed training set. Notice that, unlike common ILP
settings, we have to rely on a small fraction of facts in F to be labeled as correct/incorrect,
while the vast majority of facts in IC will remain unlabeled. Moreover, the feedback set F will
change as we pull more comments, and so does a rule’s precision. Ideally, we would like to
obtain comments for all tuples inside /C, in the following denoted as F, to compute the precision
of a rule with respect to I, which is obviously infeasible.

According to the law of large numbers, however, we can estimate the range of Prec(¢,F)
with high confidence. Suppose we have obtained a set of comments F, then according to a
Wilson confidence interval [20] with a confidence level of 7, the value of Prec(¢,F) is located

within the following range.
1 22 \/ﬁ(l -p) 2
—[p+— =%
1+22/n <p+2n : n Jr4n|<n2

Here, p is an estimator for the parameter of a binomial distribution from which we repeatedly
draw n random facts. That is, p = (|TP(¢, F)|/ (|TP(¢, F)| + |FP(¢p, F)|), n is |Cov(¢, F)|,
and z is the 1 — %7 quantile of a standard-normal distribution that is used to approximate the
binomial distribution (e.g., z is 1.96 for v = 0.95).

Prec(¢,F) €,

4 Experimental Study

4.1 General Setup

We utilize the current dump of the core relations of YAGO3 [15] as our underlying KB, thus
containing about 120 million facts with an estimated average precision of above 0.95 across all
relations. As basic ILP learner, we use AMIE+ which is tailored to induce Horn clauses from a
given set of training facts. Both YAGO3 and AMIE+ are openly available?. Since AMIE+ can-
not distinguish between positive and negative examples, we call AMIE+ on two sets of expanded
facts obtained from both the positive and negative feedback at each iteration, respectively.
These expanded sets of facts are obtained by a depth-first search (of depth L) over the KB,

2https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/

100

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/

Guided Inductive Logic Programming (GILP) Wu et al.

which is started from both the subjects and objects contained in the feedback facts at each iter-
ation. We remark that AMIE+ can learn facts with constants, such as hasNationality(z, USA)
which resolves to an equality condition of the form hasNationality(z,y) A (y = USA), but it
cannot learn rules with range conditions, such as hasUnemployment(z,y) A (y < 0.1), over
numerical attributes, which is a basic limitation of AMIE+. Both our GILP framework as well
as AMIE+ are implemented in Java 1.8.0. The experiments are run on a notebook with an
Intel i7 CPU @1.80 GHz and 16 GB memory.

4.2 Tuning Parameters & Robustness

A strength of our GILP framework is that it relies on very few tuning parameters only. These
are summarized in Table 3 which also lists their possible ranges of values, of which the bold
ones are used as default values for the following steps. Additional AMIE+ parameters, such
as the minimum head coverage (HC,,;,) and the minimum standard confidence (STDp;y) are
both kept at their default value of 0.01. The head target relation is fixed to hasGivenName
for all of the following runs. Due to space constraints, we here only report the impact of the

Parameter Considered range of values
Size of initial and further feedback sets 10, 20, 30, 40, 50
Maximum rule length (and depth of expansion sets) L 2,3,4,5
Accuracy threshold 7 to either accept or reject candidate rules 0.6, 0.7, 0.8, 0.9

Table 3: Parameters and Possible Values.

initial size of the feedback set |Fp| (containing an equal amount of positive and negative facts
for the head target relation) on the number of rules learned by the GILP algorithm. The results
are depicted in Figure 3. It can be seen that the more initial feedback we use, the higher the
number of rules we learn for each iteration. The largest difference can be observed from using
40 to 50 initial feedback facts, while the difference from using 30 to 40 initial feedback facts is
much smaller. We therefore conclude that our GILP framework is fairly robust with respect
to the above parameters and resort to fixing the amount of initial feedback facts to 40 for the
effectiveness experiments. Figure 4 depict the number of positive and negative facts predicted

2000 i
1000 7' _g— |Fp| = 10

- || =20
- |Fo| =30

[Fol = 40
- |Ro| =50

1750

800
1500 4

=
I~}
o
=)

600 -

=
o
o
=3

400 ~

Number of positive rules
Number of negative rules

Iterations Iterations
Figure 3: Rules learned for various |Fp| over multiple GILP iterations

for various |Fy| over multiple GILP iterations. We see that the number of facts predicted for
both the positive and negative cases quickly increases for the first 3 iterations but then also
saturates completely during the following two iterations. From this, we conclude that we indeed
reached a fixpoint which serves as our stopping condition for the GILP algorithm.

101

Guided Inductive Logic Programming (GILP) Wu et al.

4000 A
—e— |Fg| =10
40000 | _g— |py = 20
—— |Fo| = 30

|Fo| = 40
30000 1 -8~ |Fo| = 50

—e— |Fo| =10
—e— |Fo| =20
—e— |Fo| = 30
-

3500 A

w
&
S
5

o] = 40

7ol = 50
2500

2000

20000
1500 +

Number of positive predictions

10000 4 1000 1

L
[
L

Number of negative predictions

v
=3
=)

Iterations, Iterations

Figure 4: Facts predicted for various |Fy| over multiple GILP iterations

Positive rules

hasGivenName(z,y) A rdftype(z, wikicat_American_people) — hasGivenName(z,y)
hasGivenName(z,y) A rdftype(x, wikicat_British_people) — hasGivenName(x,y)

hasGivenName(x,y) A wasBornIn(z, England) A isCitizenO f(z, England) — hasGivenName(z,y)
hasGivenName(z,y) A isPoliticianO f(z, England) A isCitizenO f(z, England) — hasGivenName(z, y)
hasGivenName(z,y) N wasBornIn(xz, United_States) A diedIn(z, United_States) — hasGivenName(x,y)

Negative rules

hasGivenName(z,y) A rdftype(z, wikicat_Chinese_people) — hasGivenName(z,y)
hasGivenName(z,y) A rdftype(z, wikicat_Vietnamese_people) — hasGivenName(z,y)
hasGivenName(x,y) A rdftype(z, wikicat_Singaporean_people) — hasGivenName(z,y)
hasGivenName(z,y) A wasBornIn(z, China) A isCitizenO f(z, China) — hasGivenName(z,y)
hasGivenName(z,y) A wasBornIn(z, China) A diedIn(z, China) — hasGivenName(z,y)
hasGivenName(z,y) N isAf filiatedT o(x, Communist_Party_of_China) — hasGivenName(x,y)
hasGivenName(z,y) A isCitizenO f(xz, China) A hasFamilyName(z,y) — hasGivenName(z,y)

Table 4: Example rules learned by GILP

4.3 Effectiveness

Table 4 lists some of the rules learned by GILP. Since the accuracy threshold 7 is set as 0.9, as
estimated over the user feedback at each iteration, the achieved precision of the learned rules is
very high (see also Figure 5). GILP is able to learn many meaningful rules and thereby perform
many correct, both positive and negative, predictions. Note that due to the usage of the set
predicates K in the body of the rules and either 7+ (positive predictions) or 7~ (negative
predictions) in the head of the rules, the actual target predicate hasGivenName may occur in
both the body and the head of the rules. Positive rules thus reinforce existing facts in the
KB, while negative rules indicate which facts should be cleaned from the KB.In Figure 5, we
provide a detailed analysis of the Wilson intervals (at v = 0.95) we obtain as an estimate for
the precision of the learned rules over 7T (positive predictions) and 7~ (negative predictions)
at each iteration (using |Fo| = 40). To do so, we randomly sample and manually assess n = 100
facts from 71 and 7 —, respectively, at each iteration and remember their assessments also for
the next iterations, thereby collecting n = 200, 300, ... facts for the second, third and following
iterations. We see that the intervals not only become tighter due to the increasing amount of
assessments, but they also indicate a strongly increased precision of the predictions over the
following iterations due to the increased amount of feedback we collect at each iteration. After
three to eight iterations, the means of the precision intervals converge to about 0.91 for 7+ and
even to 0.94 for 7, which confirms that our iterative GILP approach is particularly suitable
for pruning negative facts.

102

Guided Inductive Logic Programming (GILP) Wu et al.

5600 1
0.8

=)
©
ES
&
=

z
S

Number of Positive Predictions

ES
S
e

0.7 4

0.6

0.5 4

0.4 /
t 4800 031 ‘/
. 0.2 4 .
0.3 —8— Predictions —8— Predictions
—e— Lower bound | 4600 0.14 —&— Lower bound |
—e— Upper bound —e— Upper bound
T T T T T T T T 0.0 T T T T T T u T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
fterations Iterations

5200

Precision
Precision

r 5000

w
<3
e

w
&
=

Number of Negative Predictions

]
@
S

Figure 5: Precision vs. predictions |7|/|T | for |Fo| = 40 over multiple GILP iterations

5 Related Works

Inductive logic programming (ILP) considers the task of learning rules, represented as logic
programs, from a set of examples [4, 16]. Given a training set consisting of both positive and
negative examples, an ILP system aims to derive a set of rules which should be both com-
plete and consistent, thereby covering all positive examples and none of the negative ones [18].
ILP is widely applied in many applications, such as event recognition [13], data cleaning [22],
classification [18], and many others. In this paper, we extend ILP to handle a non-fixed train-
ing set, while the learning process is guided by user feedback in an iterative and interactive
manner. Data quality is a classical problem in the data-management community [6, 12, 14].
A number of recent works have focused on mining constraints or logical rules from large data
sets [1, 9, 8, 22, 2, 7, 19]. They adopt different learning approaches, such as ILP [22, 19],
association rule mining [9, 8, 7], and depth-first search [1, 2]. The target of this paper is to
interactively learn rules in order to clean large KB based on user feedback, while existing works
utilize KBs with static training sets only. Several recent works also tackle the issue of crowd-
sourcing part of the data cleaning tasks. The KATARA system [3] cleans a relational database
by aligning it to a KB. During the cleaning process, the system will collect annotations from
crowdsourcing in order to validate the mappings between the relational representation and the
KB. In [11], the data cleaning process is bootstrapped from user input. The system will gen-
erate a set of possible SQL updates according to the input, and then further interact with the
user to validate the generated SQL queries. Compared with these works, our solution requires
users to justify the correctness of facts, instead of rules, which is more natural in most settings.
Furthermore, our target is not to repair data, but to identify which tuples are correct and/or
incorrect in a unified framework.

6 Conclusions

This paper studies the problem of learning rules from both user feedback and a background
knowledge bases. The obtained rules help to reveal systematic extraction mistakes that occurred
during the construction of the knowledge base in a targeted manner. We highlight the challenges
of this problem, especially the non-fixed training set, and propose a design of an iterative ILP
algorithm that is able to detect these systematic mistakes. Moreover, we propose appropriate
metrics to evaluate the quality of candidate rules. The robustness and effectiveness of our
proposed approach are verified by a series of experiments over the YAGO3 knowledge base. In
the future, we will study other kinds of user feedbacks, including conflicting feedback facts or
predictions made by both positive and negative rules.

103

Guided Inductive Logic Programming (GILP) Wu et al.

7 Acknowledgments

This work is funded by the University of Luxembourg and the China Scholarship Council (CSC).

A Classes of Consistency Constraints
Functional Dependencies. A functional dependency (FD) ¢ over R(X) is generally defined
as X — Y, where both X C Var(X) and Y C Var(X) are variables denoting attributes over a
same relation schema R. We say that an instance R of R satisfies ¢, denoted as ¢ F R, iff for
any two tuples R(f1), R(¢2) in R, with ¢; [x=t2 |x, it holds that ¢; [y=#3 [y. For example,
assume R represents the bornin relation with attributes A, B, thus mapping person entities A
to their birthplaces B, and we are given the FD A — B. Then, for any instance R and pair
of tuples R(t1), R(f2) € R with #; [{ay= t2 [}, it must also hold that ¢, [(gy=t2 [{p}. In
other words, every person A occurring in R must not have two or more different birthplaces.
An FD ¢ : X — Y can equivalently be normalized into a set of individual FDs, each of
the form ¢; : X — y;, such that the right-hand-side argument of each ¢; consists of just a
single variable y; € Y. Moreover, in first-order notation, each such ¢; can then equivalently be
represented as a logical implication of the form

V... Vay Vy; ((p()_() = (z; = yz)) (1)

where

e ©(X) is a conjunction of two atomic formulas over relation R, both having variables in
Var(X);
e every variable in Var(X) appears in o(X);

e and z; and y; are two distinct variables in Var(X).

Example 4. An example for an FD, which is represented as a logical implication, is the fol-
lowing constraint that implies a unique birth place for each person in the KB.

Va1 Ve Vys (bornin(zy, o) A bornIn(xy,ya) — (2 = y2))

We remark that our above notation for FDs also captures conditional functional dependen-
cies (CFDs), since we explicitly allow each ¢;(X) to be defined over a combination of constants
and variables in X. An atom R(X) in ¢;(X), consisting of both constants and variables, can

thus be seen as a template for all tuples we aim to capture by a CFD.

Equality-Generating Dependencies. In the more general case, a dependency that implies
the equivalence of a pair of variables may also span multiple relations Ry, ..., R,,, which we
then refer to as an equality-generating dependency (EGD) [5]. An EGD can again be represented
as a logical implication of the form

V.. Vo Vy (o(X) = (2 = y)) (2)
where
e ©(X) is a conjunction of atomic formulas over relations Ry, ..., Ry, all having variables in
Var(X);

e every variable in Var(X) appears in p(X);
e and z; and y; are two distinct variables in Var(X).

104

Guided Inductive Logic Programming (GILP) Wu et al.

EGDs thus are a generalization of FDs.

Denial Constraints. As expressive as FDs and EGDs are, they still cannot capture all real-life
consistency constraints we may wish to learn from and apply to a given KB. Thus, an even more
general class of consistency constraints than the class of EGDs are denial constraints (DCs).
Formally, a DC is a logical formula of the form

V.. Vg (—e(X)) (3)

where

e (X) is a conjunction of atoms, all having variables in Var(X);

e cach atom refers either to a relational predicate of the form R(X), or to an arithmetic predicate
(x; 0 ;) over a pair of variables z;, z; (with # including comparison operators such as “=",
GoET D EST KLY Dete.);

e every variable in Var(X) appears in p(X).

We remark that denial constraints can equivalently be represented as so-called goal clauses, i.e.,

as Horn clauses with empty head literals.

Example 5.

Va1 Ve Yys — (bornin(zy, z2) A bornIn(x1,y2) A (T2 # y2))

Horn Clauses. A Horn clause (HC), finally, is a logical implication of the form

where p(X) is a conjunction of atomic formulas; ¥(X) is an atomic formula; and zy, . ..,z are
variables in Var(X).

Example 6.

Vx1 bornin(zy, NewYork) — hasNationality(x,, USA)

Lemma 1. In terms of expressiveness, it holds that:
FDcCEGD cDCcC HC

Proof. We only show that EGD C DC holds, since the other subsumptions directly follow
from our previous constructions. Note that the EGD defined in Equation 2 can equivalently be
rewritten as

V. Vo Vys = (Ri(X1) A A Rn(Xom) A (w5 # 44))
where Var(X;) C Var(X) (fori = 1,...,m) and x;,y; € Var(X). That is, each relational atom

R; in Equation 3 also corresponds to a relational atom in Equation 2. The above constraint
thus conforms to a DC. O

References

[1] Z. Abedjan, P. Schulze, and F. Naumann. Dfd: Efficient functional dependency discovery. In
CIKM, pages 949-958, 2014.

105

Guided Inductive Logic Programming (GILP) Wu et al.

2]
Bl

(4]

[5]

(6]

[10]
[11]
12
[13]
[14]
[15]
[16]
17

18]
[19]

[20]
(21]
22]

23]

106

X. Chu, L. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB, 6(13):1498-1509,
2013.

X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. KATARA: A Data
Cleaning System Powered by Knowledge Bases and Crowdsourcing. In SIGMOD, pages 1247-1261,
2015.

F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision: Induction and
abduction in inthelex. Machine Learning, 38(1-2):133-156, 2000.

R. Fagin. Equality-generating dependencies. In L. Liu and T. M. (")zsu7 editors, Encyclopedia of
Database Systems, pages 1009-1010. Springer, 2009.

W. Fan and F. Geerts. Foundations of Data Quality Management. Morgan and Claypool Publish-
ers, 2012.

W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional dependencies. I[EFEE
Trans. on Knowl. and Data Eng., 23(5):683-698, May 2011.

L. Galarraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining in ontological knowledge
bases with AMIE+. VLDB-J., 24(6):707-730, 2015.

L. A. Galarraga, C. Teflioudi, K. Hose, and F. Suchanek. AMIE: Association Rule Mining Under
Incomplete Evidence in Ontological Knowledge Bases. In WIWW, pages 413-422, 2013.

D. Gamberger and N. Lavra¢. Expert-guided subgroup discovery: Methodology and application.
J. Artif. Intell. Res., 17:501-527, 2002.

J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang. Interactive and deterministic
data cleaning: A tossed stone raises a thousand ripples. In SIGMOD, pages 893-907, 2016.

I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and deduplication. Foun-
dations and Trends in Databases, 5(4):281-393, 2012.

N. Katzouris, A. Artikis, and G. Paliouras. Incremental learning of event definitions with inductive
logic programming. Machine Learning, 100(2):555-585, 2015.

Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin. Bigdansing: A system for big data cleansing. In SIGMOD, pages 1215-1230, 2015.
F. Mahdisoltani, J. Biega, and F. M. Suchanek. YAGO3: A knowledge base from multilingual
wikipedias. In CIDR Online Proceedings, 2015.

S. Muggleton and L. D. Raedt. Inductive Logic Programming: Theory and Methods. J. Log.
Program., 19(20):629-679, 1994.

S.-H. Nienhuys-Cheng and R. de Wolf, editors. Foundations of Inductive Logic Programming.
Springer, 1997.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239-266, 1990.
S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning first-order horn clauses from
web text. In EMNLP, pages 1088-1098, 2010.

E. B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the
American Statistical Association, 22(158):209-212, 1927.

J. N. Yan, O. Schulte, J. Wang, and R. Cheng. Detecting data errors with statistical constraints.
CoRR, abs/1902.09711, 2019.

Q. Zeng, J. M. Patel, and D. Page. QuickFOIL: Scalable Inductive Logic Programming. PVLDB,
8(3):197-208, 2014.

L. Zhang, W. Wang, and Y. Zhang. Privacy preserving association rule mining: Taxonomy,
techniques, and metrics. IEEE Access, 7:45032-45047, 2019.

	Introduction
	Background & Preliminaries
	GILP Algorithm
	Basic Algorithm
	Generating Seed Rules
	Refinement Operators
	Quality Measures
	Feedback-Based Coverage and Accuracy
	Confidence Intervals for Precision

	Experimental Study
	General Setup
	Tuning Parameters & Robustness
	Effectiveness

	Related Works
	Conclusions
	Acknowledgments
	Classes of Consistency Constraints

