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Abstract 

A markerless computer aided orthopaedic platform will require a complex computer 

vision system to isolate and track rigid bodies used to localize a robot to a patient. 

Isolating rigid bodies such as bone requires accurate segmentation and this study explores 

using diffuse laser reflectivity to accurately classify tissue. 

Lasers (Red, 650nm and IR, 850nm) intersected four material types; cartilage, 

ligament, muscle and metal surgical tools within a controlled cadaveric setup. Images 

were captured with an infrared CMOS sensor, pre-processed to isolate laser centres, and 

resized to test information requirements. Images for both laser types were scaled from 

5x5 pixels to 30x30 pixels and trained on a convolutional neural network, GoogLeNet.  

At sizes above 15x15 pixels the IR laser had a higher classification accuracy reaching 

97.8% at 30x30 pixels, whereas the red laser peaked at 94.1%. It was shown as not 

possible to qualitatively identify materials that were not trained in the network based on 

their probability outputs. Further work will be done to classify multiple points in a single 

scene as a step toward segmenting entire surgical views for markerless CAOS systems.  

1 Introduction 

Orthopaedic robotic platforms accurately track markers rigidly attached to bones during joint 

replacement, allowing improved implant positioning [1, 2]. There is currently no CAOS platform that 

uses markerless techniques to track bones and tools intraoperatively, although research shows some 

success in markerless tool tracking [3]. One difficulty with markerless systems is differentiating 

between trackable rigid bodies and surrounding soft tissues, such that a robot can compute its position 

relative to the patient. 

Techniques for segmenting tissue types during surgery are becoming increasingly popular, with 

image segmentation [4] and hyperspectral imaging [5]. This study builds  on previous work [6] to study 

how laser diffuse reflectance imaging can be used to classify human tissue in real-time. Specifically, 
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our work compares how different wavelengths affect accuracy, quantify what resolution is required for 

accurate classification and if it is possible to qualitatively assess whether our method can identify if a 

sample material is part of the trained dataset.  

2 Materials and Methods  

The experiments comprised of acquiring training data for both a red and infrared laser shone on 

cadaveric tissue samples. The red laser builds on previous work [6] but is visible to the human eye, 

whilst the IR laser is a new wavelength to test the efficacy of invisible light. 12 human shoulder 

cadaveric samples were obtained from a licensed tissue bank. Ethical approval for their use was 

obtained from the Imperial College Healthcare Tissue Bank, under project R19040. For this study four 

material types were used for classification; cartilage, ligament, muscle and metal surgical tools, the 

latter having been included to test the efficacy of classifying non-organic material. The training data is 

an RGB image from a CMOS 8MP IR (up to 880nm) sensor (Pi-NoIR Camera V2, Raspberry Pi, UK). 

Each image contains a laser pointer (<1mW Class II 650nm±10nm & 850nm±10nm) intersecting the 

target material. Approximately 500 images of each material type were captured, of which 200 were 

hidden from the training set and used for validation. 

Post processing was performed to crop these images to the area around the laser centre via local 

maxima greyscale thresholding. Each image was scaled to square images ranging from 5x5 to 30x30 

pixels to explore how information content affected classification accuracy. The resized images were 

additionally augmented with random X-Y reflections and rotations to increase the diversity of the 

training data.  

Each set of augmented training data, 52 in total (26 sizes and 2 laser types), was trained by 

reclassifying a pretrained convolutional neural network (CNN, GoogLeNet [7]). Networks were each 

trained for 100 Epochs on an Intel Core i7-7700K CPU (4.20GHz) with 16GB of RAM and a 4GB 

NVIDIA GeForce GTX 1050 Ti.  

There are two methodologies for classifying ‘unknown’ objects with a CNN. The first method 

includes the unknown class in the training data so the algorithm can isolate features unique to outliers; 

this however can weaken the overall classification accuracy of target classes. The method used in this 

study uses the classification probabilities to classify samples as ‘other’ if they are below a probability 

threshold.  

3 Results 

Validation of the trained networks involved classifying the unseen images of each class to evaluate 

the error rate for each of the sizes and different laser types, as shown in Figure 1. Confusion plots for 

the 30x30 pixel inputs of the Red and IR Lasers can be seen in Figure 1a and 1b, respectively. The 

right-hand column of the confusion plots indicates the precision (false discovery rate) of each class and 

the bottom row indicates the recall (false negative rate). Figure 1c plots the error rate for IR and Red 

lasers as information content (size) increases.   

Both the IR and Red lasers proved good at classifying the 4 tissues types accurately as the image 

sizes approached 30x30 pixels. The IR images had a consistently lower error rate than the red laser after 

a size of 15x15 pixels was reached. However, the red laser was twice as accurate at classifying tissues 

at 5x5 pixels than the IR laser, Figure 1c. The IR classifier attained an overall accuracy of 97.8% with 

high recall for all tissue types, Figure 1b. Whereas the red laser was less accurate at classifying both 

cartilage and ligaments with relatively low recalls for both, Figure 1a.  
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Figure 2 shows the stacked prediction scores for both the IR and red lasers for 100 test images 

(30x30 pixels input size) of each class. Each sub-column indicates the probability prediction for each 

image in that class, indicating how confidently the network could accurately categorize each image. 

The horizontal axis indicates the true class in each instance, which includes using the trained network 

to classify images of ‘unknown’ class. Attempts to isolate a probability feature to classify ‘unknown’ 

images were unsuccessful, primarily due to the diverse range of images that the network has not been 

trained on for both the IR and Red lasers. This is evidenced by the high-confidence predictions of a 

single class (majority single colour sub-columns) which is not possible to isolate from true 

classifications.  

 

Red Laser 
Confusion Matrix 

IR Laser Confusion Matrix 

(a) (b) 

(c) 

Figure 1: [(a): Red, (b):IR] Confusion Matrix of 30x30 Pixel Input for Trained Network. (c) Error Rate Against 

Information Content (size) for IR and Red Laser 
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4 Discussion 

 

For markerless tracking to be viable it should be invisible to the surgeon, thus the IR laser is 

preferable for segmenting the tissue. The laser has proved accurate with laser spots at least 15x15 pixels 

across. Inference of a single spot currently takes 20ms, which can be accelerated by orders of magnitude 

with inference hardware [8], and a network optimized for 15x15 inputs, 200 times smaller than the 

GoogLeNet input size (224x224).  

This study has shown that laser reflected diffuse classification is accurate even at relatively low 

resolutions and is suitable for online identification as part of a markerless tracking system. Further 

research is needed in a few areas. Firstly, the study showed that it is necessary for all possible materials 

in a surgical scene to be part of the training data as to limit the number of ‘unknowns’ within the tracked 

scene. Secondly, refracting multiple points onto the surgical site and classifying each is necessary to 

fully segment a scene. An accurately classified scene could then differentiate trackable rigid bodies 

when coupled with a depth camera system. 
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Figure 2: Comparison of Predicted Scores on 30x30 pixel inputs for trained classes and injected ‘Other’ class. 

Top: IR Laser. Bottom: Red Laser 
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