
Non-linear Second Order Abstract Categorial Grammars

and Deletion

Sylvain Salvati

INRIA, LaBRI, Université de Bordeaux

Abstract

We prove that non-linear second order Abstract Categorial Grammars (2ACGs) are equivalent

to non-deleting 2ACGs. We prove this result first by using the intersection types discipline. Then

we explain how coherence spaces can yield the same result. This result shows that restricting the

Montagovian approach to natural language semantics to use only ΛI-terms has no impact in terms of the

definable syntax/semantics relations. Moreover from the ACG perspective this result is a generalization

of a result by Yoshinaka: it shows that deletion add no expressive power to second order ACGs.

1 Introduction

When defining grammars with parameters, such as Macro Grammars [Fis68], Parallel Multiple
Context-Free Grammars [SMFK91], Higher-order macro grammars [Dam82], one can duplicate
or even not use some of those parameters in the course of the derivation. While it is clear
that duplication is a necessary feature for the expressiveness of those formalisms, as otherwise
the higher-order hierarchy collapses (see [Sal07]), it is less clear what the status of deletion is.
Fischer [Fis68] showed that for IO grammars deletion does not augment the expressive power,
but it has been shown by Leguy that for OI grammars deletion is necessary to generate the
full class of languages [Leg81]. Non-deleting grammars often simplify theoretical investigations
about languages definable with a given class of grammars, but they also make it easier to address
algorithmic problems (like parsing) related to those grammars. Under those considerations, it
is useful to know whether the assumption of working with non-deleting grammars can be used
for free.

As showed in [KS15], second order Abstract Categorial Grammars [dG01], in particular
when the restriction of being linear1 is lifted, are a generalization of higher-order IO macro
grammars [Dam82] which define languages of strings and possibly of trees, to languages of
simply typed λ-terms. They are also a generalization in the sense that they do not assume
a certain restriction that is implicit in Damm’s definition and which is called safety [BO09].
For this class of grammars, it is less clear than for IO macro grammars whether deletion is
not contributing to the expressive power. In particular, the generated language may very
well contain λ-terms which contain vacuously bounded variables such as in the term ∃(λx.>).
There is nevertheless some hint in the literature with the result of Yoshinaka [Yos06] which
shows that deletion is superfluous when duplication is not allowed. The way Yoshinaka treats
vacuous abstraction consists in constructing a non-deleting grammar whose language is the
set of all the λ-terms of the language of the initial grammar that do not contain vacuous
abstractions. We here generalize Yoshinaka’s result in two directions, first we prove it without
the assumption that the grammar is not duplicating, second, we treat vacuous abstractions in
a more general manner: instead of generating the language directly, we generate a language
whose elements are representations of the terms in the initial language but with the property

1Here linear means non-duplicating according to the usual terminology of formal language theory. We
employ the term linear for historical reasons, and because of its connection with linear logic.

64 M.K̄anazawa, L.S.M̄oss, V.d̄e Paiva (eds.), NLCS’15 (EPiC Series, vol. 32), pp. 64--72

Non-linear 2nd order ACGs and deletion S. Salvati

that these representations do not contain any vacuous abstraction. Then we can either map
each representation to the represented terms without appealing to deletion, or we may filter
out the terms that contain vacuous abstraction using simple finite state techniques and obtain
the same result as Yoshinaka.

We propose two methods so as to prove this result. The first approach is syntactic and
uses a form of intersection typing without weakening rule. This approach is in line with the
treatment of parsing non-linear second order ACGs proposed in [Sal10]. The second method
elaborates on the more semantic approach proposed in [KS15] and relates the result to stable
functions introduced by Berry [Ber78] via coherence spaces, their presentation as a model of
linear logic proposed by Girard [Gir86]. We believe that the second approach, even though less
intuitive at first sight is more elegant and more satisfactory.

2 Typing and deletion

Simple types over the finite set of atoms A are inductively defined by:

T (A) ::= A | (T (A)→ T (A))

The order ord(α) of a type α in T (A) is 0 when α is in A and it is max(ord(α1)+1, ord(α2))
when α = α1 → α2.

A Higher Order Signature (HOS) Σ is a triple (A, C, τ) so that:

1. A is a finite set of atoms,

2. C is a finite set of constants,

3. τ is a function from C to T (A).

In general we write T (Σ) for T (A). The order ord(Σ) of a HOS Σ is max{ord(τ(c)) | c ∈ C}.
We assume that for each HOS Σ we have an infinite countable set of typed λ-variables of

the form xα with α in T (Σ). We define the sets of typed λ-terms over Σ, (ΛαΣ)α∈T (Σ) as the
smallest sets such that:

1. xα is in ΛαΣ,

2. c is in Λ
τ(c)
Σ ,

3. if M ∈ Λα→βΣ , N ∈ ΛαΣ, then (MN) ∈ ΛβS

4. if M ∈ ΛβΣ, then λxα.M ∈ Λα→βΣ .

The set of ΛI-terms is defined (ΛIαΣ)α∈T (Σ) as the smallest sets such that:

1. xα is in ΛIαΣ,

2. c is in ΛI
τ(c)
Σ ,

3. if M ∈ ΛIα→βΣ , N ∈ ΛIαΣ, then (MN) ∈ ΛIβS

4. if M ∈ ΛIβΣ and xα ∈ FV (M), then λxα.M ∈ ΛIα→βΣ .

We define sorted intersection types, (Iα)α∈T (A) as follows:

Iα ::= α when α ∈ A
Iα→β ::= {p1; . . . ; pn} → p | ωα → p with p ∈ Iβ , n > 0, p1, . . . , pn ∈ Iα

Note that Iα is finite for every α.

65

Non-linear 2nd order ACGs and deletion S. Salvati

We also define two subfamilies of (Iα)α∈T (Σ), (I+
α)α∈T (Σ), and (I−α)α∈T (Σ):

I+
α ::= α when α ∈ A
I−α ::= α when α ∈ A

I+
α→β ::= {p1; . . . ; pn} → p | ωα → p with p ∈ I+

β , n > 0, p1, . . . , pn ∈ I−α
I−α→β ::= {q} → p with q ∈ I+

α and p ∈ I−β

Typing environments Γ, are functions that associate a subset of Iα to variables like xα.
The typing environments Γ we consider are finite in the sense that the set of variables xα such
that Γ(xα) is not the empty set is finite. This set of variables is the domain of Γ, and is
written Dom(Γ). Given two typing environment Γ and ∆, we write Γ ∪∆ for the environment
such that (Γ ∪ ∆)(xα) = Γ(xα) ∪ ∆(xα). We may write environment Γ as a sequence x1 :
p1,1, . . . , x1 : p1,k1 , . . . , xn : pn,1, . . . , xn : pn,kn , meaning that Dom(Γ) = {x1; . . . ;xn} and
Γ(xi) = {pi,1; . . . ; pi,ki}.

The typing system is given by the following inference rules:

Rules Notation

p ∈ Iα
xα : p ` xα : p

(xα, p)

p ∈ I−α
` c : p

(c, p)

d :: Γ `M : ωα → p N ∈ ΛαΣ

Γ ` (MN) : p
appω(d,N)

d0 :: Γ0 `M : {p1; . . . ; pn} → p ∀i ∈ [1;n]di :: Γi ` N : pi

Γ0 ∪ Γ1 ∪ . . . ∪ Γn ` (MN) : p
appI(d0, d1, . . . , dn)

d :: Γ `M : p xα /∈ Dom(Γ)

Γ ` λxα.M : ωα → p
Λωx

α.d

d :: Γ ∪ {xα : p1, . . . , x
α : pn} `M : p xα /∈ Dom(Γ)

Γ ` λxα.M : {p1; . . . ; pn} → p
ΛIx

α.d

Since in the sequel we need to manipulate derivations, the figures gives a notation for the
derivation trees of the typing system. When we write d :: Γ ` M : p, we mean that d is a
derivation tree of Γ `M : p.

Definition 1 (substitution). A derivation substitution σ, is a partial function that associates to
a variable xα a term N of type α and to pairs (xα, p) where p ∈ Iα a derivation d :: Γ ` N : p.
Moreover whenever σ is defined for a pair (xα, p) then it is also defined for the variable xα

and the subject of the derivation σ(xα, p) is the term σ(xα). A derivation substitution, induces
naturally a substitution σ.

Given a derivation d :: Γ `M : p and a derivation substitution σ such that for all x : p in Γ,
if σ(x) is defined, then σ(x, p) is defined, we inductively define d.σ as the derivation obtained
as follows:

66

Non-linear 2nd order ACGs and deletion S. Salvati

1. if d = (xα, pi), and σ(xα) is defined, then d.σ = σ(xα, pi),

2. if d = (yβ , q) and σ(yβ) is undefined then d.σ = d,

3. if d = (c, p) then d.σ = d,

4. if d = appω(d′, N) then d.σ = appω(d′.σ,N.σ),

5. if d = appI(d0, d1, . . . , dn) then d.σ = appI(d0.σ, d1.σ, . . . , dn.σ),

6. if d = Λωy
β .d′ and σ(yβ) is undefined, then d.σ = Λωy

β .d′.σ,

7. if d = ΛIy
β .d′ and σ(yβ) is undefined, then d.σ = ΛIy

β .d′.σ,

For the case of λ-abstraction when σ is defined for finitely many variables, using α-conversion,
we can always satisfy the condition that σ(yβ) is undefined.

Lemma 1 (substitution). If d :: Γ, xα : p1 . . . , x
α : pn ` M : p (with xα /∈ Dom(Γ)) and for

all i in [n], di :: Γi ` N : pi then d′ :: Γ,Γ1, . . . ,Γn ` M [xα := N] : p with d′ = d.σ and
σ(xα, pi) = di.

Proof. This Lemma can easily be proved by induction on the structure of d.

We now define a relation of reduction on derivation.

Definition 2. Given a derivation d :: Γ ` M : p such that M = C[(λxα.M1)M2], then we
define the derivation (d ↓ C[]) as follows:

1. (appω(Λωx
α.d′,M2) ↓ []) = d′[xα := M2]

2. (appI(ΛIx
α.d0, d1, . . . , dn) ↓ []) = (d ↓ C[]) = d0.σ with σ(xα, pi) = di when d0 :: Γ `M1 :

{p1; . . . ; pn} → p,

3. (appω(d′, N) ↓M ′C ′[]) = appω(d′, N ′) with N ′ = C ′[M1[xα := M2]]

4. (appI(d0, d1, . . . , dn) ↓M ′C ′[]) = appI(d0, (d1 ↓ C ′[]), . . . , (dn ↓ C ′[])).
5. (appω(d′, N) ↓ C ′[]M ′) = appω((d′ ↓ C ′[]), N)

6. (appI(d0, d1, . . . , dn) ↓ C ′[]M ′) = appI((d0 ↓ C ′[]), d1, . . . , dn)

7. (Λωy
β .d′ ↓ λyβ .C ′[]) = Λωy

β .(d′ ↓ C ′[])
8. (ΛIy

β .d′ ↓ λyβ .C ′[]) = ΛIy
β .(d′ ↓ C ′[])

Lemma 2 (β-contraction). Given a derivation d :: Γ `M : p such that M = C[(λxα.M1)M2],
then (d ↓ C[]) :: Γ ` C[M1[xα := M2]] : p.

Proof. Simple induction on C[].

So now in case d :: Γ ` M : p, M = C[(λxα.M1)M2] and N = C[M1[xα := M2]] we call
(d ↓ C[]) the derivation induced by the β-contraction of M into N .

Theorem 1. For all M , N in ΛαΣω , M =β N implies that for all environment Γ and p in Iα,
we have:

Γ `M : p iff Γ ` N : p

Proof. This Theorem is a special instance of the β-conversion Theorem for intersection types
in the λ-calculus. In the special case of such a typing see [Sal10].

We now turn to a particular technical Lemma that shows the interest of I+
α and I−α with

respect to that typing system. A typing environment is said negative when for every xα, Γ(xα)
is included in I−α .

67

Non-linear 2nd order ACGs and deletion S. Salvati

Lemma 3. Given M in ΛαΣ and in η-long form, there is a unique negative environment Γ and
a unique p in I+

α such that Γ `M : p.

Proof. From Theorem 1, we may assume that M is in β-normal form.
We proceed by induction on the structure of M .
In case M = λxα.M ′, the conclusion follows immediately from the induction hypothesis.
In case M = hM1 . . .Mn with h being either a constant or a variable of type α1 → · · · →

αn → β (with β in A), then by induction hypothesis, for each i, there is a unique negative
environment Γi and a unique pi in I+

A such that Γ ` Ni : pi. In case h is a variable xα, the only
possible type for xα is {p1} → · · · → {pn} → β. Similarly in case h is a constant c, the only
possible typing for c is {p1} → · · · → {pn} → β.

A derivation d :: Γ `M : p is said faithful when Γ is negative and p is in I+
α . The previous

lemma shows that each term has a unique faithful derivation. We now take advantage of this
derivation so as to map each λ-term to an equivalent λI-term.

Given a type p in Iα we map it to a type LpMα of T (Σ) as follows:

1. if α is in A, LpMα = α

2. Lωα → pMα→β = LpMβ
3. L{p1; . . . ; pn} → pMα→β = Lp1Mα → · · · → LpnMα → LpMβ

For L·Mα to be functional we implicitly assume without loss of generality that Iα is totally
ordered and that when we write {p1; . . . ; pn}, pi is smaller than pi+1 for that order.

We now define the signature Σw = (A, Cw, ρ) such that, Cw = {〈c, p〉 | c ∈ C ∧ p ∈ I−τ(c)} and

ρ(〈c, p〉) = LpMτ(c). Given an environment Γ, a variable interpretation of Γ, ν, is an injective

function that assosiates a variable zLpMα to every pair (xα, p) when p in Γ(xα). Given a derivation
d of the sequent Γ `M : p, with p in Iα, and a variable interpretation ν of Γ we define LdMν to
be a λI-term of type LpMα as follows:

1. if d = (xα, pi), then LdMν = ν(xα, pi),

2. if d = (c, p) then LdMν = 〈c, p〉,
3. if d = appω(d′, N) then LdMν = Ld′Mν ,

4. if d = appI(d0, d1, . . . , dn) then LdMν = Ld0MνLd1Mν . . . LdnMν ,

5. if d = Λωx
α.d′, LdMν = Ld′Mν ,

6. if d = ΛIx
α.d′, LdMν = λz

Lp1Mα
1 . . . z

LpnMα
n .Ld′Mν′ , when d :: Γ ` M : {p1, . . . , pn} → p and

where ν′ is equal to ν on its domain and maps the pairs (xα, pi) to the fresh variables

z
LpiMα
i .

It can be easily checked that, for M in ΛαΣ Ld :: Γ `M : pMα is in ΛI
LpMα
Σw

.

Lemma 4. If M is in ΛαΣ and d :: Γ `M : p then LdMν is in ΛI
LpMα
Σw

.

Interestingly L·M commutes with substitution.

Lemma 5. Given d :: Γ, xα : p1, . . . , x
α : pn ` M : p and for all i in [n], di :: Γi ` N : pi,

Ld[(xα, pi) := di]Mν = LdMν′ [ν′(xα, pi) := LdiMν]i∈[1,n] where ν′ is equal to ν on its domain and is
mapping (xα, pi) to some fresh variables.

Proof. We proceed by induction on the structure of d.

68

Non-linear 2nd order ACGs and deletion S. Salvati

Lemma 6. Given d :: Γ ` M : p and d′ :: Γ ` N : p two derivations such that d →β d
′, then

LdMν
∗→β Ld′Mν .

Proof. It is a simple induction on the context wrapping the redex of M that is contracted to
obtain N . Notice that the reduction from LdMν to Ld′Mν may require more than one step. Indeed,
the translation L·M transform one redex of M into n redices in LdM where n corresponds to the
number of typing judgments that redex is the subject of in d.

Theorem 2. If M =β N , d :: Γ `M : p then there is d′ :: Γ ` N : p and LdMν =β Ld′Mν .

Proof. Since M =β N and d :: Γ `M : p then, by Theorem 1 there is d′ :: Γ ` N : p. The fact
that LdMν =β Ld′Mν is just a recursive application of Lemma 6 on the reduction sequences that
normalize N and M .

Now we are going to give a pair of translations that are used as inverse of the transformation
L·M on faithful derivations. The first tranformation is 〈p, α,M〉+ where p is in I+

α and M is in
ΛLpMα and that produces a term of type α, while the second transformation 〈p, α,M〉− with p is
in I−α and M is in Λα produces a term of type LpMα; they are mutually recursively defined by:

1. 〈p, α,M〉+ = M if α is atomic,

2. 〈{p1; . . . ; pn} → p, α→ β,M〉+ = λxα.〈p, β,M〈p1, α, x
α〉− . . . 〈pn, α, xα〉−〉+

3. 〈ωα → p, α→ β,M〉+ = λxα.〈p, β,M〉+

4. 〈p, α,M〉− = M if α is atomic,

5. 〈{q} → p, α→ β,M〉− = λxLqMα .〈p, β,M〈q, α, xLqMα〉+〉−

Notice that obviously if M is in ΛLqMα , then 〈q, α, xLqMα〉+[xLqMα := M] = 〈q, α,M〉+.

Lemma 7. For every faithful derivation d :: Γ `M : p, every variable substitution ν, σ and h
so that:

• σ is a substitution that maps a variable zLpMα to 〈p′, α, xα〉− when ν(xα, p′) = zLpMα ,

• h is the homomorphism that maps every constant 〈c, p〉 to the term 〈p, τ(x), c〉−,

we have:

〈p, α, h(LdMν).σ〉+ =β M

Proof. Theorem 2 allows us to consider that, without loss of generality, M is in long normal
form. Then the proof is done by a simple induction on the structure of M .

3 Wrapping up with grammars

Given a second order (non-linear) ACG G = (Θ,Σ,L, S) (we assume without loss of generality
that L(S) is atomic), we construct the grammar Gω = (Θ′,Σω,Lω, [S,L(S])), where:

1. Θ = (A, C, τ) and Θ′ = (A′, C′, ρ) so that A′ = {[A, p] | A ∈ A ∧ p ∈ IL(A)}, C′ =
{[c, d] | d ::` L(c) : p} and [c, d] = [A1, p1,1] → · · · [A1, p1,k1] → · · · → [An, pn,1] → · · · →
[An, pn,kn]→ [A, q] when τ(c) = A1 → · · · → An → A and d ::` L(c) : P1 → · · · → Pn → q
with Pi = {pi,1; . . . ; pi,ki},

2. Lw([c, d]) = LdM.

69

Non-linear 2nd order ACGs and deletion S. Salvati

A simple induction shows that {Lω(M) | M closed and M ∈ Θ
[A,p]
ω } is equal to the set

{LdM | ∃M ∈ ΘA.d ::` L(M) : p}. Furthermore, Lemma 7 gives that L(G) = h(Lω(G)) this
shows that when L(G) is a string or a tree language then L(G) = Lω(G) (since in that case h
is a bijective relabeling), and that in the other cases the terms of the original language can be
read from the terms in Lω(G) by composing it with h.

If we define the types Rα by induction on α to be Rα = α when α is atomic, and Rα→β =
{Rα} → Rβ , then the constants of the form 〈c,Rτ(c)〉 are mapped by h to linear λ-terms.
Using simple Scott models as in [KS15] one can recognize the set of terms that contain only
constants of the form 〈c,Rτ(c)〉. Then, with usual constructs, we can restrict the grammar to
the sub-language of terms that contain only such constants. Applying h to that language yields
the language of terms of the initial grammars that did not contain any vacuous abstraction.
This simple adaptation allows us to generalize Yoshinaka’s result in [Yos06].

4 Connection with linear logic

The ideas developed in section 3 are rather simple: take a type system without weakening and
then see how it connects with β-reduction so as to use its properties to remove weakening.
Most of the effort is dedicated to establish the consistency of typing and typing derivations
with β-reduction. We would feel somewhat better if we could take those results off the shelf.
This is actually possible by using tools coming from denotational semantics. It suffices to use
stable functions introduced by Berry [Ber78] to achieve this. Somehow to make the connection
it is easier to use their presentation under the guise of coherence spaces that are at the origin
of linear logic [Gir86].

We quickly recall what coherence spaces are. A coherence space C, is a pair (|C|,¨) where
|C| is a set (here it will always be finite), the web, and ¨ is a symmetric and reflexive relation
on |C|. We denote by ˚ the reflexive closure of the complement of ¨, so C⊥ = (|C|,˚) is also
a coherence space. A subset X of |C| is called a state when for every x, y in X, x ¨ y.

There are other operations that are useful to construct coherence spaces such as (and !.
Given two coherence spaces C1 = (|C1|,¨1) and C2 = (|C2|,¨2), the coherence space C1 (C2

is the coherence space (|C1| × |C2|,¨) where (a1, b1) ¨ (a2, b2) when a1 ¨ a2 implies b1 ¨ b2
and b1 ˚ b2 implies a1 ˚ a2. Given a coherence space C = (|C|,¨), !C = (|!C| ¨!) is the
coherence space where |!C| is the set of states of C and X ¨! Y when X ∪ Y is in |!C|.

Now if at each type α we associate a coherence space Cα as follows, if α is atomic, then we
let Cα be the coherence space with only one point (noted • below), and Cα→β = !Cα (Cβ .
Now the important point to raise here is that the families of intersection types (I+

α)α∈T (Σ),
and (I−α)α∈T (Σ) can be represented in Cα. For this we define C+

α and C−α by induction on α
following the definitions we have given for the intersection types:

C+
α ::= {•} when α ∈ A
C−α ::= {•} when α ∈ A

C+
α→β ::= {(D, p) | D ⊆ C−α ∧ p ∈ C+

α }
C−α→β ::= {({q}, p) | q ∈ C+

α ∧ p ∈ C−β }

We need to prove that C+
α and C−α is included in |Cα|. For this we need the following lemma.

Lemma 8. For every α, C+
α ∪C−α ⊆ |Cα| and if p1, p2 ∈ C+

α and n1, n2 ∈ C−α then: p1 ˚ p2 and
n1 ¨ n2.

70

Non-linear 2nd order ACGs and deletion S. Salvati

Proof. Simple induction on α.

Now, as coherence spaces form a model of linear logic, the co-Kleisly construction gives a
model of simply typed λ-calculus where each closed term of type α is interpreted as a state of
Cα. Evaluating a term in this model amounts to taking a valuation that maps variables of type
α to element in !Cα, and interpret terms of type α into !Cα, then the interpretation of terms is
given by induction as follows:

1. [[x]]ν = ν(x),

2. [[MN]]ν = [[M]]ν ∗ [[N]]ν where R1 ∗R2 = {p | ∃(P, p) ∈ R1, P ⊆ R2},
3. [[λxα.M]]ν = {(P, [[M]]ν[xα:=P]) | P ∈ !Cα},
4. [[c]]ν = cτ(c)

where cα = {•} when α is atomic and cα→β = {({cα}, cβ)} otherwise.
It remains to show that the interpretation of each closed term contains an element in C+

α .
This element is unique according to Lemma 8, so this gives an alternate proof of Lemma 3.
Now using the fact that when P1 ∪P2 is a state then R ∗ (P1 ∩P2) = (R ∗P1)∩ (R ∗P2), which
is just a respelling of conditional multiplicativity (that is equivalent to stability in ω-algebraic
CPOs), we can define for a given R and P so that Q ⊆ R ∗ P the least R′ ⊆ R and the least
P ′ ⊆ P so that Q ⊆ R′ ∗ P ′. Now given a term M so that p ∈ {M}ν for some p in C+

α , we can
define the least substitution ν′ so that p ∈ {M}ν′ and for every x, ν′(x) ⊆ ν(x). By induction,
we can then specialize each term to the set of elements in their semantics in a similar way as
we did in section 2. We will have as a bonus that the transformation is semantic invariant and
moreover we will not have to prove the theorems concerning correctness of the typing system
with respect to β-reduction as they come for free from the theory of linear logic.

References

[Ber78] Gérard Berry. Stable models of typed lambda-calculi. In Proceedings of the Fifth Colloquium
on Automata, Languages and Programming, pages 72–89, London, UK, UK, 1978. Springer-
Verlag.

[BO09] Willam Blum and C.-H. Luke Ong. The safe lambda calculus. Logical Methods in Computer
Science, 5(1:3):1–38, 2009.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20:95–207,
1982.

[dG01] Philippe de Groote. Towards abstract categorial grammars. In Proceedings of 39th Annual
Meeting of the Association for Computational Linguistics, pages 252–259, Toulouse, France,
July 2001. Association for Computational Linguistics.

[Fis68] Michael J. Fischer. Grammars with macro-like productions. PhD thesis, Harvard University,
1968.

[Gir86] Jean-Yves Girard. The system F of variable types, fifteen years later. Theor. Comput. Sci.,
45(2):159–192, 1986.

[KS15] Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Information
and Computation, 243:205–221, 2015.

[Leg81] Bernard Leguy. Grammars without erasing rules. the OI case. In Egidio Astesiano and
Corrado Böhm, editors, CAAP ’81, volume 112 of Lecture Notes in Computer Science,
pages 268–279. Springer Berlin Heidelberg, 1981.

[Sal07] Sylvain Salvati. Encoding second order string ACG with deterministic tree walking trans-
ducers. In S. Wintner, editor, Proceedings FG 2006: the 11th conference on Formal Gram-
mars, FG Online Proceedings, pages 143–156. CSLI Publications, 2007.

71

Non-linear 2nd order ACGs and deletion S. Salvati

[Sal10] Sylvain Salvati. On the membership problem for non-linear ACGs. Journal of Logic Lan-
guage and Information, 19(2):163–183, 2010.

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context
free grammars. Theoretical Computer Science, 88(2):191–229, 1991.

[Yos06] Ryo Yoshinaka. Linearization of affine abstract categorial grammars. In Proceedings of the
11th conference on Formal Grammar, pages 185–199, 2006.

72

	Introduction
	Typing and deletion
	Wrapping up with grammars
	Connection with linear logic

