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Abstract

Benchmark Proposal: In this paper, we propose a benchmark that addresses the chal-
lenge of verifying Global Asymptotic Stability for a switched control of a turbofan engine.
The control switches among two Proportional-Integral (PI) controllers and is parametrized
by the reference values used to stabilize the output. We formulate the mathematical model
as an affine switched system with a parametric affine term. The verification problems are,
on one hand, to prove symbolically the stability of the system for specific reference values,
and, on the other hand, to synthesize a region of parameters for which the stability is
guaranteed. We report on previous works partially solving these problems.

1 Introduction

In this paper, we describe a mathematical model for the control design of an aircraft engine.
The engine model is represented by a linear state space model of 18 internal state variables, 4
outputs, and 3 inputs. The control switches between two PI (Proportional-Integral) controllers,
one for thrust control and another for low-pressure compressor spool speed control, based on the
engine state and pilot commands. After reformulating the PI controllers in terms of differential
equations, we obtain a hybrid system with 21 state variables and two modes, depending on
a set of parameters that represent the reference values of the system. We want to study the
dependence of the (symbolic) stability of such system on these parameters.

Although the proposed benchmark is a simplified (linearized) version of the original one,
it can be considered typical within its field. It exhibits crucial phenomena relevant to control
systems design, which directly impact the efficiency and performance of aerospace technolo-
gies. As such, this benchmark could serve as a valuable tool for studying and refining control
strategies in a practical context.
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We are going to present a parametric problem. Fixing the parameters to a specific value
leads to a formulation that can be readily adapted to be studied with existing tools. As for the
general problem, current tools do not tackle directly this kind of questions. Nevertheless, an
extension to work with this parametric problem could be general enough to be a good utility
for many situations, and might be considered to advance the applicability of existing tools.
The affine dynamics and the switching between two PI controllers offer a precise framework for
model construction. Additionally, global asymptotic stability is a basic property to be verified.

Given the safety-critical aspects of the control of aircraft engines, symbolic guarantees ap-
pear to be the correct way to approach the problem.

Since the benchmark with 21 state variables is already quite challenging for symbolic tech-
niques, we created also a number of simplified versions that can be useful to evaluate the
scalability of the potential verification solutions.

Structure In Sections 2 and 3 we introduce the mathematical tools and manipulations to
describe the model. In Section 4 we describe the derivation of the benchmark. Finally, in
Section 5, we explictely state the problems and present some results already available.

2 Background

In this section we briefly recall the notation and theory needed to describe the problem.
We write N for natural and R for real numbers. We use boldface letters for vectors and we

denote the transpose of a matrix A by AT.

2.1 Linear Dynamical Systems

A continuous-time linear dynamical system with state space Rn, denoted by S = (A,B,C), is
defined as the following pair of equations{

ẋ = Ax+Bu

y = Cx
(1)

where x ∈ Rn is the state vector, ẋ denotes the time derivative of x, u ∈ Rm (for some m ≥ 0)
is the input vector, y ∈ Rp (for some p ≥ 0) is the output vector and A, B and C are matrices
of compatible sizes. The first equation in the system (1) describes the evolution of the state
vector x, while the second equation describes the value of the output y in a given state x. A
linear system is autonomous when m = 0 or, equivalently, the system has no inputs.

An equilibrium point for a linear system is a state xeq ∈ Rn such that ẋeq = 0.

2.2 PI Controllers

Let S = (A,B,C) be a linear system, and suppose that the matrix A is not singular, so that
the system has a single equilibrium point.

Given a vector of reference values r ∈ Rp for the outputs of S, the corresponding error vector
is then defined by e

.
= r − y. A PI controller for S is defined by imposing an input-output

relation of the following form:

u = KPe+KI

∫ t

0

e(τ) dτ (2)

146



Industrial Switched PI Control Basagiannis et al.

where KP and KI are matrices realizing appropriate (linear) functions of the instantaneous
error e.

2.3 Switched Systems

A switched system refers to a dynamic system that combines continuous state evolution with
discrete “switching” events, which can immediately change the state and/or the system’s evo-
lution law. Switched systems are part of the broader class of hybrid systems and have been
intensively studied in the literature [6].

Suppose that the state space Rn is partitioned into a finite number of modes (Ri)i∈M. In
the following, we assume that the partition is obtained by linear constraints on the state space.
We call switching surfaces (or guards) the boundaries that separate the modes.

In each of these regions a differential equation specifies the evolution of the state variable:{
ẋ = fi(x,u)

y = gi(x)
if x ∈ Ri. (3)

Given a starting point xs, a trajectory is a uniformly continuous map that is almost everywhere
differentiable Φxs

: [0, T ] → Rn, where [0, T ] is an interval of R, Φxs
(0) = xs, and when (Φxs

(t))′

is well defined, it coincides with fi(Φxs
(t),u(t)) if Φxs

(t) ∈ Ri. Whenever the system trajectory
hits a switching surface, the continuous state continues to evolve subject to a different evolution
law.

2.4 Stability

We recall some basic definitions of stability.
An equilibrium point xeq of a dynamical system ẋ = f(x) is called:

• stable if ∀ε > 0 ∃δ > 0 such that ∥x(0)− xeq∥ < δ implies ∥x(t)− xeq∥ < ε for every
t ≥ 0;

• asymptotically stable if it is stable and δ may be taken such that ∥x(0)− xeq∥ < δ implies
that x(t) converges to xeq for t → ∞;

• globally asymptotically stable or GAS if it asymptotically stable with δ = ∞;

• exponentially stable if there exist positive reals c, K and λ such that ∥x(0)− xeq∥ < c
implies ∥x(t)− xeq∥ ≤ K ∥x(0)− xeq∥ e−λt.

In general, exponential stability implies asymptotic stability; for a linear system the opposite
implication also holds, so the two concepts are logically equivalent.

3 Switched Systems with Parametric Affine Term

3.1 Switched PI Controller

The benchmark that we propose in this paper focuses on switching controllers, where the linear
functions within the feedback law (2) can vary based on switching conditions defined as linear
inequalities regarding the system’s outputs.
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Thus, we have a linear system S = (A,B,C) as in (1) with fixed (A,B,C), but the matrices
KP and KI appearing in equation (2) are substituted by a pair of finite sets of matrices,

(KI,i)i∈M (KP,i)i∈M (4)

where M is the set of operating modes of the switching controller.
In particular, suppose that t0 is the moment where a switching between mode i0 and i1

occurs. In the new mode i1 ∈ M, the input-output relation becomes

u(t) = KP,i1e(t) +KI,i1

∫ t

t0

e(τ) dτ + c. (5)

The term c is a vector that is constant when no switch occurs. It is set to zero at t = 0 and is
reset whenever a switching occurs in order to ensure the continuity of the control.

3.2 Reformulation into a Switched Autonomous System

Let S = (A,B,C) be the open-loop linear system and π = (KP,i,KI,i)i∈M the associated
switching PI controller.

The closed-loop system resulting from the feedback connection between S and π can be
represented by an autonomous switched system in the following manner.

• The state space is Rn+m, and the state vector represents the concatenation of the state

vector x ∈ Rn and the input vector u ∈ Rm: w
.
=

(
x
u

)
;

• The set of modes, denoted as M, coincides with the set specified by the switching con-
troller π. The corresponding partition of the state space is obtained by reinterpreting the
conditions on the original state space as conditions on Rn+m without involving the last
m coordinates wn+1 = u1, . . . , wn+m = um.

• The flow within region Ri (i ∈ M) is defined by the differential equations of the original
linear system (with u reinterpreted as a state variable),

ẋ = Ax+Bu (6)

along with the additional equations derived by differentiating both sides of the PI control
relation with respect to time (5) (assuming constant reference values):

u̇ = −KP,iẏ +KI,i(r − y) (7)

Substituting y = Cx and rearranging we get

u̇ = −KP,iCẋ−KI,iCx+KI,ir (8)

and using equation (6) we obtain finally

u̇ = (−KP,iCA−KI,iC)x−KP,iCBu+KI,ir (9)

In terms of the vector w, the system of ordinary differential equations consisting of equa-
tions (6) and (9) can be written more compactly as

ẇ =

(
A B
Ni Mi

)
w +

(
0

KI,i

)
r (10)

where we have defined Ni
.
= −KP,iCA−KI,iC and Mi

.
= −KP,iCB.

• The outputs of the reformulated systems are just the outputs of S, extended to the new
state vector in a trivial way (without any reliance on u): y = Cx+ 0u.
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(a) An example of a dual spool engine. (b) The engine control model.

Figure 1: Schemas of the model, taken from [2].

4 Case Study

4.1 Basic Engine Operation

A basic outline of an aircraft turbofan engine is depicted in Figure 1a. The main components,
in order from left to right, are: the inlet (engine front), the compressor (low and high pressure
stages), the combustion chamber, the gas turbine (high and low stages), and the exhaust nozzle
(back of the engine). The aircraft engine ensures a steady flow of air into the pressure vessel,
undergoing a two-stage compression process (low and high pressure) and combining with fuel
within the combustion chamber to generate thrust. The engine control system oversees various
control sections to manage fundamental stages of intake, compression, combustion, and exhaust.
Throughout these operations, in addition to meeting performance criteria, strict adherence
to critical safety parameters is essential. These parameters encompass measures to prevent
engine surge and stall, maintain combustion chamber temperatures within safe limits, and more.
Therefore, it is imperative to rigorously verify and certify any control approach implemented
on the engine’s embedded controllers to meet specific safety standards.

4.2 Use Case Description

We here recall the description of a jet engine control system presented in [2]. Specifically, the
control design challenge for a turbofan engine discussed in [10, 9] is tackled using single-input
single-output PI controllers [4], in contrast to the multivariable controllers proposed in [10, 9].
The decision to adopt the aforementioned control architecture is driven by the simplicity of
PI controllers. This choice facilitates a lean control implementation with minimal complex-
ity, thereby establishing a practical scenario that is easily understandable even to individuals
without expertise in control theory.

The control system under investigation is depicted in Figure 1b. It contains four PI con-
trollers responsible for regulating the Low Pressure Compressor (LPC) Spool Speed, High Pres-
sure Compressor (HPC) Pressure Ratio, Mach Exit Number, and HPC Spool Speed. These
quantities are represented as y0, y1, y2, and y3, respectively, forming the four measured output
signals of the engine. Collectively, they constitute the system (engine) output column vector

y =
(
y0 y1 y2 y3

)T
. The desired reference values for these engine outputs, denoted as r0,
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r1, r2, and r3, are command signals originating from a supervisory engine management system,

grouped as the system reference (command) vector r =
(
r0 r1 r2 r3

)T
. Each reference

signal, along with the corresponding engine output, serves as input to a single PI controller,
as illustrated in Figure 1b. The output signals from the PI controllers determine the actu-
ation signals for Fuel flow, Nozzle Area at the engine exhaust, and Inlet Gain Vane (IGV)
Angle at the HPC, denoted as u0, u1, and u2, respectively, forming the control signal vector

u =
(
u0 u1 u2

)T
. Notably, the Fuel Flow actuation signal u0 is determined through a mode-

switching mechanism between the Thrust and LPC Spool Speed controllers. Specifically, if y0
is greater than r0, the Flow Rate is determined by the LPC Spool Speed controller’s output;
otherwise, it is determined by the minimum of the HPC Pressure Ratio and LPC Spool Speed
control outputs. This switching operation ensures safety protection from engine compressor
surge instabilities by limiting the LPC Spool Speed (r0 command).

Conversely, in scenarios where no constraints are imposed on LPC Spool Speed (i.e., y0 ≤
r0), selecting the minimum signal as described above always leads to fuel savings [9]. To ensure
continuity of the control, whenever switching occurs between the Thrust and LPC Spool Speed
controllers, the integrator of the activated controller is reset in order to match the value of the
deactivated controller. The actuation signal u1 for Nozzle Area is solely determined by the
Mach Exit Number controller, while the actuation signal u2 for IGV Angle is solely determined
by the HPC Spool Speed controller.

We utilized the mathematical model of the engine system presented in [10, 9] to formulate a
linear system comprising eighteen continuous-time ordinary differential equations. This model
is expressed in matrix form of the form (1), where x ∈ R18 represents the vector of internal
variables, and y and u denote the engine output and control signal vectors, respectively, as
described earlier. The engine model parameters A, B, and C are constant real matrices of
appropriate dimensions, with their exact values available at [1].

The PI controllers’ designs in continuous time [4] are given by the equations (5), with
M = {0, 1} as the set of modes. The matrices (4) expressing the integral and proportional
controller gains can be found at [1]. A tolerance of 1 is considered when comparing the values
of y0 and r0. Following the functional operation of the control system and the safety switching
mentioned earlier, the switching law is:

i =

{
0 if r0 − y0 < 1

1 otherwise

The two operating regions R0 and R1 are then defined as

R0 = (g(0))
T

(y − r) > −1; R1 = (g(1))
T

(y − r) ≥ 1

where g(0) = (1, 0, 0, 0) and g(1) = (−1, 0, 0, 0), with R0 corresponding to the nominal operation
region. Applying the reformulation described in Section 3.2, we obtain a family of autonomous
switched systems of the form

ẇ =

{
A0w +B0r if gT (Cw − r) < h

A1w +B1r otherwise

parametrized by r ∈ R4.
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Exploiting the fact that, by construction, gTCA−1
0 B0 = −gT, we can, without changing the

stability properties of the system, translate every system by A−1
0 B0r, obtaining the simpler

form

ẇ =

{
A0w if (gTC)w < h

A1w + Lr otherwise
(11)

where L = B1 −A1A
−1
0 B0. Also in this case the family of systems is parametrized by r ∈ R4.

The exact values of A0, A1, L, g
TC, h can be found at [1].

5 The problem

The system in (11) is the autonomous version of the closed loop described in Section 4. In
the following, we state questions on this reformulation. However, equivalent questions can be
stated on the non-autonomous version of the system.

Problem 1. For the system described in (11), fix a value of the parameter vector r = r̄.
Symbolically verify the stability of the system for this value.

Problem 2. For the system described in (11), describe the region

G = {r ∈ R4 such that the corresponding system is GAS.}.

One of the difficulties in the approach of both problems is represented by the high number of
variables, 21, in the state space. For this reason, obtaining proofs of correctness must deal with
symbolic techniques and will most-likely need optimized methodologies in order to manipulate
the data.

To evaluate the scalability of the methods, we provide reduced models alongside the original
one, with state variable of dimension 6, 8, 13, and 18 respectively, obtained by using Balanced
Truncation Model Reduction on the original system. Notice that no relation can be inferred
between the region G for the original system and the ones for the reduced systems.

We also provide an integer version of the matrices, obtained by truncating the original
system. Also in this case, this version should be considered as a test to evaluate tools on a
more specific type of input, that does not imply any result on the original problem.

5.1 Results Obtained

5.1.1 Synthesis of single mode Lyapunov function with fixed parameter

Problem 1 is tackled in [2] for the parameter vector r̄ = [0.5; 5;−1; 20]. Stability is proven in
each mode using Lyapunov methods. In doing so, different numerical methods are compared,
thus providing interesting insights on their reliability. In particular, Lyapunov functions are
synthesized either solving a matricial equation symbolically, or solving an LMI (Linear Matrix
Inequality) problem numerically and validating it symbolically. Several LMI variations are
considered to compare their robustness. The performance of different LMI solvers (mosek,
cvxopt, smcp) is also taken into account.

The validation is exploited through the use of the symbolic package SymPy, mathematica,
or by an SMT solver. Also in this case, several SMT solvers (cvc5, z3) are compared.

Also the synthesis of a region of the state space that is guaranteed to converge for the
switched system is considered. Elaborating on the robustness of such a region in relation to a
change in the reference value r, the authors derive bounds on the variation of parameters for
which we are guaranteed to stabilize without switching control.
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5.1.2 Under-approximation of GAS parameter region

Problem 2 is considered in [3], synthesizing a region of parameters where Global Asymptotic
Stability (GAS) for the switched dynamics can be formally proven. The methods used build
on top of the work in [5], [7], and [8], which relies on Piecewise Quadratic Lyapunov Functions
(PQLF). The extension taken into account involves providing symbolic representations of the
proof obligations associated with PQLF to formally verify the GAS arguments.

After fixing a candidate hypercube to be contained in G, the PQLF is adapted to deal with
regions of parameters in two ways: looking for a PQLF that is the same in every vertex of
the hypercube and proving that by convexity it is a valid PQLF for every internal point of the
hypercube; extending the PQLF to a parametric version so that for every internal point of the
hypercube, the evaluation of the parametric PQLF on that point provides a valid PQLF for
the corresponding switched system. The authors then implement and apply an algorithm that
splits an initial bounded region into hypercubes and selects those for which a PQLF on the
vertices (which are concrete parameter evaluations) can be found.

The benchmark described here, among others, is considered to evaluate the methodology.
Similarly to the previous case, different LMI solvers, SMT solvers, and other validation methods
are compared.
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