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Abstract

We give explanations on the differences between a number of representations that have
been proposed in the literature to measure the structural complexity of an object. In
particular, we propose the notion of process complexity, the notion of sophistication from
a given perspective, the notion of sophisticated depth, and the notion of self-dissimilarity.
We also propose the notion of an approximate process for an object and argue that for all
practical purposes, an approximate process is as good as an exact process.

1 Introduction

1.1 Related Work

Consider the process of theory formation in science. A scientist records a sequence of observa-
tions S about a given phenomenon P , and then based on S the scientist attempts to develop
a theory that explains P . Let the sequence of observations S be encoded into a bit string x.
First, we need to agree on what it is that we are trying to uncover about P . Are we after the
true source of P? This seems to be a very hard task since we don’t have the entire history
(not to mention the future) of P and our explanation is to be based solely on a snapshot of the
development of P as determined by x. So, our next best guess is to try to explain x, not P .
Using the theory of algorithms, we can rely on the notion of universal Turing machine to define
a complexity measure that is an intrinsic property of x itself (independent of any model). This
is exactly what Solomonoff [19], Kolmogorov [11], and Chaitin [3] did in the 1960s (though each
for his own reason and in his own way) when they defined the complexity C(x) of a string x
as the length of a shortest program p that generates x on a fixed reference universal Turing
machine U . Formally,

C(x) = min
p
{|p| : U(p) = x}.

According to this complexity measure, named Kolmogorov complexity, it is the size of the pro-
gram that generates x that determines the complexity of (amount of information in) x. In other
words, strings that admit short descriptions have low complexity (little information) and strings
that resist short descriptions have high complexity (lots of information). A simple counting ar-
gument shows that there exists one string of each length n that cannot be compressed at all
(not by a single bit) and that more than half the strings of length n cannot be compressed by
more than one bit. A string x for which C(x) ≥ |x| is said to be incompressible or algorith-
mically random (also called Kolmogorov random). A string x for which C(x) ≥ |x| − c, for
some constant c, is said to be c-incompressible. The prefix Kolmogorov complexity K(x) of a
finite string x is the length of a shortest prefix-free program to generate x on a universal prefix
Turing machine. For a wealth of information on Kolmogorov complexity and its applications,
the reader is referred to [14].
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We next ask what quantity is really measured by C(x)? To motivate the discussion, consider,
for example, the case of two strings x and y of 1000 characters each, where x is a passage from the
book War and Peace and y is a string of 1000 characters chosen at random. Using the definition
of Kolmogorov complexity, we conclude that y is more complex (has more information) than x.
This is true because it is always possible to encode the string x by abbreviating some sentences
in it to be recovered by the reader (say we use “btw” for “by the way”, etc.). However, the
only way to generate y is to copy it in its entirety. This confusion is due to the fact that
C(x) is really about the incompressibility of x, not the amount of meaningful information in
x (what is meaningful?). Of course, we would all agree that y is more random than x. So it
seems that C(x) is better termed the amount of randomness in x rather than the amount of
information. Now, what about the term complexity? It is hardly believable that a random string
(y above) is more complex than a passage from Tolstoy’s master piece (x above)! So, again the
terminology “Kolmogorov Complexity” is a bit misleading and it would be more appropriate
to call it “Kolmogorov Randomness”. We mention that these ideas agree with the work of
the German physicist Grassberger [9] and the American physicist Gell-Mann [8]. Grassberger
suggests using the words “randomness” or “information contents” for the property measured
by Kolmogorov complexity and reserving “complexity” for something that is between total
regularity and total randomness. Thus, according to Grassberger, strings of total regularity
or total randomness have small complexity. In either case, the string can be generated by a
simple procedure. Here, simplicity is not related to the size of the procedure, but rather to the
process involved in the generation of the string. Similarly, Gell-Mann supports the unsuitability
of the quantity measured by Kolmogorov complexity as a measure of complexity. Furthermore,
Gell-Mann suggests his own measure of complexity named effective complexity, which measures
the information contents of the ensemble in which the object is embedded as a typical member.

In 1973, Kolmogorov (though he never published anything on this himself) proposed a
structure function hx() (known as Kolmogorov’s structure function) [5] as a way to divide a
shortest program x∗ for a finite binary string x into two parts responsible for encoding the
regular and nonregular (random) aspects of x separately. Of course, both parts are maximally
random (incompressible) and so it is not clear how such a division can be made. Still, the idea
is that while we agree that |x∗| is a measure of the amount of information (let’s call it total
information) in x, we would like to know more about the constituents of x∗. Mainly, how much
of x∗ is responsible for coding the regular aspects of x (to be associated with useful information
in x) and how much of x∗ is responsible for coding the random aspects of x (to be associated
with accidental information in x). Kolmogorov [5] suggested to model the regular aspects of x
by a finite set S of which x is a typical element. The notion of Kolmogorov’s minimal sufficient
statistic as the length of an optimally compressed description of the regular aspects of a string
in the model class of finite sets was then coined. A string for which its minimal sufficient
statistic is about |x| was called absolutely nonrandom (nonstochastic) by Kolmogorov. Thus,
an absolutely nonrandom string x contains almost no random information. Furthermore, almost
all regularities in x are incompressible. Kolmogorov called these objects random in the negative
sense. Interestingly, this incompressibility property of absolutely nonrandom objects is shared
with Kolmogorov random objects. Random objects are incompressible because they contain a
few regularities. Kolmogorov called these objects random in the positive sense. The following
lemma by Gács et al. [7] answers a question raised by Kolmogorov about the existence of
absolutely nonrandom strings.

Lemma 1. For every length n, there exist strings x of length n with K(x|n) = n + O(1) for
which {x} is an explicit minimal sufficient statistic.

We mention that this lemma was first proved by Levin in 1973 (unpublished).
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Another important measure for the regular aspects of a string in the model class of total
recursive functions is provided by Koppel’s notion of sophistication [12]. According to Koppel,
the strings which are most complex are neither the structureless ones nor the ones with very
simple structures. Rather, they are the ones with more sophisticated structures. Koppel defines
the sophistication of an infinite string x as the size of the most concise description of the regular
aspects of x based on monotonic complexity defined by Schnorr [17]. Behind this definition is
the idea that a string with a sophisticated structure is part of a natural class of strings, all of
which possess the same underlying structure [10]. Clearly, this idea draws on the suggestion
of Kolmogorov of modeling the regular aspects of x by a finite set S of which x is a typical
element.

Another important indirect measure for the amount of regular information in a string is
provided by Bennett’s notion of logical depth. According to Bennett [2], the value of a string
is neither about the obviously observed nor the totally random parts in the string, it is more
about the buried regularity part that can be uncovered but only after exerting a considerable
amount of effort. To quantify this feature, Bennett defined the notion of logical depth. A string
is called logically deep if it takes a lot of effort to generate it on a universal Turing machine
using any short program for it. The logical depth depths(x) of a string x, at significance level
s, is defined as follows.

depths(x) = min
p
{t : U t(p) = x and |p| ≤ K(x) + s}.

Here, p is a prefix-free program that generates x on a universal prefix Turing machine U that
makes no more than t steps. The program p may contain up to s bits of buried regularity. The
constant s can be viewed as the price that one has to pay in order to obtain a fast source for x
like p. Observe that, by this definition, Kolmogorov random (in the positive sense) strings are
logically shallow. Complex strings, on the other hand, must be logically deep.

Another important notion that shares much of its motivation with logical depth is ther-
modynamic depth [15]. Here, complexity is about how difficult it is to generate an object.
Furthemore, complexity is not a property of a single physical state but rather a property of a
process.

In 2006, Vitányi [21] developed the theory of recursive function statistic and explained the
importance of using a total recursive function to model the regular aspects of a string if we are
to be able to identify absolutely nonstochastic objects. This is because in the model class of
partial recursive functions, all objects have low minimal sufficient statistic (the complexity of
the model part can always be shifted to the data-to-model part of a universal Turing machine
of constant complexity).

In 2009, Antunes and Fortnow [1] adapted Koppel’s notion of sophistication for finite strings
based on prefix Kolmogorov complexity. The new definition is as follows. The c-sophistication
of a finite binary string x is [1]:

sophc(x) = min
total p

{|p| : ∃d, U(p, d) = x and |p|+ |d| ≤ K(x) + c}.

Here, U is a fixed reference universal prefix Turing machine, p is the self-delimiting encoding of
a halting prefix Turing machine T that summarizes all regularities in x, the string d is a program
that when interpreted by T gives x, and the term c is a small constant used to indicate how
far is |p|+ |d| from the length of a shortest program for x. Thus, strings which are Kolmogorov
random in the positive sense have minimum sophistication. On the other hand, strings which
are Kolmogorov random in the negative sense must be highly sophisticated.
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Finally, several notions of time-bounded Kolmogorov complexity have been proposed. One
of the most useful one is by Levin[13]. Let U be a universal Turing machine. Define

Kt(x) = min
p
{|p|+ log t : U(p) = x in at most t steps.}

Clearly, log |x| ≤ Kt(x) ≤ |x|+ O(log |x|).

1.2 This Work

This work is inspired by the work of Goertzel in [10]. We use many of the ideas discussed in
[10] to propose new notions of complexity and give explanations on the differences between the
various representations reviewed in this section. In particular, we propose the notion of process
complexity, the notion of an approximate process, the notion of sophistication from a given
perspective, the notion of sophisticated depth, and the notion of self-dissimilarity.

2 Introducing the Notion of Process Complexity

It is known that Kolmogorov complexity is in general incomputable (a consequence of the
undecidability of the halting problem). In this section, we introduce a computable variant of
Kolmogorov complexity named Process Complexity. We achieve computability by bounding
the running time of a universal Turing machine.

Let Σ = {0, 1}. Let x be a finite string over Σ (i.e., x ∈ Σ∗). Then, we have the following
definition for a process for x:

Definition 2 (Process Definition). Let U be a universal Turing machine. Then, a process for
a finite binary string x is an ordered triple (p, d, t), where p is a program, d is an input and
U(p, d) halts in at most t steps and outputs x.

We think of the program component p as the part of the process that summarizes the
structure of the objects generated by that process. We think of the process components d and
t as the parts that represent the amounts of input and effort needed to generate a specific
instance from the set of objects generated by the process, respectively. With this in mind, we
make the following two observations:

1. Consider processes having different program components. If these processes generate the
same object, then that object must have different levels of structure. We use this idea to
propose in Section 3 the notion of sophistication from a given perspective.

2. Consider processes having the same program component but different data components.
Then, these processes can only generate objects having the same underlying structure.
We use this idea to propose in Section 5 the notion of an approximate process for an
object. Basically, an approximate process for an object x doesn’t generate x exactly but
a variation of x belonging to the same natural class containing x.

Let the length of a process (p, d, t) be |p|+ |d|+ t. A straighforward process for any string
x is the “print x” process whose description has length |p| + |d| + t = 2|x| + c, where c is a
positive integer. This is true because the “print x” process runs the constant-length program
“print” on the data x of length |x| in |x| time steps.

Following [10], we propose the following definition:
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Definition 3 (Process Efficacy). The efficacy of a process (p, d, t) is the percentage of sav-
ings in process description obtained from using the process (p, d, t) for x over the print process
(print, x, |x|). In the following, we neglect the length c of the copy program.

Eff((p, d, t), x) =
2|x| − (|p|+ |d|+ t)

2|x|
= 1− |p|+ |d|+ t

2|x|
≤ 1.

Thus, an efficacy that is close to 1 indicates a very efficient process. In this case, the process
(p, d, t) uncovers lots of regularities in x in a clever way. On the other hand, if the efficacy is
close to zero, then the process (p, d, t) doesn’t improve much on the simple copy process, a case
which could be attributed to the lack of regularities in x. Thus, incompressible strings cannot
have efficient processes.

The following definition describes the most efficient process for a string:

Definition 4 (Process Complexity). Let U be a universal Turing machine. Then, the process
complexity of a finite binary string x is

PC(x) = min
(p,d,t)

{|p|+ |d|+ t : (p, d, t) is a process for x}.

Thus, the process complexity of a string is the length of the most concise (space and time
wise) process for that string.

We also have the following:

Definition 5 (Randomness). A string is said to be random if its process complexity is about
the length of its copy process. Formally put, a string x is called c-random (where c ∈ N) if
PC(x) ≥ 2|x| − c.

3 Process Crudity

Assume that a string x can be generated by two different processes (p1, d1, t1) and (p2, d2, t2).
What kinds of questions can one ask about these processes? First, we can use the efficacy
function Eff() to determine which process provides a shorter description. However, what is
even more important about a process is the amount of regularities uncovered by it. By this we
mean the size of the program component of the process. Then, in choosing between different
processes for the same object x, one should seek a process (p, d, t) for x whose progam size
(|p|+ |d|) is small, whose running time t is small, and whose uncovered regularities |p| is large
(the best of such processes is the most concise, most efficient, and most sophisticated process
for x). Notice that these three criteria can be satisfied by minimizing the following quantity
[10]:

|p|+ |d|+ t

|p|
which is equivalent to minimizing

|d|+ t

|p|
.

Following Goertzel [10], we call this quantity the crudity of a process. Thus, a best process for
an object is a process with the least crudity. Observe that crudity is a much stronger notion
than process efficacy. This is true because while crudity implies efficacy (a least crude process
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is a most efficient process), the reverse is not necessarily true (a most efficient process may not
be a least crude proccess).

The following is a complexity measure that describes the least crude process for a string.

Definition 6 (Process Crudity Complexity). Let U be a universal Turing machine. Then, the
process crudity complexity of a finite binary string x is

CC(x) = min
(p,d,t)

{
|d|+ t

|p|
: (p, d, t) is a process for x

}
.

We label the program p associated with a least crude process for x as a most natural program
for x and the length of the program p as a number specifying a most natural class S|p| containing
x.

Next, suppose that there are several least crude processes (pi, di, ti) (with different program
components pi) for the same object x. Then, these processes must be generating x from different
perspectives. In other words, the object x must have many levels of order. We hypothesize
that such a condition is sufficient for x to be complex. This hypothesis agrees with the work
of Crutchfield and Young in [6] and Simon’s famous paper on the architecture of complexity
[18]. According to [6], “The idea is that a data set is complex if it is the composite of many
symmetries.” According to [18], in complex systems there are often many levels of organization
that can be thought of as forming a hierarchy of systems and sub-systems. Observe that
randomness is no longer an important factor here.

We next consider the total sophistication of an object x that can be generated from different
perspectives. Clearly, that value must combine the sophistications of x from various perspec-
tives. In the following, we introduce our notion of self-dissimilarity which allows sophistication
to be decomposible in a linear way. We mention that the term self-dissimilarity was first coined
in [23] where it was used in an argument that is totally different from what we have here.

Definition 7. An object is said to be self-dissimilar for a number of perspectives if the regular-
ities exhibited over those perspectives are independent.

We have the following for a self-dissimilar object x:

total-soph(x) =
∑
i

|pi|,

where pi is the program component of a least crude process for x. We mention that in this
(simpler) case, the notion of total sophistication conforms with our intuitive notion of a quantity.

We have the following theorem:

Theorem 8. A finite string x is absolutely nonstochastic if it can be observed from about |x|
perspectives for which x is self-dissimilar.

Proof. If x is self-dissimilar for about |x| perspectives, then it follows that total-soph(x) =∑|x|
i=1 |pi|, where pi is the program component of a least crude process for x. Thus,

total-soph(x) ≥ |x| and hence x is trivially absolutely non-stochastic.

4 Crudity and Randomness

In this section, we use the notion of process crudity to redefine randomness.
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Definition 9. A string x is said to be random if it has a maximal crudity complexity. Thus,

for a random string x, all processes (p, d, t) for x have either large |d|+t
|p| or large |d||p| or large t

p .

We shall see that defining randomness this way gives good explanations on the difference
between Kolmogorov’s random objects in the positive sense and logically deep objects. In
particular, we consider the following two cases:

Case of large |d||p| . Here, the size of the random part d of any least crude process for x is relatively

much larger than the size of the structural part p of that process. This makes x Kolmogorov

random in the positive sense but not necessarily logically deep. We think of the ratio |d||p| as a

measure of the ad-hocness of the process. Thus, processes with maximal (minimal) ad-hocness
are candidates for generating Kolmogorov random objects in the positive (negative) sense.

Case of large t
|p| . Here, the amount of time t needed to generate x by any least crude process

for x is relatively much larger than the size of the structural part p of that process. This makes
x random and logically deep. We use this argument to propose a variant of logical depth named
sophisticated depth, soph-depths(), as follows.

soph-depths(x) = min
p

{
t

|p|
: ∃d, U t(p, d) = x and |p|+ |d| ≤ K(x) + s

}
.

Thus, while the logical depth of Bennett is a measure of the running time of a very concise
program for an object, our notion of sophisticated depth is about the running time of a very
concise and very sophisticated program for x. Notice that soph-depth() is a much stronger
notion than depth(). This is because while soph-depth() implies depth(), the reverse is not
necessarily true.

5 Approximate Process

We say that an ordered triple (p, d, t) is an approximate process for a string x if that process
doesn’t generate x exactly but a variation xs of x such that x and xs have the same underlying
structure (xs belongs to the same natural class containing x). Thus, processes for x and xs

will have the same program component p but different data components, say d and ds. In this
sense, an approximate process for x is, for all practical purposes, as good as a process for x for
it preserves x’s structural complexity. To quote Wallace’s slogan “A tiger is any pattern which
behaves as a tiger” [22].

We formally define what it means for a string xs to be an approximation of a string x and
what it means for a process to be an approximate process for a string.

Definition 10. Let x and xs be two finite strings from the same alphabet. Then, xs is said to
be an approximation of x if there are least crude processes (p, d, t) and (ps, ds, ts) for x and xs,
respectively, such that p = ps. The process (p, ds, ts) will be called an approximate process for
x.
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