
EPiC Series in Computing
Volume 103, 2024, Pages 122–144

Proceedings of the 11th Int. Workshop on Applied
Verification for Continuous and Hybrid Systems

ARCH-COMP 2024 Category Report:
Falsification

Tanmay Khandait1, Federico Formica2∗, Paolo Arcaini3, Surdeep Chotaliya1,
Georgios Fainekos4, Abdelrahman Hekal5, Atanu Kundu6, Ethan Lew7,
Michele Loreti8, Claudio Menghi9,2, Laura Nenzi10, Giulia Pedrielli1,

Jarkko Peltomäki11, Ivan Porres11, Rajarshi Ray6, Valentin Soloviev11,
Ennio Visconti12, Masaki Waga13, and Zhenya Zhang14

1 Arizona State University (ASU), Tempe, USA {tkhandai,schotali,gpedriel}@asu.edu
2 McMaster University, Hamilton, Canada {formicaf,menghic}@mcmaster.ca
3 National Institute of Informatics (NII), Tokyo, Japan arcaini@nii.ac.jp

4 Toyota Motor North America, Research & Development georgios.fainekos@toyota.com
5 Newcastle University, Newcastle upon Tyne, UK a.waleed-elsayed-aly-hekal@newcastle.ac.uk

6 Indian Association for the Cultivation of Science, Kolkata, India
{mcsak2346,rajarshi.ray}@iacs.res.in

7 Galois Inc, Portland, USA elew@galois.com
8 University of Camerino, Camerino, Italy michele.loreti@unicam.it
9 University of Bergamo, Bergamo, Italy claudio.menghi@unibg.it

10 University of Trieste, Trieste, Italy lnenzi@units.it
11 Åbo Akademi University, Turku, Finland

{jarkko.peltomaki,ivan.porres,valentin.soloviev}@abo.fi
12 TU Wien, Vienna, Austria ennio.visconti@tuwien.ac.at
13 Kyoto University, Japan mwaga@fos.kuis.kyoto-u.ac.jp
14 Kyushu University, Japan zhang@ait.kyushu-u.ac.jp

Abstract
This report presents the results from the falsification category of the 2024 competition

in the Applied Verification for Continuous and Hybrid Systems (ARCH) workshop. The
report summarizes the competition rules and settings, the benchmark models for the tool
comparison, and provides background on the participating teams and tools. Finally, it
presents and discusses the results of the competition.

Data: https://gitlab.com/goranf/ARCH-COMP, https://dx.doi.org/10.5281/zenodo.8024426

1 Introduction
The Applied Verification for Continuous and Hybrid Systems (ARCH) competition is a yearly
competition comparing state-of-the-art tools for testing and verifying hybrid systems. The com-

∗The first two authors lead the validation effort for the falsification category. The remaining authors represent
all participants who have contributed results and/or text to this report and they are listed alphabetically.

G. Frehse and M. Althoff (eds.), ARCH-COMP24 (EPiC Series in Computing, vol. 103), pp. 122–144

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.8024426


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

petition (a.k.a. ARCH-COMP) is organized in different categories. This document presents the
results from the 2024 falsification category. Past reports (2017–2023) for this category are avail-
able online [11, 12, 18, 17, 16, 19, 33]. The falsification category targets the analysis of executable
models. The participants need to falsify requirements expressed in temporal logic with time
bounds, encoded in Metric Temporal Logic (MTL) [29] or Signal Temporal Logic (STL) [32] by
searching for initial system configurations and time-varying inputs subject to given constraints.
Typical approaches employed by participants are simulation-based and employ quantitative
metrics [21, 23] measuring how close a given input is to violating a requirement (“robustness
semantics”). Recent survey articles [7, 10] summarize the research results for this area. The
benchmark set developed by this competition series can be seen as a baseline for research in
the area [14]: We encourage authors to compare their solutions with the one presented in this
report.

The competition of 2024 followed the structure of previous years: Participants agreed on the
benchmarks to be considered, ran the experiments on their machines, and submitted the results
including concrete input traces that witnessed falsification. The first three authors of the
paper were involved in the validation step, which analyzed the input traced submitted by
the participants to confirm that they falsified the requirements. Compared with the previous
edition [33] the changes are as follows:

• We had three new tools participating in the competition: EXAMNET, Moonlight [36],
FalStar [20]1, FReaK [5], OD. One tool (OGAN) decided not to participate this year.
The remaining tools ARIsTEO [34], ATheNA [22], FalCAuN [46], ForeSee [48], NN-
Fal [30], and Ψ-TaLiRo [45] confirmed their participation.

• We added the simulation time and the sample step for all the models within the report
(Table 1).

• For the benchmark model NNx, the requirement for this year in instance 1 requires dis-
continuities to be at least one time unit apart (instead of requiring discontinuities to be
at least three time units apart)

• For the benchmark model CC4, we fixed a discrepancy between the competition report
and the requirement presented online and considered by the participants.

• For AT51, we increased the simulation time to ensure that the requirements are “fully
evaluated” (Table 1).

• We asked all the participants to document the configuration of additional parameters used
in their tools within the report or online.

• We removed column the ratio between the simulation time and the total falsification time
(column “R”) from Tables 5 and 6 since we discovered different teams were using different
formulae for its computation. We plan to precisely formalize this metric in the next
edition of the competition to ensure a fair comparison between tools.

This report is structured as follows. Section 2 introduces our benchmark models and re-
quirements. Section 3 describes the tools participating in the competition. Section 4 presents
the results obtained by the different tools. Section 5 presents the results obtained by tools that
can produce probabilistic guarantees for falsification. Finally, Section 6 concludes the report
with our reflections.

Data Availability. The models and validation results produced by this competition are avail-
able through the shared GitLab repository at https://gitlab.com/goranf/ARCH-COMP, notably

1Unfortunately, the authors of FalStar could not submit the results in time due to other commitments.

123

https://gitlab.com/goranf/ARCH-COMP


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

in the subfolders models/FALS and 2024/FALS. This archive contains the results of validation and
instructions to re-validate the results.

2 Benchmark
This section presents the two parametrizations of the input domain to generate the input signals
for the models (Section 2.1), and the benchmark models and requirements (Section 2.2) for this
edition of the competition.

2.1 Input Parameterization
The participants consider (a) arbitrary piecewise continuous input signals and (b) constrained
input signals to generate input signals for their models.

Arbitrary piecewise continuous input signals (Instance 1). The input specification
is up to the participants. The search space is the set of piecewise continuous input signals
(i.e., discontinuities are permitted), where the values for each individual dimensions are from
a given range. Participants may instruct their tools to search a subset of the entire search
space, notably to achieve finite parametrization, and then to apply an interpolation scheme to
synthesize the input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing additional knowledge about the
solutions. Moreover, more general parametrizations shared across requirements and benchmark
models were preferable. Due to the diversity of benchmarks, it was decided to evaluate the
proposed solutions using common sense.

Constrained input signals (Instance 2). It fixes the format of the input signal, poten-
tially allowing discontinuities. An example input signal would be a piecewise constant with k
equally spaced control points, with ranges for each input dimension, disabling interpolation at
Simulink input ports so that tools don’t need to up-sample their inputs. The arguments in
favor of that are increased comparability of results. As a possible downside, it was mentioned
that optimization-based tools are just compared concerning their optimization algorithm. Nev-
ertheless, such a comparison is still meaningful since fundamentally different approaches to
falsification have entered the competition.

2.2 Models and Requirements
We provide a short textual description of our benchmark models. Table 1 reports the simulation
time and the sample step for all of our models. Table 2 reports the corresponding requirements
formalized as STL/MTL formulas.

Automatic Transmission (AT) - [26].2 A controller selecting the gear (from 1 to 4) de-
pending on two inputs (throttle, brake) and the current engine load, rotations per minute ω,
and car speed v.

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active simul-
taneously). Constrained input signals (instance 2) permit discontinuities at most every five

2Derived from a model proposed by Mathworks.

124



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 1: Minimum Simulation time and the sample step for all the benchmark models.
Model Simulation time Sample step

AT 33s 0.01s
AFC 51s 0.01s
NN 40s 0.01s
CC 100s 0.01s
F16 15s 0.01s
SC 35s 0.01s
PM 10s 0.01s

time units. Requirements are specific versions of those in [26] where the parameters have been
chosen to be somewhat difficult.

Fuel Control of an Automotive Powertrain (AFC) - [28]. A controller for the air-fuel
ratio in an automotive powertrain engine. The values used in the requirements are chosen to
make falsification feasible but reasonably hard.

Input specification: The constrained input signal (instance 2) fixes the throttle (θ) to be
piecewise constant with 10 uniform segments over a time horizon of 50 with two modes (normal
and power corresponding to feedback and feedforward control), and the engine speed ω to
be constant with 900 ≤ ω < 1100 to capture the input profile outlined in [28]. We do not
consider the unconstrained (instance 1) input specification. Faults are disabled (e.g. by setting
fault_time > 50).

Neural-network Controller (NN) - [13].3 The model has one input, a reference value Ref
for the position, where 1 ≤ Ref and Ref ≤ 3. It outputs the current position of the levitating
magnet Pos. The requirement ensures that after changes to the reference, the actual position
eventually stabilizes around that value with a small error.

Input specification: The input specification for instance 1 requires discontinuities to be at
least 3 time units apart, whereas instance 2 specifies an input signal with exactly three constant
segments. The time horizon for the problem is 40.

Chasing cars (CC) - [27]. Consists of five cars, in which the first car is driven by inputs
(throttle and brake), and other four are driven by Hu et al.’s algorithm. The output of the
system is the location of five cars y1, y2, y3, y4, y5. The properties to be falsified are constructed
artificially, to investigate the impact of complexity of the formulas to falsification.

Input specification: The input specifications for instance 1 allows any piecewise continuous
signals while the input specification for instance 2 constraints inputs to piecewise constant
signals with control points for each 5 seconds, i.e., 20 segments.

Aircraft Ground Collision Avoidance System (F16) - derived from [24]. The F16
aircraft and its inner-loop controller for Ground Collision avoidance have been modeled using
16 continuous variables with piecewise nonlinear differential equations. Autonomous maneu-
vers are performed in an outer-loop controller that uses a finite-state machine with guards

3Derived from a model proposed by Mathworks https://au.mathworks.com/help/deeplearning/ug/

design-narma-l2-neural-controller-in-simulink.html

125

https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

involving the continuous variables. The system is required to always avoid hitting the ground
during its maneuver starting from all the initial conditions for roll, pitch, and yaw in the range
[0.2π, 0.2833π]× [−0.4π,−0.35π]× [−0.375π,−0.125π].

Input specification: Since the benchmark has no time-varying input, there is no distinction
between instance 1 and instance 2. The requirement is checked for a time horizon equal to 15.

Steam condenser with Recurrent Neural Network Controller (SC) [47]. A dynamic
model of a steam condenser based on energy balance and cooling water mass balance controlled
with a Recurrent Neural network in feedback. The time horizon for the problem is 35 seconds.
The input to the system can vary in the range [3.99, 4.01].

Input specification: For instance 2, the input signal should be piecewise constant with
20 evenly spaced segments.

Pacemaker (PM) [4]. A controller for a pacemaker device: It artificially contracts the heart
muscle when no natural activity is present for a given time. The input is the desired lower rate
limit that can change within the range [50, 90].

Input specification: For instance 2, the input signal should be piecewise constant with
5 evenly spaced segments.

3 Participants
We present in alphabetical order all participating tools, the respective main ideas of the under-
lying approaches, followed by details on how each tool was set up for the competition.

3.1 ARIsTEO
Description. ARIsTEO [34]4 is a Matlab toolbox for test case generation against system
specifications developed on the top of S-TaLiRo [2]. ARIsTEO is designed to targeting a large
and practically-important category of CPS models, known as compute-intensive CPS (CI-CPS)
models, where a single simulation of the model may take hours to complete. ARIsTEO embeds
black-box testing into an iterative approximation-refinement loop. At the start, some sampled
inputs and outputs of the model under test are used to generate a surrogate model that is faster
to execute and can be subjected to black-box testing. Any failure-revealing test identified for
the surrogate model is checked on the original model. If spurious, the test results are used
to refine the surrogate model to be tested again. Otherwise, the test reveals a valid failure.
ARIsTEO is publicly available under the General Public License (GPL).5

Setup. ARIsTEO provides the same interface and parameters as S-TaLiRo, while providing
additional configuration options. We had used an arx model (arx-2) with order na = 2,
nb = 2, and nk = 26 as structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs the dimension of the matrix
na, nb and nk is changed depending on the number of inputs and outputs. We used the
default configuration of S-TaLiRo for searching failure-revealing revealing tests on the surrogate
model. We considered the same parametrization of S-TaLiRo for the input signals. The original

4Participants: Menghi and Formica.
5https://github.com/SNTSVV/ARIsTEO
6https://nl.mathworks.com/help/ident/ref/arx.html

126

https://github.com/SNTSVV/ARIsTEO
https://nl.mathworks.com/help/ident/ref/arx.html


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 2: Requirement formulas for the benchmarks
Key STL formula Remarks/Constraints

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1) → ◦ 2[0,2.5]g1) where ◦ ϕ ≡ 3[0.001,0.1] ϕ
AT52 2[0,30]((¬g2 ∧ ◦ g2) → ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3) → ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4) → ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000) → (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000) → (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000) → (2[0,20]v < 65)

AT6abc AT6a ∧ AT6b ∧ AT6c conjunctive requirement

AFC27 2[11,50]((rise ∨ fall) → (2[1,5]|µ|< β)) 0 ≤ θ < 61.2 (normal mode)
AFC29 2[11,50]|µ|< γ 0 ≤ θ < 61.2 (normal mode)
AFC33 2[11,50]|µ|< γ 61.2 ≤ θ ≤ 81.2 (power mode)

where β = 0.008, γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))
fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

NN 2[1,37](|Pos − Ref |> α+ β|Ref |→ 3[0,2]2[0,1]¬(α+ β|Ref |≤ |Pos − Ref |))
where α = 0.005 and β = 0.03

NNx 3[0,1](Pos > 3.2) ∧3[1,1.5](2[0,0.5](1.75 < Pos < 2.25)) ∧2[2,3](1.825 < Pos < 2.175)
conjunctive requiremet
1.95 ≤ Ref ≤ 2.05

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,5]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9) → (2[5,20]y5 − y4 ≥ 9))
CCx

∧
i=1..4 2[0,50](yi+1 − yi > 7.5) conjunctive requirement

F16 2[0,15]altitude > 0

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

PM 2[0,10](paceCount ≤ 15) ∧3[0,10](paceCount ≥ 8)

Simulink model was executed once to learn the initial surrogate model. The cut-off values for the
number of simulations of the original model and for the number of simulations of the surrogate
model (per trial) were set to 1500.

3.2 ATheNA
Description. ATheNA [22]7 is a Matlab toolbox for automatic test case generation guided by
a combination of automatic and manual fitness functions. ATheNA allows the user to specify a

7Participants: Formica and Menghi.

127



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

manually-defined fitness function and choose a strategy to combine the automatic and manual
fitness values into the ATheNA fitness value. The manually-defined fitness functions can de-
signed by the engineer and can consider both the inputs and the outputs of the model. ATheNA
employs S-TaLiRo to compute the automatic fitness function, starting from the MTL/STL spec-
ification. The model inputs are generated by an optimization algorithm that tries to lower the
value of the ATheNA fitness. ATheNA enables the engineer to focus the exploration of the
input space on areas that are considered particularly critical and to switch between different
types of fitness functions depending on the situation.

Setup. ATheNA has the same interface of S-TaLiRo, but requires additional information
on the manual fitness function and the ATheNA fitness function. We defined a manual fitness
function for each model and requirement by reverse-engineering the model. The ATheNA fitness
has been calculated as the weighted average of the automatic and manual values. The weight
of the two values depends on our confidence in the capabilities of the functions of leading to the
identification of a fault. A brief description of the manual fitness functions and the weight used
for the automatic fitness for each requirement is reported in Table 3. The manual and ATheNA
fitness functions used in Instance 1 and Instance 2 are the same. The search algorithm used is
Simulated Annealing and the maximum number of iterations for the search process has been
set to 1500.

3.3 EXAM-Net
Description. EXAMNET (Exploratory Adversarial Mutator Network)8 is a black box fal-
sification algorithm written using the STGEM9 open-source toolbox. The algorithm takes
inspiration from OGAN [42] as well as diffusion-based algorithms and consists of three neu-
ral networks: discriminator, mutator and validator. Using executed tests the discriminator
is trained to learn the mapping from proposed inputs to robustness values. The mutator is
trained to take any random input and mutate it so that discriminator’s score for the mutated
tests is lower than discriminator score for initial random input, but also so that the L2-distance
between the two is minimized. The first condition ensures that the network learns to mutate
tests so that they have lower estimated robustness, while the latter condition lets the network
avoid mode collapse. Validator is trained to identify invalid tests and is used to provide a proper
training signal for the mutator to avoid generating invalid tests. We emphasize that no prior
training or data collection is necessary - all the training is performed during runtime as tests
are being generated and executed.

Setup. As EXAMNET is an algorithm that requires training the neural networks, the first
40 tests are selected by sampling input space uniformly randomly. We have noted this to be a
sufficient amount for the model to start generating reasonable suggestions for tests. Addition-
ally, every tenth test is also sampled in this manner to promote exploration and help the model
avoid local minima.

To keep results comparable with other models implemented in STGEM, the hyperparameters
and other settings for the models are kept as close as possible to the other models in the toolbox.
EXAMNET also utilizes in its search the STL robustness objective [32]. The model targets only
instance 2, so the values for EXAMNET in Table 5 are the same as in Table 6. One of the

8Participants: Soloviev
9https://gitlab.abo.fi/stc/stgem.

128

https://gitlab.abo.fi/stc/stgem


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 3: Manual fitness functions description and weight used by ATheNA for the benchmark
requirements. The weight refers to the automatic fitness function; the manual fitness weight is
equal to 1 minus the automatic fitness weight.

Benchmark Weight Manual Fitness Description

AT1 0.4 Maximizes the lowest throttle value within [0, 17]s and minimizes the highest
brake value within [0, 25]s.

AT2 0.5 Maximizes the average throttle value within [0, 8]s, then minimizes the average
brake value within [0, 25]s.

AT51 0.0 Makes the first three throttle control points get as close as possible to
{35%, 0%, 50%} respectively and maximize brake within [0, 25]s.

AT52 0.5 Maximizes the minimum throttle value between [0, 8]s.
AT53 0.4 Makes the first three throttle control points get as close as possible to

{100%, 20%, 0%} respectively and minimize brake within [0, 25]s.
AT54 0.0 Makes the first three throttle control points form an upward arc and the brake

ones a downward arc.
AT6a 0.6 Makes the average throttle value within [0, 33]s as close as possible to 45%

and minimizes the average brake value within [0, 25]s.
AT6b 0.4 Makes the average throttle value within [0, 33]s as close as possible to 45%

and minimizes the average brake value within [0, 25]s.
AT6c 0.8 Makes the average throttle value within [0, 33]s as close as possible to 45%

and minimizes the average brake value within [0, 25]s.
AT6abc 0.5 Makes the average throttle value within [0, 33]s as close as possible to 45%

and minimizes the average brake value within [0, 25]s.

AFC27 0.2 Increases the two control points adjacent to the lowest one above 40 deg, then
minimizes the lowest value within [10, 50]s.

AFC29 0.5 Minimizes the lowest throttle value within [10, 50]s.
AFC33 0.5 Minimizes the engine speed value.

NN 0.2 Minimizes the reference position control point at 20s.
NNx 0.5 Maximizes the lowest reference position within [0, 20]s.

CC1 0.5 Maximizes the lowest throttle value within [0, 100]s and minimizes the highest
brake value within [0, 100]s.

CC2 0.4 Minimizes the highest throttle value within [0, 100]s and maximizes the lowest
brake value within [0, 100]s.

CC3 0.8 Maximizes the lowest throttle value within [0, 100]s and minimizes the highest
brake value within [0, 100]s.

CC4 0.5 Minimizes the minimum distance between cars 4 and 5 within [0, 100]s.
CC5 0.5 Makes the average throttle value within [0, 33]s as close as possible to 0.3 and

maximizes the average brake value within [0, 50]s.
CCx 0.4 Maximizes the throttle control point at 0s and minimizes the throttle control

point at 17s.

F16 0.5 Maximizes the initial roll angle and minimizes the initial pitch angle.

SC 0.6 Maximizes the peak-to-peak distance of the steam flow rate within [29.5, 35]s.

PM 0.5 Minimizes the highest lower rate limit within [0, 10]s.

benchmarks had small validation mismatch due to version difference and some validation results
are omitted since the validation tool does not support all benchmarks.

3.4 FalCAuN

Description. FalCAuN [46]10 is an experimental toolkit for testing a Simulink model using
black-box checking [39], an automated testing method based on active automata learning and

10Participant: Waga.

129



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 4: Configuration parameters for FalCAuN.
Model Duration between control points Possible input values

AT 2.0 throttle: 0.0, 50.0, 100.0; brake: 0.0, 325.0
CC 5.0 throttle: 0.0, 1.0; brake: 0.0, 1.0
SC 1.0 3.99, 4.00, 4.01
PM 0.5 50.0, 60.0, 70.0, 80.0, 90.0

model checking. In FalCAuN, the input and output signals given to the Simulink model under
testing are discretized in time and values, and the model is deemed a black-box transition system
with potentially infinite states. FalCAuN learns an approximation of the transition system as a
Mealy machine and conducts model checking to find a counterexample. By reusing the learned
Mealy machine, FalCAuN is designed to falsify a Simulink model against multiple specifications
efficiently. FalCAuN is publicly available under General Public License (GPL) v311.

We employ the discrete-time semantics of STL, which is essentially the same as the semantics
of LTL. Because of such discretization, the control points must be fine enough to capture the
timing constraints in the STL formula. For example, to capture the timing constraint 3[0,0.05],
the duration between the control points must be at most 0.05. Due to this restriction, FalCAuN
cannot handle the STL formulas with such small timing constraints. Also, since some of the
behaviors between control points are ignored in discrete-time semantics, the falsification results
may deviate from the standard semantics. We remark that the current version of FalCAuN can
handle the maximum and minimum values between control points, which prevents the above
deviation if the temporal operators are not nested. The current version of FalCAuN only supports
piecewise linear signals, and we have no results for instance 2.

Setup. For the signal discretization, we have the following parameters: the (constant) dura-
tion step of the intervals between control points, the possible values I of input signals at control
points, and the thresholds of output signal values for discretization. We use the shortest dura-
tion between the control points, such that the LTL encoding of the STL formula is small enough
for the back-end model checker LTSMin. The duration ranges from 0.5 to 5.0 time units. We
used the constants in the given STL formulas as the thresholds of the output signal values.
Table 4 summarizes the parameters we used.

3.5 ForeSee
Description. In falsification, the scale problem can occur when the signals used in the spec-
ification have different scales (e.g., rpm and speed): namely, the contribution of a signal could
be masked by another one when computing robustness. ForeSee [48]12 (FORmula Exploitation
by Sequence trEE) tackles this problem by introducing a new robustness definition, called QB-
Robustness, which combines quantitative robustness and classical Boolean satisfaction. QB-
Robustness does not require comparing (i.e., by minimum or maximum) robustness values of
different sub-formulas, so possibly avoiding the scale problem. However, in order to be com-
puted, QB-Robustness requires the selection of a sequence of sub-formulas along the syntax tree
of the specification for which to compute the quantitative robustness. Different sub-formulas
sequences can be more or less effective in mitigating the scale problem.

11https://github.com/MasWag/FalCAuN
12Participants: Zhang, Arcaini

130

https://github.com/MasWag/FalCAuN


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

ForeSee implements a falsification strategy based on a Monte Carlo Tree Search over
the structure of the formal specification: first, by tree traversal, it identifies the sub-formulas
sequence; then, on the leaves, it performs numerical hill-climbing optimization, with the aim
of falsifying the selected sub-formulas. ForeSee is the spiritual successor of FalStar/MCTS
from [18, 17]. It is publicly available under GNU General Public License (GPL) v3.13

Setup. Since ForeSee is implemented on the basis of Breach [13], it provides the same
interface of Breach, namely, users can characterize the shape of input signals with a number of
options, including piecewise constant, piecewise linear, pulse, etc. In this report, we regulate the
shape of input signals with piecewise constant, parametrized by the number of control points.

In the current implementation of ForeSee, only CMA-ES [3] is provided as the optimizer;
this is due to our insight in the performances of different optimizers, in which CMA-ES outper-
forms other optimizers. However, involving other optimizers is not difficult for ForeSee, and
will be considered in the future releases.

Since ForeSee technically relies on Monte Carlo Tree Search (MCTS), the hyperparameters
in MCTS need to be properly selected. As a default setting, we use 0.2 as the scalar in the UCB1
algorithm, which takes a balance of exploration and exploitation; and we set 10 generations as
the budget for the playout phase of MCTS.

3.6 FReaK
Description. FReaK [5]14 is a falsification framework for black-box models that uses an
iterative refinement technique based on surrogate modeling. In particular, simulations are used
to construct a surrogate model for the system dynamics using data-driven Koopman operator
linearization. The reachable set of states are then computed and combined with an encoding of
the signal temporal logic specification in a mixed-integer linear program (MILP). To determine
the next sample, the MILP solver computes the least robust trajectory inside the reachable set
of the surrogate model. The trajectory’s initial state and input signal are then executed on
the original black-box system, where the specification is either falsified or additional simulation
data is generated that we use to retrain the surrogate Koopman model and repeat the process.
FReaK is publicly available15.

Setup. The configuration parameters for FReaK depend on its main constituents. For learn-
ing the Koopman surrogate model, we use AutoKoopman [31], which automatically tunes for
the associated hyperparameters. We use random Fourier features as observables with an up-
per bound of 20 observables, and apply grid-search for hyperparameter optimization. We use
CORA [1] for reachability analysis and Gurobi16 for solving the MILP optimization problems.
Koopman linearization, reachability analysis and MILP optimization each have an associated
time step size parameter determined by the chosen discretization. For consistency, we use the
same time step across all three processes. Moreover, we use the number of control points of
an input signal to determine the time step size for the processes. For instance, given a system
with a time horizon of 100s and 10 control points, the associated time step size is ∆t = 10. The
only exception is the AFC benchmark, where a time step size of ∆t = 5 was found to be too
coarse for effective analysis, so we used ∆t = 1 instead. We use a consistent number of control

13https://github.com/choshina/ForeSee
14Participants: Hekal and Lew.
15https://github.com/Abdu-Hekal/FReaK
16https://www.gurobi.com/

131

https://github.com/choshina/ForeSee
https://github.com/Abdu-Hekal/FReaK
https://www.gurobi.com/


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

points for each model across all requirement formulas, where all signal are evenly spaced and
interpolated with the pchip function or piecewise constant interpolation.

3.7 Moonlight
Description. Moonlight [36]17 is an open source18 lightweight tool for monitoring (online
or offline) temporal and spatio-temporal properties. The specification language adopted by
Moonlight is STL or its spatial extension, STREL [35]. It can efficiently process piece-wise
constant multi-valued numerical, Boolean, and categorical types of signals. The result of the
monitoring process can either be in terms of Boolean satisfaction or of real-valued robustness,
depending on the purpose of the monitoring process. Moonlight offers Java, Python, and
Matlab APIs. Moreover, it supports a minimal scripting language for defining signal interfaces
and formulae monitors. The falsification process of this competition is managed by adopting
the TuRBO [15] optimizer. TuRBO performs Bayesian Optimization using trust regions, a
technique where simultaneous local runs of independent models are used. To falsify, a multi-
armed bandit strategy is used at each iteration to allocate samples for each dimension and
thus decide which local optimization to run. The function to optimize is the robustness value
of the target formula, which is retrieved by running Moonlight on the signals generated by a
simulation using the parameters provided by the optimizer.

Setup. The current implementation of the benchmarks is based on the Moonlight Python
APIs, and the combination with TuRBO makes its usage straightforward, where only the maxi-
mum number of iterations (300) and the interval of acceptable parameters for each dimension is
necessary. To maximize reproducibility, the benchmark framework has been built so that both
the monitor and the optimizer can be swapped with alternative ones as long as their interfaces
are honored. The interested reader can run the benchmarks locally, as well as tweak any of the
optimization parameters19.

3.8 NNFal
Description. NNFal [30]20 is a surrogate model-based falsification framework for CPS. The
framework treats CPS as a black box and only assumes that the system to be falsified can be
simulated/executed. The foremost step in the framework is building a surrogate model from
the simulated trajectories of the CPS. In NNFal, we use a feed-forward neural network as a
surrogate model to leverage the adversarial attack algorithms targeted toward the robustness
evaluation of neural networks. The safety property is examined in the surrogate model to find
a counterexample using a deep neural network falsifier. The counterexample generated by the
framework is the initial system configuration along with the piecewise constant input signal that
drives the CPS to a safety-violating state. Since the surrogate model is an approximation of
the CPS, the generated counterexample on the surrogate may be spurious. The last step of our
framework is therefore validating the counterexample in the actual CPS. If the counterexample is
found to be spurious, necessary constraints are added in the property specification to eliminate
the spurious counterexample from the state space and search for a new counterexample for
further investigation. NNFal is publicly available.21

17Participants: Loreti, Nenzi and Visconti
18https://github.com/MoonLightSuite/moonlight
19https://github.com/MoonLightSuite/arch-comp-benchmarks
20Participants: Kundu and Ray
21https://gitlab.com/Atanukundu/NNFal

132

https://github.com/MoonLightSuite/moonlight
https://github.com/MoonLightSuite/arch-comp-benchmarks
https://gitlab.com/Atanukundu/NNFal


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Setup. The current implementation of NNFal uses pre-trained fully connected Feed-forward
Neural Network (FNN), which we build from the simulation traces of the CPS. The FNN is built
using the Keras API, a high-level API of TensorFlow. NNFal supports a portfolio of robustness
and reachability property falsifiers for finding counterexamples from the neural network. In the
experiments, we have seen that the robustness property falsifier outperforms the reachability
property falsifiers, which is why we consider the robustness falsifier as the default in our tool.
We specifically employed DNNF, a falsification method for the robustness properties of deep
neural networks. DNNF offers options for executing various adversarial attack algorithms, in
which we use the Projected Gradient Descent (PGD) attack algorithm among them. It has the
advantage of random initialization to find an adversarial example. As a result, it can generate
varied counterexamples across multiple executions. The current version of NNFal does not
support all the property specifications presented in STL. In the current version, we are able to
falsify the specifications AT1, AT6c, and CC1, all for constrained input signals (instance 2).
Note that the dataset and model learning is a one-time effort. The number of simulations taken
in generating the dataset is not included in the results table. Also, the time taken in learning
the FNN model from the dataset is also not included in the results.

We target only the instance 2, so the values for NNFal in Table 5 are simply copies of those
in Table 6.

3.9 OD
Description. OD22 (online diffusion) is a black-box requirement falsification algorithm based
on diffusion models. It implements the DDPM diffusion model of [25], and the chosen denoising
model is a modified UNet [43]. The model denoises Gaussian noise to test vectors, which are
representations of piecewise constant signals (i.e., OD targets Instance 2 input parameteriza-
tion). The target distribution of the diffusion model is the set of falsifying tests. The training
of the model is done in an online fashion in such a way that the training data distribution
shifts progressively towards test that have low STL robustness. This is similar to the online
training of Wasserstein Generative Adversarial networks in the WOGAN algorithm [41]. Dur-
ing a round of the algorithm, the diffusion model denoises tests and selects a candidate test
among the denoised tests that is then executed on the system under test. The candidate test
is selected uniformly randomly 50% of the time (to explore), and for the remaining time the
test estimated to have the lowest robustness by a random forest regression model is selected (to
exploit). The diffusion model training data is then augmented with the executed test together
with its true STL robustness. An initial training data is obtained by uniform random sampling
of the input space. The diffusion model is trained and sampled until a falsifying input is found
or the execution budget is exhausted. The OD algorithm does not use any precollected data or
models; the models are trained from scratch.

The OD algorithm is implemented in the STGEM tool [44], which is a falsification framework
supporting several requirement falsification algorithms. The code and instructions to use OD
are available online23.

Setup. The input space for each benchmark is determined by a vector whose components
correspond to the pieces of the piecewise constant input signals. The components vary in the
ranges specified in Section 2. Of the total simulation budget of 1500 the first 50 are reserved
for uniform random sampling of the input space to obtain the initial training data. The DDPM

22Participants: Peltomäki and Porres
23https://gitlab.abo.fi/stc/experiments/arch-comp-2024

133

https://gitlab.abo.fi/stc/experiments/arch-comp-2024


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

model uses a sinusoidal time embedding with dimension 20, and the forward process applies
Gaussian noise for 75 iterations and the forward process variances increase from 0.0001 to 0.02
as suggested in [25]. During each training phase, the DDPM model is trained for 20 epochs using
the Adam optimizer with learning rate 0.001. We use the same hyperparameter setup for all
benchmarks. We have manually tuned the hyperparameters to give a good overall performance.

For the conjunctive requirements, we use the multi-armed bandit approach described in [40]
meaning that for N requirements we use N distinct diffusion models, one per requirement, but
only sample one of them for a test.

We target only the instance 2, so the values for OD in Table 5 are the same as in Table 6.
Some validation results are omitted since the validation tool does not support all benchmarks.

3.10 Ψ-TaLiRo
Description. Ψ-TaLiRo [45]24 , the python version of S-TaLiRo [2], is an open-source toolbox
for temporal logic robustness-guided falsification of Cyber-Physical Systems (CPS). This tool-
box, which is completely modular, helps in the generation of test cases for falsification of system
under test using a common interface for temporal logic monitors. While the toolbox provides
inbuilt optimizers (DA, Uniform Random, etc.), one can also develop new optimizers. The tool
box is publicly available on-line under General Public License (GPL).25 For this competition,
we provide results with two different optimization algorithms:

1. Conjunctive Bayesian Optimization - Large Scale (ConBO-LS) accounts for the
dependencies between two requirements and leverages their mutual information to achieve
relatively early falsification. Additionally, the approach employs a sampler to select a
subset of requirements that are more promising for falsification. Unlike the conventional
approach, the algorithm takes the conjunction of all the requirements from a particular
benchmark model and attempts to falsify this conjunction. It is important to note that
this algorithm turns into a simple Bayesian Optimization if we do not have conjunctive
requirements. However, once a requirement is falsified, the algorithm proceeds with the
conjunction of the remaining unfalsified requirements.

2. Part-X adaptively partitions the search space to enclose the falsifying points, and can
produce probabilistic guarantees on the presence of falsifying behaviors. The algorithm
uses local Gaussian process estimates in order to adaptively branch and sample within
the input space. The partitioning approach not only helps us identify the zero level-set of
the specification robustness, but also to circumvent issues that rise due to the fact that
the robustness is discontinuous. In fact, the only assumption we need on the robustness
function is that it is a locally continuous function [38].

Setup. In Ψ-TaLiRo, input signals to black-box models are parameterized with control points
and their corresponding timestamps (for interpolation), which then leads to the formation of
an optimization problem with dimensionality depending upon the number of control points.
The input signals along with their corresponding time stamps are interpolated depending on
the benchmark problem instance. For this competition, all signals have evenly spaced control
points and are interpolated using the pchip function for instance 1, and a piecewise constant
interpolation function for instance 2. We utilize RTAMT [37] for robustness calculation.

The repeatability package for ConBO-LS and Part-X is available online26. In the instances

24Participants: Khandait, Chotaliya, Fainekos, and Pedrielli
25https://github.com/cpslab-asu/psy-taliro
26https://github.com/cpslab-asu/ARCH-Comp-2024-Repeatability

134

https://github.com/cpslab-asu/psy-taliro
https://github.com/cpslab-asu/ARCH-Comp-2024-Repeatability


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

presented in this paper, ConBO-LS utilizes only a 1500-evaluation budget to falsify all the
requirements from a particular benchmark model, rather than allocating 1500 evaluations for
each individual requirement. In other words, the evaluation budget is allocated to a benchmark
model. For example, in the Automatic Transmission benchmark in instance 1, the ConBO-
LS tries to falsify the conjunction of all the 10 requirements. If any particular requirement
is falsified, the algorithm continues with conjunction of the remaining requirements. In these
experiments, the ConBO-LS optimizer samples 100 points from the search space and then
sequentially samples points until all the requirements are falsified or the maximum budget
of 1500 evaluations is reached. Finally, the Part-X optimizer, which provides probabilistic
guarantees, starts with an initialization budget n0 = 20, per-subregion budget for unclassified
subregions with nBO = 20, classified subregions budget nc = 50, maximum budget T = 2000,
number of Monte Carlo iterations R = 20, number of evaluations per iterations M = 500,
number of cuts B = 2, and classification percentile δu = 0.05. Also, we used δv = 0.001
to identify dimensions that should not be branched. We provide the probabilistic guarantees
in Table 7.

4 Evaluation & Validation

We present the experimental setup (Section 4.1) and the results of our experiment (Section 4.2)

4.1 Setup

The tools participating in the competition were instructed to run the falsification of each in-
dividual requirement 10 times, to account for the stochastic nature of most algorithms. The
cut-off for the number of simulations imposed on the experiments was 1500. This value enables
a more accurate comparison of the tools for difficult benchmarks. The results were provided
by the participants and have been obtained on multiple platforms with varying resources and
different MATLAB/Simulink versions.

The participants have to report information related to each falsification trial per require-
ment, according to the reporting format available at https://gitlab.com/gernst/ARCH-COMP/-/
blob/FALS/2021/FALS/Validation.md. The information includes:

• the benchmark (model + requirement identifier);
• the initial conditions and time-series input signal resulting from that trial;
• whether the signal is expected to falsify the requirement;
• if available, a robustness value derived from running the input through the model;
• optionally, the corresponding output signal, and further information such as time stamps

or wall-clock times.
In the following, we will refer to this information as the “reported” result.

For each tool, we compute the falsification rate, i.e., the number of trials where a falsifying
input was found, as well as the median and mean of the number of simulations required to find
such input (not including the unsuccessful runs in the aggregate).

We continue the effort to validate results, which has been established in 2021. The over-
arching goal is to ensure that the comparison reported here is meaningful, and the approach
taken accounts for several potential sources of error, both for technical reasons or because of
human error. The hypothetical case of cheating participants was not regarded likely, and we
emphasize upfront that no indication whatsoever for dishonest behavior was found. Rather, the
goal is to establish a higher standard of quality of evaluation results, that can ultimately benefit

135

https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md
https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

any future work in simulation-based falsification: Just like the benchmark set established by
this community gets adopted by experiments in the literature, validation of results using an
independent reference checker should become standard, too. We validated the following

• the reported input signal adhere to the valid ranges of input for that particular model;
• the correctness of the reported verdict;
• the consistency of the reported robustness value and the verdict.

The results reported by the participants are presented in the following.

4.2 Results
Table 5 and Table 6 respectively report the results for instances 1 and 2 for each of participant.
The tables also report the results obtained using a Uniform Random (UR) testing strategy;
that is no optimization strategy is used in the search. For each instance, the tables report the
falsification rate (FR), validated falsification rate (✓), mean number of simulations (S), and
median (rounded down) number of simulations (S̃). S and S̃ are computed using the successful
executions, i.e., the executions where the falsification was successful. Empty cells indicate a
lack of data for a particular benchmark due to lack of support or simply that the respective
participants did not take the time to set up and/or run these experiments. For example, NNb,
NNx, F16, and SC were not assessed for UR in instance 1.

For some of the tools, e.g., FalCAuN (CC4 — instance 1), the results were not confirmed by
the validation platform due to differences between the configuration of the validation platform
and the platform used to run the tool. For example, some results of FalCAuN could not be
confirmed due to the use of the discrete-time semantics of STL, which was, to some degree,
expected. Before evaluating STL formulas, FalCAuN discretizes the observed signals to interpret
them as strings to apply standard automata-based techniques. However, this approach overlooks
the behavior between observed points. As a result, the validation fails for STL formulas, for
example, of the form 3φ. For these cases, the value reported by the validated falsification rate
(✓) column is lower than that reported by the falsification rate (FR) column.

For some tools, the participants found technical problems running the validation for some
benchmarks, or the validation platform does not support the benchmark. These problems are
reasonable since the validation tool is in early development, and some participants used it
for the first time. For these cases, the participants reported the symbol “–” in the validated
falsification rate (✓) column. For example, the validation platform currently does not support
the validation of the pacemaker (PM) and the Aircraft Ground Collision Avoidance System
(F16) benchmarks. We plan to address these limitations in the next edition of the competition.

136



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 5: Results for piecewise continuous input signals (instance 1). FR: falsification rate, ✓:
validated falsification rate, S: mean number of simulations, S̃: median (rounded down) number
of simulations.

T
oo

l:
U

R
A

R
Is

T
E
O

A
T

h
eN

A
E
X

A
M

-N
et

F
a
l
C
A
u
N

F
o
r
eS

ee
F
R

ea
K

M
oo

n
li
gh

t
N

N
Fa

l
O

D
Ψ

-T
aL

iR
o

A
pp

ro
ac

h:
a
r
x
-2

C
on

B
O

-L
S

B
en

ch
m

ar
k
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃

A
T

1
0

0
–

–
0

0
–

–
0

0
–

–
10

10
15

0.
4

98
10

10
89

6.
0

89
6

10
10

38
7.

4
42

9.
0

10
10

4.
8

4
2

2
1.

5
1.

5
0

0
–

–
0

–
–

–
A

T
2

10
10

7.
6

5.
0

10
10

25
.9

16
.0

9
9

10
5.

0
47

.0
10

10
22

.7
31

10
10

25
6.

0
25

6
9

9
19

6.
6

38
.5

10
10

2.
1

2
10

10
18

.5
13

.0
10

10
9.

7
10

.0
A

T
51

1
1

92
3.

0
92

3.
0

1
1

11
66

.0
11

66
.0

3
3

37
0.

3
32

1.
0

10
10

8.
5

4
10

10
15

.0
14

.5
10

10
8.

7
6.

5
10

10
11

.6
10

.0
0

–
–

–
A

T
52

10
10

4.
1

2.
0

10
10

5.
0

3.
0

10
10

17
.3

9.
0

10
10

10
.3

7.
5

10
10

65
.7

35
.0

10
10

1.
3

1.
0

10
10

8.
6

6.
0

10
10

6.
3

5.
0

A
T

53
10

10
18

.6
15

.0
10

10
5.

8
6.

0
10

10
51

.4
20

.5
10

10
1.

5
1

10
10

4.
3

3.
5

10
10

1.
1

1.
0

10
10

2.
2

2.
0

10
10

19
.7

20
.5

A
T

54
3

3
93

2.
0

86
8.

0
7

7
55

4.
7

70
9.

0
1

1
6.

0
6.

0
10

10
89

.6
12

.5
10

10
60

.3
29

.5
10

10
2.

4
1.

0
10

10
18

.4
10

.0
6

6
10

08
.3

11
58

.0
A

T
6a

10
10

74
.4

41
.5

9
9

23
1.

0
27

2.
0

10
10

20
0.

0
14

4.
0

10
10

61
.1

59
.5

10
10

10
02

.0
10

02
10

10
11

5.
2

96
.5

10
10

7.
4

5.
0

10
10

64
.3

61
.0

10
10

18
7.

4
82

.0
A

T
6b

10
10

25
1.

3
18

9.
0

5
5

59
1.

4
62

1.
0

8
8

34
5.

1
31

0.
0

10
10

11
9.

4
10

8
0

0
–

–
10

10
25

3.
9

27
4.

5
10

10
6.

2
5.

0
10

10
12

2.
0

94
.0

9
9

54
4.

6
32

4.
5

A
T

6c
10

10
18

5.
2

86
.0

10
10

32
9.

2
22

7.
5

10
10

22
4.

2
97

.0
10

10
17

6.
5

13
1.

5
10

10
89

8.
0

89
8

10
10

13
3.

1
15

0.
5

10
10

5.
9

5.
0

1
1

3
3

10
10

11
8.

5
88

.0
10

10
24

9.
0

20
9.

5
A

T
6a

bc
10

10
58

.8
33

.5
10

10
34

9.
6

32
4.

5
9

9
29

7.
8

10
3.

0
10

10
57

.4
57

10
10

12
32

.0
12

32
10

10
12

3.
6

11
9.

0
10

10
6.

4
5.

0
10

10
61

.3
68

.0
10

10
65

.6
47

.0

N
N

10
–

38
.6

27
.5

5
5

13
3.

4
10

8.
0

9
9

38
6.

0
27

6.
0

10
10

47
.2

47
.0

10
10

12
2.

8
97

.5
10

10
2.

0
2.

0
10

0
26

.8
22

.0
10

10
53

.0
39

.0
10

10
36

6.
9

23
6.

0
N

N
β

=
0
.0
4

0
0

–
–

0
0

–
–

6
–

96
3.

7
10

19
.0

10
10

30
.9

33
.0

4
4

59
1.

0
69

0.
0

0
–

–
–

N
N

x
0

0
–

–
0

0
–

–
0

-
-

-
10

10
19

2.
3

16
5.

5
9

0
14

2.
7

12
8.

0
0

0
–

–
0

–
–

–

C
C

1
10

10
10

.4
9.

5
10

10
26

.6
17

.5
10

10
10

4.
7

86
.5

10
10

36
.1

36
.0

10
10

39
6.

0
39

6
10

5
21

.8
21

.5
10

10
3.

6
3.

0
9

9
1.

22
1

10
10

61
.2

53
.0

10
10

22
.5

10
.5

C
C

2
10

10
15

.4
15

.0
10

10
10

.4
8.

0
10

10
78

.3
60

.5
9

9
39

8.
6

36
4

10
10

76
.0

76
8

8
22

4.
3

19
.5

10
10

3.
0

3.
0

4
4

10
9.

3
44

.0
10

10
20

.2
19

.5
C

C
3

10
10

77
.9

54
.5

10
10

41
.6

32
.5

10
10

18
5.

5
17

9.
0

10
10

14
.9

10
10

10
12

2.
0

12
2

10
4

36
.1

11
.5

10
10

5.
7

5.
5

10
10

35
.2

31
.0

10
10

62
.1

42
.0

C
C

4
0

0
–

–
0

0
–

–
3

3
74

7.
0

60
3.

0
0

-
-

-
4

0
12

56
.5

11
98

7
1

68
0.

6
73

2.
0

10
10

17
6.

7
14

8.
0

0
0

–
–

0
–

–
–

C
C

5
10

10
28

.5
14

.5
10

10
16

.1
10

.5
10

10
10

3.
1

11
0.

5
10

10
78

.2
10

6
10

10
88

.7
25

.5
10

10
48

.2
10

.5
10

9
55

.7
53

.0
10

10
42

.3
41

.0
C

C
x

7
7

33
8.

1
30

0.
0

9
9

33
7.

2
18

3.
0

9
9

14
9.

1
96

.0
10

10
44

8.
1

39
0.

5
10

4
22

8.
0

18
9.

5
10

10
11

0.
5

62
.0

2
–

26
1.

5
26

1.
0

10
10

23
2.

2
23

0.
0

F
16

10
–

15
5.

6
16

4.
0

10
-

70
.5

67
10

-
1.

0
1.

0
10

0
21

19
10

–
11

1.
5

97
.0

10
–

12
3.

0
12

5.
0

SC
0

0
–

–
0

0
–

–
0

-
-

-
0

0
–

–
10

10
45

.1
29

.5
0

0
–

–
0

–
–

–

P
M

8
–

57
1.

8
44

3.
5

9
–

56
5.

9
51

0.
0

10
–

13
9.

6
12

0.
5

10
-

37
.3

34
0

0
–

–
0

0
–

–
4

–
83

.3
52

.0
10

–
20

1
20

1

137



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

Table 6: Results for piecewise continuous input signals (instance 2). FR: falsification rate, ✓:
validated falsification rate, S: mean number of simulations, S̃: median (rounded down) number
of simulations.

T
oo

l:
U

R
A

R
Is

T
E
O

A
T

h
eN

A
E
X

A
M

-N
et

F
a
l
C
A
u
N

F
o
r
eS

ee
F
R

ea
K

M
oo

n
li
gh

t
N

N
F
al

O
D

Ψ
-T

aL
iR

o
A

pp
ro

ac
h:

a
r
x
-2

C
on

B
O

-L
S

B
en

ch
m

ar
k
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃
F
R

✓
S

S̃

A
T

1
0

0
–

–
0

0
–

–
0

0
–

–
10

10
15

0.
4

98
10

10
38

7.
4

42
9.

0
10

10
4.

5
3.

5
2

2
1.

5
1.

5
0

0
–

–
5

5
11

31
.7

12
26

.0
A

T
2

10
10

18
.8

13
.5

10
10

15
.1

11
.5

10
10

62
.3

54
.0

10
10

22
.7

31
9

9
19

6.
6

38
.5

10
10

2.
2

2.
0

10
10

18
.5

13
.0

10
10

13
.7

10
.0

A
T

51
10

10
20

.5
16

.5
1

1
13

71
.0

13
71

.0
10

10
10

6.
0

87
.5

10
10

8.
5

4
10

10
15

.0
14

.5
10

10
17

.7
11

.5
10

10
11

.6
10

.0
10

10
10

.1
8.

5
A

T
52

10
10

74
.1

65
.0

10
10

4.
4

3.
0

10
10

19
.0

7.
0

10
10

10
.3

7.
5

10
10

65
.7

35
.0

10
10

5.
2

2.
0

10
10

8.
6

6.
0

10
10

67
.8

62
.0

A
T

53
10

10
1.

5
1.

0
10

10
4.

4
3.

5
10

10
2.

2
1.

0
10

10
1.

5
1

10
10

4.
3

3.
5

10
10

3.
9

2.
0

10
10

2.
2

2.
0

10
10

4.
1

3.
0

A
T

54
10

10
47

.9
42

.0
6

6
57

1.
5

57
5.

0
10

10
13

8.
9

23
.5

10
10

89
.6

12
.5

10
10

60
.3

29
.5

10
10

10
3

83
10

10
18

.4
10

.0
10

10
37

.4
23

.0
A

T
6a

10
10

15
6.

6
13

8.
0

8
8

27
1.

4
13

8.
0

10
10

24
5.

5
20

9.
0

10
10

61
.1

59
.5

10
10

11
5.

2
96

.5
10

10
24

.6
15

.5
10

10
64

.3
61

.0
10

10
30

4.
5

23
1.

5
A

T
6b

10
10

47
2.

2
58

8.
0

6
6

53
6.

8
52

7.
0

9
9

27
9.

3
24

8.
0

10
10

11
9.

4
10

8
10

10
25

3.
9

27
4.

5
10

10
17

.4
11

.0
10

10
12

2.
0

94
.0

6
6

78
2.

2
53

8.
0

A
T

6c
10

10
32

6.
8

17
6.

0
8

8
64

3.
8

76
8.

5
10

10
19

4.
5

12
7.

5
10

10
17

6.
5

13
1.

5
10

10
13

3.
1

15
0.

5
10

10
15

.5
9.

5
1

1
3

3
10

10
11

8.
5

88
.0

9
9

47
2.

1
36

9.
0

A
T

6a
bc

10
10

14
9.

0
12

5.
5

8
8

50
5.

2
44

6.
5

10
10

23
4.

4
19

7.
5

10
10

57
.4

57
10

10
12

3.
6

11
9.

0
10

10
13

.1
8.

5
10

10
61

.3
68

.0
10

10
23

9.
2

21
3.

5

A
FC

27
0

–
–

–
9

9
56

.2
6.

0
8

7
13

7.
8

10
9.

5
10

8
23

5.
8

34
.5

10
10

12
.0

10
.0

10
10

39
1.

2
23

3.
0

10
10

10
1.

8
10

1.
0

A
FC

29
10

–
25

.1
19

.0
10

10
3.

9
2.

0
10

10
18

.6
12

.0
10

10
8.

5
6.

5
10

10
3.

1
2.

0
10

10
13

.0
9.

0
10

10
9.

1
7.

5
A

FC
33

0
–

–
–

0
0

–
–

0
0

–
–

0
-

-
-

0
0

–
–

0
–

–
–

N
N

10
27

7.
2

15
8.

5
10

10
11

9.
2

91
.0

10
10

49
.7

47
.5

10
10

47
.2

47
.0

10
10

12
2.

8
97

.5
10

10
37

.2
25

.0
10

0
48

.0
32

.0
10

10
53

.0
39

.0
10

10
75

.9
83

.0
N

N
β

=
0
.0
4

1
1

55
.0

55
.0

2
2

50
3.

5
50

3.
5

6
–

96
3.

7
10

19
.0

10
10

53
4.

0
47

2.
0

4
4

59
1.

0
69

0.
0

0
–

–
–

N
N

x
8

45
7.

1
38

0.
5

7
7

11
.4

6.
0

9
9

18
2.

6
17

8.
0

0
-

-
-

10
10

16
5.

3
65

.5
0

0
-

-
0

0
–

–
10

10
14

3.
7

13
5.

0

C
C

1
10

10
16

.4
9.

5
10

10
11

.3
11

.5
10

10
60

.5
30

.0
10

10
36

.1
36

.0
10

5
21

.8
21

.5
10

10
3.

0
2.

0
9

9
1.

22
1

10
10

61
.2

53
.0

10
10

18
.0

10
.5

C
C

2
10

10
12

.4
13

.0
10

10
10

.5
10

.0
10

10
94

.4
10

6.
5

9
9

39
8.

6
36

4
8

8
22

4.
3

19
.5

10
10

3.
3

3.
0

4
4

10
9.

3
44

.0
10

10
14

.8
9.

0
C

C
3

10
10

19
.6

21
.0

10
10

18
.8

12
.5

10
10

11
9.

2
95

.5
10

10
14

.9
10

10
4

36
.1

11
.5

10
10

2.
6

2.
0

10
10

35
.2

31
.0

10
10

11
.4

10
.5

C
C

4
0

0
–

–
0

0
–

–
2

2
51

4.
0

51
4.

0
0

-
-

-
7

1
68

0.
6

73
2.

0
10

10
13

49
.9

12
01

.0
0

0
–

–
1

1
13

87
.3

15
00

.0
C

C
5

10
10

37
.4

22
.0

10
10

29
.1

22
.5

9
9

11
2.

0
91

.0
10

10
78

.2
10

6
10

10
88

.7
25

.5
10

10
47

.5
34

.0
10

9
55

.7
53

.0
10

10
32

.2
36

.5
C

C
x

6
6

39
6.

7
28

4.
5

9
9

61
0.

4
46

5.
0

5
5

86
.4

84
.0

10
10

44
8.

1
39

0.
5

10
4

22
8.

0
18

9.
5

7
7

17
23

.6
93

8.
0

2
–

26
1.

5
26

1.
0

10
10

24
4.

2
22

5.
0

SC
0

0
–

–
0

0
–

–
0

-
-

-
0

0
–

–
0

–
–

–

P
M

6
–

57
5.

8
61

7.
0

6
–

63
3.

5
56

7.
5

10
–

11
7.

1
10

3.
0

10
-

37
.3

34
0

0
-

-
4

–
83

.3
52

.0
10

–
20

1
20

1

138



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

5 Probabilistic Guarantees

As done in 2022, we are still assessing tools that can provide probabilistic guarantees for falsi-
fying the system under test to understand if we can provide any conclusion about the system
under test and falsifying it. This information becomes even more critical when no falsification
is found. Providing probabilistic guarantees can help assess the system’s safety, while also
providing the quality of test samples generated.

Part-X [38] was the only tool that provided results on probabilistic guarantees: the lower
and upper confidence bounds of normalized falsification volume at 95% confidence. The Part-
X algorithm is part of the Ψ-TaLiRo tool, and is discussed in section 3.10. The results are
shown in Table 7 for both instances. We refrain from an in-depth analysis of these results.

Table 7: Results for piecewise continuous input signals (instance 1) and constrained input
signals (instance 2). FR: falsification rate, ✓: validated falsification rate, S: mean number of
simulations, S̃: median (rounded down) number of simulations, LCB : Lower Confidence Bound
at 95% confidence, UCB : Upper Confidence Bound at 95% confidence R: Simulation time ratio
(%). Bold entries indicate that some results could not be validated.
Tool Ψ-TaLiRo Ψ-TaLiRo
Approach Part-X Part-X
Instance 1 2

Property FR ✓ S S̃ LCB UCB R FR ✓ S S̃ LCB UCB R

AT1 10 10 34.9 28.5 0.00E+00 7.03E-04 70.7 10 10 30.5 25.5 0.00E+00 5.58E-04 85.7
AT2 10 10 6.7 5.5 9.45E-02 1.80E-01 52.8 10 10 6.5 5.0 1.16E-01 2.77E-01 50.6
AT51 0 0 – – 0.00E+00 0.00E+00 93.9 10 10 13.3 11.5 2.22E-01 5.86E-01 64.3
AT52 10 10 5.6 2.0 1.81E-01 9.02E-01 62.5 10 10 66.5 53.5 0.00E+00 0.00E+00 93.5
AT53 10 10 15.7 15.5 2.45E-02 4.26E-01 59.7 10 10 2.2 2.0 8.38E-01 1.00E+00 57.0
AT54 3 3 862.6 – 0.00E+00 3.60E-05 91.0 10 10 85.0 65.0 0.00E+00 7.68E-02 76.2
AT6a 10 10 134.3 51.5 1.18E-01 2.47E-01 58.2 10 10 153.7 72.0 5.75E-02 1.94E-01 53.1
AT6b 10 10 212.2 150.0 9.45E-02 2.88E-01 57.8 10 10 307.9 111.5 3.40E-02 1.97E-01 56.4
AT6c 10 10 200.5 138.0 9.94E-02 2.86E-01 58.1 10 10 334.4 249.5 4.34E-02 1.98E-01 59.3
AT6abc 10 10 126.1 50.0 1.02E-01 2.67E-01 68.7 10 10 106.9 67.5 5.72E-02 2.06E-01 69.4

CC1 10 10 19.0 16.5 2.71E-01 8.31E-01 69.2 10 10 17.6 21.0 2.83E-01 8.86E-01 68.7
CC2 10 10 23.9 12.0 4.82E-01 1.00E+00 68.6 10 10 17.8 12.0 2.27E-01 1.00E+00 66.3
CC3 10 9 23.1 24.0 1.28E-01 4.58E-01 69.9 10 10 13.5 12.0 1.18E-01 1.00E+00 69.5
CC4 0 0 – – 0.00E+00 0.00E+00 95.3 0 0 – – 0.00E+00 0.00E+00 94.5
CC5 10 10 45.8 29.0 3.83E-02 7.10E-01 79.4 10 10 29.9 22.5 2.09E-01 5.90E-01 73.8
CCx 9 9 681.9 703.0 0.00E+00 0.00E+00 96.0 10 10 607.1 156.0 0.00E+00 0.00E+00 96.2

NN 10 10 15.2 16.0 4.84E-01 8.80E-01 83.5 10 10 145.8 89.5 0.00E+00 1.36E-01 87.3
NNx – – – – – – – 10 10 190.7 40.0 0.00E+00 1.20E-02 66.4

SC 0 – – – 0.00E+00 0.00E+00 78.9 0 0 – – 0.00E+00 2.70E-05 45.5

F16 0 – – – 0.00E+00 0.00E+00 39.2 – – – – – – –

AFC27 – – – – – – – 10 0 34.3 27.0 5.90E-01 7.27E-01 89.4
AFC29 – – – – – – – 10 0 12.1 11.0 2.31E-01 5.36E-01 87.9
AFC33 – – – – – – – 0 0 – – 0.00E+00 0.00E+00 96.1

PM 10 23.5 22.0 6.75E-3 7.13E-3 80.9 8 253.6 26.5 0.00E+00 3.44E-3 82.7

139



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

6 Conclusion and Outlook

The successful participation of new tools (EXAMNET, Moonlight [36], and FReaK [5]) shows
that this competition has been getting attention over the years. The tools now use completely
different technologies that are challenging to compare. However, the results reported in Tables 5
and 6 can provide a starting point for this comparison. Based on our data, we remark that
there is no “best” approach, and the different solutions offer pros and cons that engineers
should consider when selecting the appropriate falsification tool. Notice that some tools did
not consider all the models and requirements. Considering only some models and requirements
was permitted since models use different Simulink features, often requiring some tuning of the
falsification tools. This tuning is often not easy, especially for new participants.

Gidon Ernst, Tanmay Khandait, and Federico Formica were pivotal in enabling the valida-
tion of the results also this year: They had to solve many technical challenges and provided
timely and thorough support to the other participants during the validation of the results. Our
findings stress the importance of their work and of validating experimental data, especially
in a well-defined comparative setting. This experience is shared with other competitions like
SV-COMP (which has validation since 2016 [8]), Test-Comp (which had independent coverage
evaluation from the start in 2019 [9]), and many other competitions (for an overview, see [6]).

We have several items on our agenda for the following year’s competition. We would like
to precisely formalize the semantics of the ratio between the simulation time and the total
falsification time (column “R”) from Tables 5 and 6 and reintroduce it next year. We plan to
extend the support of our validation platform for the pacemaker (PM) and the Aircraft Ground
Collision Avoidance System (F16) benchmarks. We plan to facilitate the adoption of Python-
based benchmark models from Matlab-based benchmarks. Supporting Python programs will
require a careful revision of the rules of the competition. We plan to employ the automatic
repeatability evaluation platform provided by the organizers of the ARCH competition. Finally,
we would like to stimulate and expand the competition rules related to the tools supporting
probabilistic guarantees.

Acknowledgments We thank Gidon Ernst for the help with the validation of the results
and the organizers of the ARCH Workshop 2024 for hosting this competition and providing a
supportive and friendly environment.

The experiments for ARIsTEO and ATheNA were in part enabled by the support pro-
vided by Compute Ontario (computeontario.ca) and the Digital Research Alliance of Canada
(alliancecan.ca). C. Menghi is supported by project SERICS (PE00000014) under the NRRP
MUR program funded by the EU - NGEU, by the European Union - Next Generation EU.
“Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile - CNMS)”, M4C2 -
Investment 1.4, Project Code CN_00000023, and by project SERICS (PE00000014) under the
NRRP MUR program funded by the EU - NGEU. L. Nenzi is supported by MUR PRIN project
20228FT78M DREAM (modular software design to reduce uncertainty in ethics-based cyber-
physical systems), Italy. P. Arcaini is supported by Engineerable AI Techniques for Practical
Applications of High-Quality Machine Learning-based Systems Project (Grant Number JP-
MJMI20B8), JST-Mirai; and ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603), JST, Funding Reference number: 10.13039/501100009024. The ASU team
(Ψ-TaLiRo) was partially supported by DARPA FA8750-20-C-0507, NSF CMMI 2046588, NSF
CNS 2000792, and NSF CMMI 1829238. Z. Zhang is supported by JSPS KAKENHI Grant No.
JP23K16865 and Grant No. JP23H03372. J. Peltomäki, I. Porres, and V. Soloviev are sup-
ported by the ECSEL Joint Undertaking (JU) under grant agreement No 101007350. The JU

140

https://www.computeontario.ca/
https://alliancecan.ca/en


ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

receives support from the European Union’s Horizon 2021 research and innovation programme
and Sweden, Austria, Czech Republic, Finland, France, Italy, Spain. E. Visconti is supported
by the Austrian Science Fund (FWF) for the project “High-dimensional statistical learning:
New methods to advance economic and sustainability policies” (ZK 35), jointly carried out by
the University of Klagenfurt, the University of Salzburg, TU Wien, and the Austrian Institute
of Economic Research (WIFO). M. Waga is partially supported by JST ACT-X Grant Number
JPMJAX200U, JSPS KAKENHI Grant Number JP22K17873, and JST CREST Grant Number
JPMJCR2012, Japan.

References

[1] M. Althoff. An introduction to CORA 2015. In Proc. of the International Workshop on Applied
Verification for Continuous and Hybrid Systems, pages 120–151, 2015.

[2] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-TaLiRo:
A tool for temporal logic falsification for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[3] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing population
size. In IEEE Congress on Evolutionary Computation, CEC 2005, pages 1769–1776, 2005.

[4] Mostafa Ayesh, Namya Mehan, Ethan Dhanraj, Abdul El-Rahwan, Simon Emil Opalka, Tony Fan,
Akil Hamilton, Akshay Mathews Jacob, Rahul Anthony Sundarrajan, Bryan Widjaja, and Claudio
Menghi. Two simulink models with requirements for a simple controller of a pacemaker device.
In International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22),
EPiC Series in Computing, pages 18–25. EasyChair, 2022.

[5] Stanley Bak, Sergiy Bogomolov, Abdelrahman Hekal, Niklas Kochdumper, Ethan Lew, Andrew
Mata, and Amir Rahmati. Falsification using reachability of surrogate koopman models. In
Proceedings of the 27th ACM International Conference on Hybrid Systems: Computation and
Control, pages 1–13, 2024.

[6] Ezio Bartocci, Dirk Beyer, Paul E Black, Grigory Fedyukovich, Hubert Garavel, Arnd Hartmanns,
Marieke Huisman, Fabrice Kordon, Julian Nagele, Mihaela Sighireanu, et al. Toolympics 2019: An
overview of competitions in formal methods. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 3–24. Springer, 2019.

[7] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan
Ničković, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. In Lectures on Runtime Verification, pages 135–175.
Springer, 2018.

[8] Dirk Beyer. Reliable and reproducible competition results with benchexec and witnesses (report
on SV-COMP 2016). In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 887–904. Springer, 2016.

[9] Dirk Beyer. International competition on software testing (Test-Comp). In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, pages 167–175.
Springer, 2019.

[10] Anthony Corso, Robert J Moss, Mark Koren, Ritchie Lee, and Mykel J Kochenderfer. A survey
of algorithms for black-box safety validation. arXiv preprint arXiv:2005.02979, 2020.

[11] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios Fainekos. ARCH-COMP17 cat-
egory report: Preliminary results on the falsification benchmarks. In ARCH17. International
Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Series in Computing,
pages 170–174. EasyChair, 2017.

[12] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon Ernst, Zhenya Zhang,
Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. ARCH-COMP18 category report: Results on

141



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

the falsification benchmarks. In ARCH18. International Workshop on Applied Verification of
Continuous and Hybrid Systems, EPiC Series in Computing, pages 104–109. EasyChair, 2018.

[13] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings 22, pages 167–170. Springer, 2010.

[14] Johan Liden Eddeland, Alexandre Donze, Sajed Miremadi, and Knut Akesson. Industrial temporal
logic specifications for falsification of cyber-physical systems. In ARCH@CPSIoTWeek, 2020.

[15] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[16] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Aniruddh Chandratre, Alexandre Donzé, Georgios
Fainekos, Goran Frehse, Khouloud Gaaloul, Jun Inoue, Tanmay Khandait, Logan Mathesen, Clau-
dio Menghi, Giulia Pedrielli, Marc Pouzet, Masaki Waga, Shakiba Yaghoubi, Yoriyuki Yamagata,
and Zhenya Zhang. ARCH-COMP 2021 category report: Falsification with validation of results.
In International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21),
EPiC Series in Computing, pages 133–152. EasyChair, 2021.

[17] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Alexandre Donzé, Georgios Fainekos, Goran Frehse,
Logan Mathesen, Claudio Menghi, Giulia Pedrielli, Marc Pouzet, Shakiba Yaghoubi, Yoriyuki
Yamagata, and Zhenya Zhang. ARCH-COMP 2020 category report: Falsification. In ARCH20.
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20),
EPiC Series in Computing, pages 140–152. EasyChair, 2020.

[18] Gidon Ernst, Paolo Arcaini, Alexandre Donzé, Georgios Fainekos, Logan Mathesen, Giulia
Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang. ARCH-COMP 2019 category
report: Falsification. In ARCH19. International Workshop on Applied Verification of Continuous
and Hybrid Systems, EPiC Series in Computing, pages 129–140. EasyChair, 2019.

[19] Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica, Jun Inoue, Tanmay Khandait,
Mohammad Mahdi Mahboob, Claudio Menghi, Giulia Pedrielli, Masaki Waga, Yoriyuki Yamagata,
and Zhenya Zhang. Arch-comp 2022 category report: Falsification with ubounded resources. In
International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22),
EPiC Series in Computing, pages 204–221. EasyChair, 2022.

[20] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast falsification of hybrid systems
using probabilistically adaptive input. arXiv preprint arXiv:1812.04159, 2018.

[21] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications. In
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, LNCS, pages 178–192. Springer, 2006.

[22] Federico Formica, Mehrnoosh Askarpour, and Claudio Menghi. Search-based software test-
ing driven by automatically generated and manually defined fitness functions. arXiv preprint
arXiv:2207.11016, 2022.

[23] Martin Fränzle and Michael R Hansen. A robust interpretation of duration calculus. In Interna-
tional Colloquium on Theoretical Aspects of Computing, pages 257–271. Springer, 2005.

[24] Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges
in F-16 ground collision avoidance and other automated maneuvers. In ARCH18. International
Workshop on Applied Verification of Continuous and Hybrid Systems, EPiC Series in Computing,
pages 208–217. EasyChair, 2018.

[25] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[26] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Benchmarks for temporal logic require-
ments for automotive systems. In ARCH14-15. International Workshop on Applied veRification

142



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

for Continuous and Hybrid Systems, EPiC Series in Computing, pages 25–30. EasyChair, 2015.
[27] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid systems. In

International Workshop on Hybrid Systems: Computation and Control, pages 160–173. Springer,
2000.

[28] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
control verification benchmark. In International Conference on Hybrid Systems: Computation and
Control, pages 253–262. ACM, 2014.

[29] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time systems,
2(4):255–299, 1990.

[30] Atanu Kundu, Sauvik Gon, and Rajarshi Ray. Data-driven falsification of cyber-physical systems.
In Proceedings of the 17th Innovations in Software Engineering Conference, pages 1–5, 2024.

[31] E. Lew and et al. Autokoopman: A toolbox for automated system identification via koopman
operator linearization. In Proc. of the International Symposium on Automated Technology for
Verification and Analysis, pages 237–250, 2023.

[32] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[33] Claudio Menghi, Paolo Arcaini, Walstan Baptista, Gidon Ernst, Georgios Fainekos, Federico
Formica, Sauvik Gon, Tanmay Khandait, Atanu Kundu, Giulia Pedrielli, Jarkko Peltomäki, Ivan
Porres, Rajarshi Ray, Masaki Waga, and Zhenya Zhang. Arch-comp 2023 category report: Falsifi-
cation. In 10th International Workshop on Applied Verification of Continuous and Hybrid Systems.
ARCH23, volume 96, pages 151–169, 2023.

[34] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. Approximation-refinement
testing of compute-intensive cyber-physical models: An approach based on system identification.
In International Conference on Software Engineering (ICSE). IEEE / ACM, 2020.

[35] L. Nenzi, E. Bartocci, L. Bortolussi, and M. Loreti. A Logic for Monitoring Dynamic Networks of
Spatially-distributed Cyber-Physical Systems. Logical Methods in Computer Science, Volume 18,
Issue 1, January 2022.

[36] Laura Nenzi, Ezio Bartocci, Luca Bortolussi, Simone Silvetti, and Michele Loreti. Moonlight:
a lightweight tool for monitoring spatio-temporal properties. International Journal on Software
Tools for Technology Transfer, 25(4):503–517, Aug 2023.

[37] Dejan Ničković and Tomoya Yamaguchi. RTAMT: Online Robustness Monitors from STL. In
Automated Technology for Verification and Analysis: International Symposium (ATVA), page
564–571. Springer-Verlag, 2020.

[38] Giulia Pedrielli, Tanmay Khandait, Yumeng Cao, Quinn Thibeault, Hao Huang, Mauricio Castillo-
Effen, and Georgios Fainekos. Part-x: A family of stochastic algorithms for search-based test gen-
eration with probabilistic guarantees. IEEE Transactions on Automation Science and Engineering,
pages 1–22, 2023.

[39] Doron Peled, Moshe Y Vardi, and Mihalis Yannakakis. Black box checking. In Formal Methods
for Protocol Engineering and Distributed Systems: FORTE XII/PSTV XIX’99 IFIP TC6 WG6.
International Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), pages 225–240. Springer, 1999.

[40] Jarkko Peltomäki and Ivan Porres. Falsification of multiple requirements for cyber-physical systems
using online generative adversarial networks and multi-armed bandits. In IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages 21–28,
2022.

[41] Jarkko Peltomäki, Frankie Spencer, and Ivan Porres. Wasserstein generative adversarial networks
for online test generation for cyber physical systems. In IEEE/ACM International Workshop on
Search-Based Software Testing, SBST 2022, page 1–5, 2022.

143



ARCH-COMP 2024: Falsification with Unbounded Resources Khandait et al.

[42] Ivan Porres, Hergys Rexha, and Sebastien Lafond. Online GANs for automatic performance test-
ing. In IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW 2021), pages 95–100, 2021.

[43] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241. Springer, 2015.

[44] STGEM. https://gitlab.abo.fi/stc/stgem, 06 2024 [Online].
[45] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and Georgios Fainekos.

PSY-TaLiRo: A Python Toolbox for Search-Based Test Generation for Cyber-Physical Systems.
In Formal Methods for Industrial Critical Systems, pages 223–231. Springer, 2021.

[46] Masaki Waga. Falsification of cyber-physical systems with robustness-guided black-box checking.
In International Conference on Hybrid Systems: Computation and Control (HSCC), pages 11:1–
11:13. ACM, 2020.

[47] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for control systems with
machine learning components. In International Conference on Hybrid Systems: Computation and
Control (HSCC), 2019.

[48] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao. Effective Hy-
brid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness. In Computer
Aided Verification, pages 595–618. Springer, 2021.

144

https://gitlab.abo.fi/stc/stgem

	Introduction
	Benchmark
	Input Parameterization
	Models and Requirements

	Participants
	ARIsTEO
	ATheNA
	EXAM-Net
	FalCAuN
	ForeSee
	FReaK
	Moonlight
	NNFal
	OD
	-TaLiRo

	Evaluation & Validation
	Setup
	Results

	Probabilistic Guarantees
	Conclusion and Outlook

