
GridTPT: a distributed platform for Theorem

Prover Testing∗

Thomas Bouton1, Diego Caminha B. de Oliveira1,
David Déharbe2 and Pascal Fontaine1

1 LORIA, INRIA & Nancy University, Nancy, France
{Thomas.Bouton,Diego.Caminha,Pascal.Fontaine}@loria.fr

2 Universidade Federal do Rio Grande do Norte, Brazil
david@dimap.ufrn.br

Abstract

Programming provers is a complex task; completeness or even soundness may often be
broken by apparently harmless bugs. A good testing platform can contribute in detecting
problems early and helping development. This paper presents GridTPT, the distributed
platform for testing the veriT SMT solver. Its features are fairly standard, but it allows to
easily distribute the task in a cluster.

We plan to make this platform available as an open source tool for the community of
developers of automated theorem provers. This presentation to PAAR’2010 will provide
the opportunity to discuss the need for such a tool and the necessary features in a broader
context. We would like to extract a requirement specification from this discussion, that
would be useful to get dedicated implementation resources for distribution, maintenance
and future development of GridTPT.

1 Introduction

The implementation of efficient automated theorem provers requires intricate data structures
and algorithms and is therefore error-prone. As a consequence, establishing the functional
correctness of those tools includes applying large test suites, in addition to other measures
such as third-party certification of intermediate and final results through e.g. proof generation
and proof checking. The faster those verification results are available, the sooner mistakes
are discovered and can be corrected by the developers. Also, automated theorem proving is
intrinsically of a heuristic nature and requires experimenting with many different combinations
of parameters. Again, this experimental study needs frequently applying large test suites.

Testing over a large number of benchmarks can easily be done in parallel (at least from a
theoretical viewpoint). However, owning and maintaining a large cluster of machines is both
time-consuming and financially expensive, and most prover developers do not have the resources
to do this work in addition to research and implementation of the prover. Nevertheless, many
research and university environments do have large clusters that are not fully used. More and
more often these computing facilities are again clustered via a grid infrastructure that provides
access to hundreds and even thousands of cores. It is often possible to obtain a low priority
(i.e. when not in use for the financing projects) access to those clusters, and this low priority
access will most of the time be suitable for the use of prover testing. Once the cluster is found,
one needs to develop the software infrastructure for running the tests. Although a set of ad hoc
scripts would do the basic job, a dedicated platform developed over a long period could provide
many useful services.

∗This work is partly supported by the ANR project DECERT, and the INRIA-CNPq project SMT-SAVeS.

R.A. Schmidt, S. Schulz, B. Konev (eds.), PAAR-2010 (EPiC Series, vol. 9), pp. 33–39 33



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

Our goal is to share with the theorem proving community the software for a distributed
testing platform for automated provers that we have built incrementally to support the devel-
opment of the SMT solver veriT1. This software reduced the testing time from a week-end to
a few minutes. For instance, the approximately nine thousand formulas in the categories for
which veriT is complete are checked in 12 minutes with 80 cores and a 30 seconds time-out. As
another example, the whole TPTP (around 14000 files) is run on E [12] in 20 minutes using 160
cores and a 30 seconds time-out. We plan to release this powerful and customizable platform
under the open-source BSD license as well as offering maintenance to meet new requirements of
external users. For theorem prover developers this would reduce the problem of having a good
testing infrastructure to finding the cluster to run our software on.

There already exists platforms for evaluating solvers, and in particular, the platforms for
the various annual competitions, for instance CASC [10, 13] and SMT-COMP [1, 2].2 The main
focus for those frameworks is to precisely and fairly measure the running time for the various
solvers on the instances chosen for the competition. The purpose of GridTPT is different: it
includes comparing versions of the same solver/prover but being precise in measuring running
time is not the main objective. Much more importantly, the tool gathers statistics, and provides
to the user ways to understand the tendencies and the relations between various quantities.

The platform is now stable and has reached a point where its use in a larger context, for
slightly different goals, and in various environments, requires the feedback of the community,
which we would like to get at PAAR. Following the presentation of GridTPT, we expect to
get, from potential users, additional requirements to enhance and make the platform more
attractive. Additionally, after we show the benefit of using the platform, we expect some of the
participants will be interested in being users.

2 State of the platform

The testing platform has been used and improved to support the development of the SMT solver
veriT [7] for more than a year. The test data used by the platform are the different categories of
SMT-LIB [11, 3] benchmarks that are supported by the solver. The best way to run the tests
and to access data is through the web interface, but the reports are in plain text, and all the
scripts may be run from the command line.

Three types of tests can be performed over a selected set of benchmarks:

• functional test: the satisfiability status (satisfiable, unsatisfiable, or unknown), execution
time (or failure, or time out) and other (user defined) statistics are gathered.

• consistency test: for each benchmark, the solver generates verification conditions corre-
sponding to intermediate results. External solvers3 are applied to recheck these conditions
to ensure that not only the final result, but also the reasoning leading to this result is
correct.

• memory test: memory leaks are detected using Valgrind (see http://valgrind.org/).

The latter two tests only generate a brief report to notify the developers if further debugging
is required on particular benchmarks.

1For the development of veriT, we have been kindly granted access to a large grid infrastructure of INRIA
known as Grid5000 [6].

2Some organizations even give access to the clusters outside the competitions.
3In the case of veriT, we use CVC3 [4] to check intermediate conflict clauses and PicoSAT [5] to check the

overall Boolean abstraction (MiniSAT [9] is used internally).

34

http://valgrind.org/


GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

A prototype version of the script was sequential. An extensive test over the SMT-lib used to
take several days to complete. The present version distributes the work over several multi-core
computers, drastically reducing the total execution time to a few minutes. It uses a master/slave
architecture, where one node assumes the role of the master, distributes the benchmarks and
gathers the results, while the other nodes are slaves and execute the solver. It is fault tolerant:
in case the connection to a slave is lost (due to a network failure, node hanging, . . . ), the full
test is not affected. A test can be suspended at any time, and resumed later without significant
duplicated work. Finally and most importantly, the framework has been written to be easily
portable: its implementation language is Python with a few OS-specific scripts written in bash.

Competitions usually distribute one process per computer, to eliminate interferences be-
tween processes. This is required in order to accurately and fairly measure the running time of
the various solvers on the competition benchmarks. Since we prefer to get short testing time,
we allow to send one job for every core available on the cluster, even if these are on the same
processor. This introduces some slight variations in running times, but this is an acceptable
price to pay to divide the overall testing time by a factor of 8 (in our case). Our experiments
show that, even so, times are measured quite accurately.

The statistics collected by the tool and their value are not hard coded, but rather gathered
from the output of the prover. They should be prefixed with a configurable character string
– so that these statistics can be recognized from irrelevant information, such as an execution
trace – followed by the name of the statistic and its value. Similarly, error messages need to
be prefixed by a definable string. Notice that the statistics should at least provide the result
of the prover on the formula. The execution time can be computed by the command time (on
*nix systems). Figure 1 presents a typical output from veriT. Obviously, it is easy to put the
information in the required form without modifying the internals of the prover by simply using
a shell script wrapper.

verit 200907 - the veriT solver (UFRN/LORIA).

[...]

STAT_DESC: clauses: Number of clauses generated

STAT_DESC: res: 0 (UNSAT), 1 (SAT), -1 (UNKNOWN)

STAT_DESC: nodes: Number of nodes in the input formula as a DAG representation

STAT_DESC: nodes_tree: Number of nodes in the input formula as a tree representation

STAT_DESC: atoms: Number of atoms in the input formula as a tree representation

STAT_DESC: total_time: Total time

STAT: clauses=1486

STAT: res=0

STAT: nodes=799

STAT: nodes_tree=4114

STAT: atoms=1825

STAT: total_time=1.204

[...]

Figure 1: A typical output from veriT.

New tests are triggered automatically by cron jobs (if no test exists for the current version
in the subversion repository), or manually through the developer-only section on the website
of the solver. In the latter case, the tester has the opportunity to choose the solver revision,
the solver options, the list of benchmarks on which the solver is to be run, and an optional
comment. Reports are automatically generated and can be consulted on line, via the project
website. The access to the reports is restricted to developers only. Other available features
include the capacity to compare either graphically or textually two functional reports and to

35



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

extract CSV (comma-separated values format) files for reports or for comparison of reports in
order to do more sophisticated treatments using other tools (such as spreadsheets). Some of
these features are demonstrated in the next section.

3 Illustration

This section contains illustrative information on the following capacities of the platform: func-
tional report, a textual comparison report, and a graphical comparison report.

3.1 Report example

An extract of a sample test report is given below:

-veriT report----------------

Date : 20090904133605

-informations-----------------

Host name : Grid5000

Number of cores : 80

CPU type : xeon-harpertown at 2.5GHz

Executable : ./verit

Build time : 20090903181241

Options : --enable-simp --enable-unit-simp --cnf-p-definitional -v

Number of files : 8965

CPU limit : 30s

-grid statistics-------------

Cumulative time : 876m (14h)

Total time : 12m

Theoretical time : 11m

-legend-----------------------

total_time: Total time

res: 0 (UNSAT), 1 (SAT), -1 (UNKNOWN)

atoms: Number of atoms in the input formula as a tree representation

nodes_tree: Number of nodes in the input formula as a tree representation

clauses: Number of clauses generated

nodes: Number of nodes in the input formula as a DAG representation

-summary----------------------

Total number of benchmarks : 8965

Number of success : 7638

between 0 and 5 sec : 6835

between 5 and 10 sec : 465

between 10 and 15 sec : 199

between 15 and 20 sec : 89

between 20 and 25 sec : 36

between 25 and 30 sec : 14

Number of "CPU time limit exceeded" : 1327

-data-------------------------

Name total_time res atoms nodes_tree clauses nodes

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc000.smt 0.000 1 207793 208901 0 339

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc002.smt 0.000 1 415523 417695 0 607

QF_IDL/Averest/binary_search/BinarySearch_live_bgmc003.smt 0.000 0 623253 626489 0 875

QF_IDL/Averest/binary_search/BinarySearch_live_blmc000.smt 0.000 1 623314 626594 1 942

QF_IDL/Averest/binary_search/BinarySearch_live_blmc002.smt 0.004 0 1246566 1253082 0 1814

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc000.smt 0.000 0 406 546 0 203

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc001.smt 0.000 1 99 175 0 109

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc002.smt 0.000 0 208393 209661 0 550

QF_IDL/Averest/binary_search/BinarySearch_safe_bgmc003.smt 0.000 1 416380 418776 2 897

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc000.smt 0.000 0 416266 418750 0 1008

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc001.smt 0.004 1 831718 836406 8 1329

QF_IDL/Averest/binary_search/BinarySearch_safe_blmc002.smt 0.004 1 1247479 1254435 3 1950

[...]

The presentation of the report may need to be adapted for other solvers. However, as mentioned
above, the list of statistics is not hardcoded, and is built during the parsing of the output of
the solver, assuming that it follows some formatting instructions.

3.2 Textual comparison

The comparison tool has the following parameters:

• the two functional reports to be compared;

• the categories of benchmarks to compare the reports on;

36



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

• the minimum spread, in percent of execution time, for the benchmark to be shown;

• the minimum spread, in absolute execution time, for the benchmark to be shown.

If the two reports are on different sets of benchmarks, only the common subset is shown. The
statistics from both reports are shown. Optionally, the comparison tool may hide benchmarks
for which running time are not sufficiently different. The spread between the execution times
must then be higher than a specified percentage and a minimum value. Indeed, for benchmarks
solved very quickly, 0.01 second is twice as fast as 0.02, but the running time difference may
still be considered negligible.

Here is a small excerpt of a comparison report:

Name total time result
20090729191611 20080729142114 20090729191611 20080729142114

QF UFIDL/pete3/bug file3.smt 0.800 Failed 1 Failed
QF UFIDL/pete3/bug file4.smt 198.404 Failed 1 Failed
QF UFIDL/pete3/bug file5.smt 25.286 4.75 1 1
QF UFIDL/uclid/22s.smt 0.332 0.58 0 0
QF UFIDL/uclid/43s.smt 6.604 2.28 0 0
QF UFIDL/uclid/cache.inv10.smt 3.536 5.46 0 0
QF UFIDL/uclid/cache.inv14.smt 105.999 Failed 0 Failed
QF UFIDL/uclid/cache.inv8.smt 0.652 1.08 0 0
QF UFIDL/uclid/elf.rf10.smt 18.149 25.23 0 0
QF UFIDL/uclid/elf.rf8.smt 0.320 0.62 0 0
QF UFIDL/uclid/elf.rf9.smt 2.536 3.38 0 0
QF UFIDL/uclid/ooo.rf10.smt 25.942 Failed 0 Failed
QF UFIDL/uclid/ooo.rf8.smt 1.208 1.56 0 0
QF UFIDL/uclid/ooo.tag10.smt 3.736 5.02 0 0
QF UFIDL/uclid/ooo.tag12.smt 39.114 Failed 0 Failed
QF UFIDL/uclid/q2.12.smt 15.201 19.58 0 0
QF UFIDL/uclid/q2.14.smt 77.169 Failed 0 Failed
QF UFIDL/uclid2/bug1.smt 9.721 13.57 1 1
QF UFIDL/uclid2/bug2.smt 0.780 1.45 1 1
QF UFIDL/uclid2/ooo.rf11.smt 158.894 Failed 0 Failed

On the web page, for each benchmark, the color code explicitly highlights improvement or
regression.

3.3 Graphical comparison

Usually, on large sets of benchmarks, a graphical comparison helps to highlight the difference
in execution time between two revisions of the solver. The web interface also displays an XY
logarithmic graph (see figure 2). Again, more in-depth analysis may be done very quickly using
the CSV data extraction facility and using a spreadsheet.

4 Conclusion and future work

We presented GridTPT, the testing platform used daily in the development of the veriT SMT
solver. Since most prover developers have the same kind of needs for such a platform, we
feel that this work may benefit other groups in the ATP community. The platform was used
internally on several third-party SMT solvers. First positive experiments were also carried on
with a first-order theorem prover (namely, the E prover [12]).

37



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

Figure 2: Example of a graphical comparison. A blue dot corresponds to one benchmark.

The most important difficulty we encountered in integrating the platform into our web server
(for easy access by developers outside our institution) is the access policy to the cluster and the
electronic security policy of our institution. The cluster is strongly firewalled, whereas the web
server is outside the protected area; sending jobs and getting back information from the cluster
to the web server requires hacks and ssh bounces. We believe that users elsewhere may encounter
similar problems. Unfortunately, this prevents to have a clean package and an easy installation
procedure that would work out-of-the-box for all cases. It will be necessary to collect and
provide off-the-shelf solutions that will allow to circumvent those problems semi-automatically,
when an automatic installation is not suitable. Another issue that we will certainly have to
face is the variety of tools that clusters use for reserving resources.

The variation in running times with respect to the computer architecture is not linear,
since it depends on the instruction set of the processors, the frequencies, the cache sizes and
management policy,. . . that affect differently the running time depending on the program and
even on the input data. Nevertheless, we think that it may be useful to investigate some kind
of architecture calibration, i.e. recompute an approximation of the running time on a reference
architecture. The motivations for such a calibration are twofold. First it would then be possible
to use heterogeneous clusters if precise time measurement is not required. Second, it would also
allow developers to compare old results (on out-of-use architectures) with newer ones.

Among the ongoing works, we are currently integrating the fuzzing tools for SMT-lib [8]
on the distributed architecture. We also have a prototype of an interface to better visualize
the differences in running time, with respect to the kind of benchmarks (categorized by their
directory, subdirectory, and name prefix). The new version of the SMT-LIB [3] brings a novelty
in allowing scripts in the prover input language; finding the right way to nicely integrate testing
for scripts will also be necessary.

Acknowledgments: We would like to thank Stephan Merz for his guidance. Experiments

38



GridTPT Bouton, Caminha B. de Oliveira, Déharbe and Fontaine

presented in this paper were carried out using the Grid’5000 experimental testbed, being devel-
oped under the INRIA ALADDIN development action with support from CNRS, RENATER
and several Universities as well as other funding bodies (see https://www.grid5000.fr). We
also thank the anonymous reviewers for their comments.

References

[1] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition.
In K. Etessami and S. K. Rajamani, editors, Computer Aided Verification (CAV), volume 3576 of
Lecture Notes in Computer Science, pages 20–23. Springer, 2005.

[2] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Design and results of the 3rd annual satisfiability
modulo theories competition (SMT-COMP 2007). International Journal on Artificial Intelligence
Tools, 17(4):569–606, 2008.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard : Version 2.0. First official release
of Version 2.0 of the SMT-LIB standard., 2010. See also http://www.smtlib.org/.

[4] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Computer Aided
Verification (CAV), volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer,
2007.

[5] A. Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.

[6] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lantéri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche.
Grid’5000: a large scale and highly reconfigurable experimental grid testbed. International Journal
of High Performance Computing Applications, 20(4):481–494, Nov. 2006. See also https://www.

grid5000.fr.

[7] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and efficient
SMT-solver. In R. Schmidt, editor, Proc. Conference on Automated Deduction (CADE), volume
5663 of Lecture Notes in Computer Science, pages 151–156, Montreal, Canada, 2009. Springer.

[8] R. Brummayer and A. Biere. Fuzzing and delta-debugging SMT solvers. In SMT ’09: Proceedings
of the 7th International Workshop on Satisfiability Modulo Theories, pages 1–5, New York, NY,
USA, 2009. ACM.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, editors,
SAT, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[10] F. J. Pelletier, G. Sutcliffe, and C. B. Suttner. The Development of CASC. AI Communications,
15(2-3):79–90, 2002.

[11] S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.2, Aug. 2006. See also http:

//www.smtlib.org/.

[12] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusinowitch, editors, Proc. of the 2nd
IJCAR, Cork, Ireland, volume 3097 of LNAI, pages 223–228. Springer, 2004.

[13] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.

39

https://www.grid5000.fr
http://www.smtlib.org/
https://www.grid5000.fr
https://www.grid5000.fr
http://www.smtlib.org/
http://www.smtlib.org/

	Introduction
	State of the platform
	Illustration
	Report example
	Textual comparison
	Graphical comparison

	Conclusion and future work

