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Abstract: The need to anticipate failures in wind turbines has become increasingly urgent. The
exponential increase in the number of installed turbines, coupled with the aging of the generation
fleet, has intensified the competition to reduce operation and maintenance costs, which means
minimizing unplanned downtime and costly major repairs. The aim of this study is to utilize
the vibration data available in the Condition Monitoring and Management Systems (CMMS)
to identify turbines with significant condition deviations that pose a high risk of failure. The
data processing approach using CNN and PCA in the pre-processing stage, along with SVM for
health state classification, demonstrated excellent accuracy, above 90%, for both single turbine
and multi-turbine tests, making it suitable for managing wind farms with a large number of
turbines.
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1. INTRODUCTION

Wind energy consolidation worldwide as a power source
in the last decade has put pressure on manufacturers,
operators, and academia to advance in predictive fault
diagnostics processes, aiming to reduce costs associated
with corrective maintenance and unplanned downtime. A
decrease of corrective maintenance impact positively the
OPEX for Operational Wind Farms and this considera-
tion and investment decrease the Leveled Cost of Energy
(LCOE) for new projects (Dao et al., 2019) (Enevold-
sen and Xydis, 2019). This advancement has led to in-
creased investment in comprehensive condition monitoring
systems for wind turbines, incorporating various sensors,
particularly focused on vibration, distributed across the
key components of the asset. The availability of a larger
volume of data, which enables greater possibilities for fault
identification, has also exponentially increased the com-
plexity of managing a wind farm with multiple turbines.
While setting alarms for values outside the normal operat-
ing range has proven effective, there is significant potential
to anticipate equipment degradation well before reaching
the warning thresholds through the use of machine learn-
ing models. The academic community has increasingly
focused on anticipating deviations in turbine operation.
For instance, in (Wen, 2020), SCADA data is utilized for
anomaly detection. In (Zhang et al., 2022), Support Vector
Machine methods are employed to establish an anomaly
score and subsequently classify the wind turbine based
on a predefined threshold. Another significant contribu-
tion is presented in (Peng et al., 2022), demonstrating a
strategy for anomaly identification by evaluating SCADA
data windows associated with discrepancy analysis and
recorded alarms. However, despite the references presented
above, there is a lack of substantial scientific contributions
aimed at defining a data pipeline from the asset manage-

ment perspective. This pipeline seeks not to provide exact
fault diagnosis but to focus on identifying deviations and
failures with the goal of optimizing costs and enhancing
operational performance. This study seeks to advance the
field by leveraging data from manufacturers’ Condition
Monitoring and Management Systems (CMMS), with a
focus on vibration analysis and fault diagnosis in Wind
Turbine Drivetrains. It will utilize global acceleration and
velocity data from sensors on key equipment, as well as
pre-processed data such as amplitudes in specific frequency
bands and harmonics of the rotational frequency. The
article will outline a data pipeline designed to apply a
classification model to new turbines with unseen data,
enabling fault signature identification and categorization
into three health categories. The second section will detail
the specific fault examined, describe the fault identification
data, and include a sensor location diagram. The third
section will explain the tools, methods, and proposed
pipeline in detail. The fourth section will present test
results, including a discussion and interpretation of the
findings. Finally, the fifth section will summarize the main
results and contributions of the work.

2. CASE OF STUDY

The object of study in this work is the early detec-
tion of failures using the CMMS commonly installed in
wind turbines where accelerometers and speed sensors are
strategically positioned on the equipment, Figure 1 show
all sensors available on the study. Typically, these data
are integrated into supervision and monitoring systems
that evaluate not only global measurement values but also
frequencies defined by experts and pre-processed by the
available hardware uptower. Actions are taken preferably
after sensor responses exceed highly conservative measure-
ment thresholds, minimizing false alarms managed by the
manufacturer that usually deal with this system.



Fig. 1. Sensors Position Diagram

2.1 Available Datasets

Piezoelectric accelerometers with a sensitivity of 100mV g−1,
frequency under 20 kHz, and ±3 dB accuracy (1.5Hz –
13 kHz) were mounted on the turbine drive train. Syn-
chronously sampled waveforms tracked speed changes, pro-
ducing narrow spectral lines for variable speed machines,
with FFT processing using a Hanning window (Pattabi-
raman et al., 2015a). Data measured by all sensors are
made available every 2 minutes by the system. A total
of 12 sensors positioned in the generator, gearbox, main
shaft, and nacelle (main frame) provide a total of 112
variables related to vibration, along with an additional
18 process variables such as active power, rotor speed,
gearbox oil temperature, bearing temperature. Figure 2
shows a small sample from available variables related to
the sensors positioned in the generator as global values
for the first to sixth harmonics of the rotational frequency.
Among these variables, in addition to global measurements
of acceleration and velocity, there is also information re-
garding the total bandpass between 300Hz and 700Hz,
the first to sixth harmonics of the rotational frequency and
crest factors for both existing generator bearings, gearbox
stages and main bearing.

Fig. 2. Available features with health label sample plot

2.2 Generator Bearing Damaged

Fault considered on this study will be a failure diagnostic
in the inner race of the generator-coupled bearing. The
diagnosis was performed by the manufacturer for two
turbines in the same site through frequency spectrum
analysis, as shown in Figure 3, which demonstrates the
increase in vibration component at a frequency of 96Hz
and its harmonics.

Fig. 3. Generator Bering Fault spectrum excerpt

Table 1. Number of instances for each category
in available dataset

Health State Labels

Wind Turbine Normal Attention Critical Total

WTG A 48,912 79,443 11,115 139,470

WTG B 37,392 37,257 34,863 109,512

Dataset available for this study has around 10 months of
data for each Wind Turbine Generator (WTG) between
2021 and 2022 and Table 1 shows the amount of instances
for each health category. Instances were defined based on
operational information and previous failure experiences,
taking into account the characteristics of the presented
data.

2.3 Background

The impact of this failure type is strongly related to
the number of possible failures and consequently the
challenge of replacing these components. Additionally,
there is the need to maintain a stock of spare parts and
the costs involved in these processes. Therefore, those
responsible for the operation and maintenance of wind
farms with hundreds of turbines need to effectively and
quickly monitor the degradation of these components
against their original operating condition. This allows
for optimization of both planned labor and investments
in spare parts.Therefore, the application of the following
methodology is crucial for optimizing costs and increasing
the performance and availability of wind assets.

3. METHODOLOGY

Large datasets often tend to be highly imbalanced, with a
significant number of instances belonging to one category
compared to the others. This imbalance can impact both
the performance and confidence of the model, as it can
bias the results towards identifying a specific category.

3.1 Condensed Nearest Neighbor

To address this issue, the Condensed Nearest Neighbor
(CNN) methodology can be employed to randomly select
instances from the available dataset, ensuring a balanced
representation of all categories.
Based on the clustering algorithm called Nearest Neighbor
(NN), CNN identifies clusters and recognizes that all



instances within a cluster share the same characteristics.
It then discards the redundant instances, resulting in a
condensed datasets that maintains same characteristics
and build a balanced representation of all categories.
As showed in (Chou et al., 2006), algorithm begins by
selecting the first element, denoted as x0, from a set of
instances grouped as Xn. These instances are randomly
chosen. The Condensed Nearest Neighbor (CNN) method
then iterates through all members ofXn, adding a member
x to the initial group if its nearest neighbor does not
belong to the same category as x. This process continues
until the group contains an equal number of samples for
each category, while still respecting the total number of
samples in the minority category as defined by the user-
specified parameter. This method proposed by (Hand and
Batchelort, 1978) has been utilized even for classification
or reducing and balancing datasets, aiming for the best
possible performance and accuracy.

In this paper, a CNN was used to balance the proposed
dataset while maintaining the previously defined labels.

3.2 Principal Component Analisys

Principal Component Analisys (PCA) transforms data to
compare findings across data sets and determine the im-
portance of components. It offers advantages in data anal-
ysis, visualization, and computational efficiency, making it
valuable for speeding up machine learning algorithms and
handling diverse types of data (Salih Hasan and Abdu-
lazeez, 2021). PCA extracts important information from
complex data sets, expresses it as principal components,
and provides a flexible tool for summarizing data and
overcoming duplication in features, while increasing the
interpretability and efficiency of the analysis. In some
cases, PCA allows for the simplification of large datasets
with a high number of features, while retaining a minimum
amount of information and achieving good classification
results with reduced complexity.
PCA utilizes the covariance matrix and its eigenvalues
and eigenvectors to extract uncorrelated information. By
analyzing the eigenvectors, it identifies the extent to which
information varies and provides insights into the underly-
ing patterns and structure of the data (Hira and Gillies,
2015).

3.3 Support Vector Machine

Support Vector Machine (SVM) is a popular method used
for classification or regression algorithms based on statis-
tical learning theory as in (Berk, 2008). It is a machine
learning algorithm that uses a training set consisting of
data vectors with known class labels. These data vectors,
characterized by unique features, are used to design a lin-
ear hyperplane that separates different classes. The goal of
SVM is to find the optimal hyperplane that maximizes the
margin between classes, allowing for effective classification
of new, unseen data.
First we need to address the two-class problem. Let’s con-
sider a training set consisting of l feature vectors xi ∈ Rn,
where i(= 1, 2, ..., n) represents the number of samples.
Each sample is assigned a class label yi, which can take
the value of 1 for one class or -1 for the other class
(i.e., yi ∈ −1, 1). If the two classes are linearly separable, it

means that there exist linear separators called separating
hyperplanes. The goal of SVM is to find the optimal hyper-
plane that maximizes the margin between classes, allowing
for effective classification of new, unseen data (Kavzoglu
and Colkesen, 2009).

3.4 Criteria and Performance Evaluation Metrics

The confusion matrix format will be used to evaluate the
results of the experimental classification. This matrix has
axes representing actual labels and predicted labels, and
the value in each quadrant refers to the number of records
of a specific category that are classified into a certain cate-
gory, whether correctly or not. These quadrants have spe-
cific names according to their qualitative interpretation:
True Positives (TP) - the number of positive instances
correctly classified; True Negatives (TN) - the number of
negative instances correctly classified; False Positives (FP)
- the number of negative instances incorrectly classified as
positive; and False Negatives (FN) - the number of positive
instances incorrectly classified as negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

It is possible to calculate KPIs that aid in the interpreta-
tion of this matrix and also strengthen the focus on what
is to be evaluated or is most important for assessing the
solution to the proposed problem. For example, Accuracy
defined in Equation 1, a KPI that will be used for eval-
uation in this work, represents the percentage of correct
classifications versus the total number of samples tested.

3.5 Research Contributions

This research proposes preprocessing the dataset, based
on the data explored in the case study section, with the
aim of reducing redundant data using CNN. Subsequently,
PCA is applied to extract a more concise and less complex
set of features, resulting in a less complex classification
model without compromising the effectiveness of SVM.
Figure 4 illustrates the sequential order of the steps
involved, from data collection to the evaluation of results.
Two experiments will be conducted to compare the effects
of using PCA strategy versus not using it. Specifically, the
experiments will assess the impact of the PCA strategy on
the results, with all other conditions remaining constant.
The routine will be divided into two main tests, each
using two models. The first test involves training and
validating the model using PCA with data from the same
turbine, while the second test uses the original inputs for
comparison. Although the validation data is new to the
model, it is extracted from the same turbine and the same
failure case. Another test will be conducted by training
the model with the failure data from one wind turbine
and validating the results with data from another turbine.
This allows us to assess the scalability of this modeling
approach, particularly in evaluating large wind farms.

4. RESULTS AND DISCUSSION

4.1 Original Features

Identification model applied to test data from WTG A,
considering all available inputs, yielded satisfactory re-
sults, as shown in the Confusion Matrix represented in



Fig. 4. Proposed Method for WTG Bearing fault diagnosis

Figure 5 of this section. The percentage of only 0.07%
samples classified as False Positives demonstrates a high
reliability for the applied model.
Additionally, it is important to note that the highest rate
of incorrect classifications occurred between the two failure
categories, indicating that despite the misclassification,
there is a good differentiation between normal and healthy
operation of the wind turbine versus degraded operation.

Fig. 5. WTG A Confusion Matrix

4.2 Principal Component Analysis Features

Despite the satisfactory result for the study, there remains
the complexity of dealing with numerous inputs for train-
ing and classifying operational moments. Therefore, It was

necessary to simplify and reduce the amount of input
data, especially considering the ultimate goal of using this
methodology for real-time identification of early failures in
components across multiple wind turbines.
Consequently, the principal component analysis (PCA)
was employed for training purposes, and the optimal num-
ber of principal components was identified to encapsulate
99% of the variance in the original training dataset. The
visualization in Figure 6, portrays the scatter plot, illus-
trating the dispersion of data points among the chosen 6
components, while simultaneously highlighting the super-
vised classification employed as the target variable.
In addition to the components resulting from PCA, the
Active Power Bins were also added as features to the model
due to their correlation with vibration ranges and with the
rotation of the wind turbine.

Fig. 6. Scatter Matrix Plot with PCA from WTG A

Even though the overall accuracy indicator being 10%
lower than baseline case as confusion matrix on Figure 7
shows, the presented result is still satisfactory and within
an acceptable range for the chosen application. This is pri-
marily due to the reduction of model complexity, achieved
by significantly reducing the number of defined inputs by
84%.

4.3 Hold Out Validation

Following the proposed methodology and applying the
trained model with WTG A to the data from WTG B,
which exhibits a similar failure pattern, we observed a
high accuracy that follows the same pattern of correct
classifications, false positives, and false negatives, as shown
in Figure 8. This highlights the robustness of the trained
model, especially considering that the data from WTG B
was previously unseen. The low rate of false negatives was
maintained, thus ensuring the model reliability.

The same procedure was applied to WTG B, considering a
reduced model complexity. When applying the previously
trained decomposition parameters to the new wind tur-
bine, a remarkably similar dispersion pattern becomes ev-
ident, as exemplified in Figure 9. The graphs clearly show a



Fig. 7. WTG A Confusion Matrix from PCA Features

Fig. 8. WTG B Confusion Matrix trained with WTG A

higher degree of overlap between categories, indicating an
expected degradation in performance due to this reason.
Similar to the results obtained in the previous experiment,
the hold out model also exhibited a slight decrease in
overall classification performance, as expected due to the
reduced model complexity. Despite the decrease in overall
accuracy, the level of false positives remains within an
acceptable range, still below 3% as Figure 10.

As previously mentioned and now concatenated in Fig-
ure 11a, the accuracy of all tests comparison, and in
Figure 11b, the tested models percentage of false negatives.
It reinforces the previous interpretation that the models
incorporating the use of PCA have the lowest accuracies,
but still above 90%. The percentage of false negatives, i.e.,
samples that the models failed to identify as faulty, can be
interpreted as an indicator of the risk of non-detection by
the models. The values around 3.5% are also considered
acceptable.

5. CONCLUSION

This study demonstrated that with an accuracy of over
90%, it is possible to classify the degradation of the gener-
ator’s bearing set in a wind turbine. The combined use of
CNN and PCA resulted in a reduction in input complexity
without compromising the identification of failure situa-

Fig. 9. Scatter Matrix Plot with PCA from WTG B

Fig. 10. WTG B Confusion Matrix from PCA Features
trained with WTG A

(a) Models Accuracy

(b) Total Models False Negatives

Fig. 11. Measurements from Model Results

tions. It is important to highlight that, as the goal is to
implement a real-time evaluation application, the impact
of false positives is significant in the management of asset
maintenance. Therefore, a very low number of false posi-
tives positively affects the process by avoiding unnecessary
costs associated with unnecessary replacements.



The results of the hold out test are also important to
demonstrate that the failure behavior is quite similar re-
gardless of the individual being evaluated. Therefore, in
situations where CMS data availability is short for train-
ing, it is possible to use labeled data from another similar
wind turbine while maintaining accuracy. The progression
of this work would involve increasing the level of detail
in the failure criticality assessment and even diagnosing
the specific type of failure. Important to mentioned that
the model is extremely dependent from the labeling done
before training, there is a risk of a bad labeling on original
data impact models performance. Furthermore, expanding
to other types of failures and monitored equipment is also
possible. From the aspect of classification algorithm, other
methods would be tested as Decision Tree our clustering
types as KNN for comparison.
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