
EasyChair Preprint
№ 7646

Evolving Quantum Circuits to Implement
Stochastic and Deterministic Cellular Automata
Rules

Shailendra Bhandari, Sebastian Overskott, Ioannis Adamopoulos,
Pedro Lind, Sergiy Denysov and Stefano Nichele

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 28, 2022

Evolving quantum circuits to implement stochastic and
deterministic cellular automata rules

Shailendra Bhandari1,2,3, Sebastian Overskott1,2,3, Ioannis Adamopoulos1,2,3,
Pedro G. Lind1,2,3, Sergiy Denysov1,3, and Stefano Nichele1,2,3,4,5

1 Department of Computer Science, OsloMet – Oslo Metropolitan University,
P.O. Box 4 St. Olavs plass, N-0130 Oslo, Norway

2 AI Lab – OsloMet Artificial Intelligence Lab, Pilestredet 52, N-0166 Oslo, Norway
3 NordSTAR – Nordic Center for Sustainable and Trustworthy AI Research,

Pilestredet 52, N-0166 Oslo, Norway
4 Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering,

Pilestredet 52, N-0166 Oslo, Norway
5 Department of Computer Science and Communication, Østfold University College, B R A

Veien 4, N-1757 Halden, Norway

Abstract. The aim of this work is to generate specific rules of deterministic and
stochastic cellular automata (CA) using the set of five quantum gates, which is
known to generate any quantum circuit. To build such quantum circuits, we use
an evolutionary algorithm, based in mutations, which allows the optimization of
quantum gate types and their connectivity. The fitness function of the evolutionary
algorithm aims at minimizing the difference between the output of the quantum
circuit and the CA rule. We also inspect the differences observed when changing
the number of gates and the mutation rate. We benchmark our methods with
stochastic as well as deterministic CA rules, and briefly discuss the possible
extensions their quantum "cousins" may enable.

Keywords: Quantum circuits · Critical behavior · Evolutionary algorithms ·
Stochastic Cellular Automata

1 Scope and motivation

Quantum computing and cellular automata are two important topics in modern computer
science, often approached independently from each other. Cellular automata (CA) are
classical discrete models for reproducing complex processes of extended systems of
coupled elements, based in simple rules which map the present state of each element
and its direct neighbours into the next state of each element. Quantum computing (QC)
is a field in its infancy aiming at solving the limitations of classical computation, when
dealing with problems which in practice are not computable due to their complexity.

Underlying the difference between classical and quantum algorithms are their respec-
tive elementary components, the bit and qubit respectively. While bits can have only two
possible states, 0 or 1, qubits can have an infinite number of possible states if their state
is not measured. If it is, they will "collapse" to the classical pair of possibilities, 0 or 1,
and one can know beforehand the probability to observe each one of these final measured

2 S. Bhandari et al.

q0: |0⟩ |m0⟩ |1⟩=X

Fig. 1. Example of a quantum circuit [9]

states. The gates used to build quantum circuits are also different from the usual classical
gates (e.g. NOT, AND, OR), since they can operate on qubits, and only after measure-
ment, retrieve an on- or an off-state with a specific probability. Consequently, they may
be good candidates for mimicking so-called stochastic cellular automata, discrete models
which define the cellular automaton rules with an associated probability. In this paper
we introduce a framework to build specific quantum circuits, whose classical counterpart
reproduces the behavior of a CA rule. We illustrate the framework for some specific
deterministic and stochastic CA rules and argue that it can be, in principle, apply to any
other rule.

Moreover, due to its particular features, beyond the common behavior of classic bits
and digital gates, there is still no straightforward procedure to build the quantum circuit
for one specific computation or algorithm using a minimum number of gates. In this
paper we show how evolutionary algorithms can be useful to address this drawback to
build optimal quantum circuits. Evolutionary algorithms (EA) are a group of heuristic
algorithms that solves problems in a Darwinian way. In short, they start out with a
widespread population of possible solution for a problem. The solutions in the population
that yielded best results when tested against a target is used to create a new population:
the next generation of solution. This process continues until a solution meets the target
criteria, based in a so-called fitness function (FF) which plays the role of a cost function.
We will focus on a sub-category of EA called genetic algorithms (GA) [2], which built
upon the idea of the solution of the algorithm to be chromosomes, compose of genes [3].
In our case the chromosome represents a quantum circuit while a gene represents a
quantum gate.

Finally, the framework also enables to explore new contexts of complex behavior. In
particular, we focus in critical behavior. We introduce a quantum circuit, which when
reduced to a purely classical architecture - with all its components being measured and
therefore without superposing their states - retrieves the usual behavior of a critical CA.
Having such circuit, and with the sufficiently large number of qubits, one is able to
explore the outcome of an evolving critical CA when "switching-off" the full monitoring
of its qubits and leaving their states to superpose in time.

A quantum circuit involves a collection of one or more qubits which are initialized
to state |0⟩. Figure 1 shows an example of a quantum circuit involving one qubit. The
gate which acts on the qubit is represented by a square and in our case, it is the X gate
which flips the state of the qubit from 0 to 1. Each horizontal application of gates for a
qubit is called a wire and each wire has a depth which is the number of gates applied on
that qubit. In our example we have one wire with depth 1. The measurement symbol at

Quantum cellular automata 3

Fig. 2. A overview of quantum gates available to the algorithm: X-gate (q0), Y-gate (q2), Z-
gate (q3), CNOT (control: q4, target: q5), swap-gate (q6, q7), Toffoli-gate (control: q8 and q9;
target:q10), RXX-gate (q11, q12), RZZ-gate (q13, q14) [1].

the end is not a gate. It is the component collapsing the state of the qubit into either 0 or
1. The time progress in a quantum circuit goes from the left to the right [9].

2 The genetic algorithm to evolve quantum circuits

GA have been used to evolve quantum circuits with success earlier [5, 7, 11]. Lukac and
Perkowski uses the unitary matrix representation of the gates and the identity matrix
for connections/wires. This way we can use Kronecker products (tensor products) and
matrix products to calculate the complete circuit as a matrix. This also makes it possible
to represent the FF as a matrix to calculate the error. As we see in [5] and [2] the
quantum gates are genes in the algorithm. They never changes the properties of the gates
themselves, but move, swap, delete gates from the circuit as genetic operators. It is also
a possibility to add new gates as a mutation. The gates has been encoded in several ways.
Yabuki and Iba [11] encodes the gates with a letter set of four digits 0,1,2,3, and assign
each gate a three letter codon i.e. 231. Here the first letter describes type of gate, and the
second and third indicate what qubit will be operated. By using a table we can look up
the gate type and placement in the circuit. Here we will focus in one particular set of
genes (quantum gates) and compare the results with two different fitness functions. We
will use the following set of quantum gates: Hadamard, three Pauli gates (X, Y and Z),
Cnot, Toffoli, swap, RZZ, and RXX.

In order to address our optimization problem, the performance of the proposed
approach has been accessed by running the evolutionary algorithm on a simulator
belonging to the IBM Q experience initiative (Qiskit)6. For more information about
the module and instructions on how to use it, please visit the Github repository https:
//github.com/Overskott/Quevo. The project was created and done in python version 3.8
with Qiskit version 0.34.1 and scipy.special 1.7.1.

The code developed for this paper was done in python, and resulted in a python mod-
ule called quantum_circuit_evolver. The module consists of three classes: Chromosome,
Generation and Circuit. The Chromosome-class is responsible for handling the
series of integers by storing them as a list. The class also handles the creation of random
series, the list of angles needed by some of the gates, mutation of the series, and other list

6 https://qiskit.org

https://github.com/Overskott/Quevo
https://github.com/Overskott/Quevo

4 S. Bhandari et al.

Neighbors Stoch. CA Prob. Rule90 Rule110 Rand. Prob. 1 Rand. Prob. 2 Rand. Prob. 3

[0, 0, 0] 0.394221 0 0 0.6364 0.4778 0.1988
[0, 0, 1] 0.094721 1 1 0.6603 0.5604 0.4701
[0, 1, 0] 0.239492 0 1 0.5261 0.8528 0.9836
[0, 1, 1] 0.408455 1 1 0.1748 0.4818 0.7115
[1, 0, 0] 0 1 0 0.8820 0.3143 0.6616
[1, 0, 1] 0.730203 0 1 0.3371 0.3464 0.1218
[1, 1, 0] 0.915034 1 1 0.0340 0.0678 0.1328
[1, 1, 1] 1 0 0 0.4444 0.9124 0.7306

Table 1. The deterministic and stochastic CAs considered in this paper. For the stochastic cases, the
values indicate the probability of an update of value 1 for the middle cells in the triad-neighborhood.
For the deterministic cases, the valus indicate the exact update imposed.

related functions. It takes a list of the desired gate types as a parameter on construction,
and automatically creates the tables needed for parsing. The Generation-class stored
a generation of chromosomes, the fitness associated with each, methods for running and
retrieving fitness for two different fitness functions, and functions for printing. Last, the
Circuit-class is handling the parsing from string and generating a Qiskit quantum
circuit, the simulations of the circuit, measurements, and visualisation of the circuit.

At the beginning, the certain number of chromosomes is assigned with the number
of quantum gates per circuit and subsequently, the initial number of chromosomes are
generated. The evolutionary iteration starts and proceeds by identifying the best fit
chromosomes, evolving the current chromosomes into a new one and inserting this best
as the first element of the new population. This evolution cycle continues depending
on the desired number of generations, and every time finds the best chromosome in the
generation to be a parent for the next generation. When a new parent is generated at
each evolution step, every chromosome undergoes a very simple mutation process so
as to get the best mutated chromosomes. Mutation can happens either by replacing a
gates from the pool of gates in the chromosome with a randomly generated new one, or
replacing the chromosome so as to generate four best parents. The mutation process is
probabilistic and when the chromosomes get mutated, the four best chromosomes are
left unchanged as "elites" the rest of the chromosomes are evolved with a probabilistic
selection where each of the current circuit has a probability to become a parent that is
proportional to its fitness. We consider one-dimensional CAs composed of cells with
two possible states, 0 or 1 (Boolean CA), which are updated according to one out of 256
possible rules matching each one of the eight neighborhoods ([0, 0, 0], [0, 0, 1], [0, 1, 0],
[0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0] and [1, 1, 1]) to an update of the middle cell. Table 1
shows the matching in all cases considered in this paper.

To assess the performance of the quantum circuits we derive, we measure only the
first qubit (q0) and consider two different fitness functions to compare the measured
probability Q(ω) of an initial state ω, computed from the chromosome, and the corre-
sponding desired probability P (ω). The first one is the sum of the absolute difference

Quantum cellular automata 5

0 20 40 60 80 100 120 140
No.of generation

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Fit

ne
ss

 S
co

re

3-Gates
5-Gates
10-Gates
15-Gates
20-Gates

0 20 40 60 80 100 120 140
No.of generation

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

KL
-F

itn
es

s S
co

re

3-Gates
5-Gates
10-Gates
15-Gates
20-Gates

Gate3 Gate5 Gate10 Gate15 Gate20

0.6

0.8

1.0

1.2

1.4

1.6

Gate3 Gate5 Gate10 Gate15 Gate20

0.5

1.0

1.5

2.0

2.5

Fig. 3. (Top) The fitness scores as a function of the number of generations, for different number
of gates. (Bottom) Number of gates vs. the best fitness scores. In each case we show the result for
(left) the absolute sum of differences, Eq. (1), and (right) Kullback-Leibler divergence, Eq. (2).
The fitness scores of each gates for the box plots are the best fitness scores per run and the fitness
scores for the lower two plots are the average fitness scores of 10 runs.

between each P(ω) and corresponding Q(ω):

F =
∑
ω∈Ω

|P (ω)−Q(ω)| . (1)

This gives a possible fitness value between 0 and 8. The second type of fitness function
that is implemented is the Kullback-Leibler (KL) divergence, which measures the
difference between two probability distributions and has been used in other works [6] [4]
as a fitness function as well:

DKL(P ||Q) =
∑
ω∈Ω

P (ω)log
(P (ω)

Q(ω)

)
. (2)

In our case those distributions are discrete and each one of them has eight different
values which are related to the eight different initial states of the three qubits. If the
distributions completely match then both F and DKL fitness functions are zero.

3 Three different "flavours" of quantum cellular automata

We will consider three different types of quantum cellular automata. We will start with a
stochastic critical cellular automaton and then illustrate the robustness of our framework

6 S. Bhandari et al.

0 20 40 60 80 100 120 140
No.of generation

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Fit

ne
ss

 S
co

re
5% Mutation
10% Mutation
20% Mutation
30% Mutation
50% Mutation

0 20 40 60 80 100 120 140
No.of generation

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

KL
-F

itn
es

s S
co

re

5% Mutation
10% Mutation
20% Mutation
30% Mutation
50% Mutation

5% Mut. 10% Mut. 20% Mut. 30% Mut. 50% Mut.

1.0

1.2

1.4

1.6

1.8

5% Mut. 10% Mut. 20% Mut. 30% Mut. 50% Mut.
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fig. 4. (Top) The fitness scores as a function of the number of generations, for different mutation
rates. (Bottom) Number of gates vs. the best fitness scores. In each case we show the result for
(left) the sum of absolute differences (Eq. (1)), and (right) the KL divergence.

with more general stochastic CA (random updates) and a few deterministic rules, namely
rule 90 and 110 [10]. In all cases, the updates are shown in Tab. 1. We fix a maximum
number of chromossomes Nc = 20, a maximum number of generations Ng = 150, and
each simulation is repeated for Nic = 10 initial conditions randomly chosen.

3.1 The quantum cousin of a stochastic critical CA

The authors in [8] have evolved a stochastic cellular automata model in order to reach
criticality which is a property of dynamical systems that gives them the possibility to do
robust computations. For each triad-pattern a probability has been calculated through
genetic algorithm for the central cell to have state 1. These probabilities are shown in
Table [1], second column.

We start by considering the number of gates used, evolving quantum CAs with 3, 5,
10, 15 and 20 gates. The mutation probability is fixed to 10 percent.

Figure 3 shows the result for both fitness functions above. It is clear from the
figure that the fitness score improves with increasing the number of gates until 15 gates
and the gradual increase is seen for 20 gates. Therefore for experiment 2 and 3, the
number of gates used is 15. Notice that the fitness score is optimum for 15 gates in
the case of KL fitness function while the fitness score is optimum for 20 gates in the
absolute difference of probabilities fitness function. Moreover, while the sum of absolute

Quantum cellular automata 7

0 20 40 60 80 100 120 140
Number of generation

0

1

2

3

4

5

6

7

KL
-fi

tn
es

s s
co

re
Rule90
Rule110
Random1
Random2
Random3

Rule90 Rule110 Random1 Random2 Random3
0.0

0.2

0.4

0.6

0.8

Fig. 5. (Left) Fitness scores for different sets of probabilities against the number of generations for
KL-fitness function. (Right) Best fitness scores per runs for KL-fitness function for different sets
of probabilities. The fitness scores of each gates are the average fitness scores of 10 runs.

differences performs better for the cases with lowest number of gates, while KL fitness
function is better suited when the number of gates increases.

Next we explore how the fitness changes when changing the mutation probability.
The goal is to test the impact of mutation over the fitness function at different number of
generations. We fix the number of gates to 15 and select mutation probabilities of 5%,
10%, 20%, 30% and 50%.

Figure 4 (left) shows the comparison of the fitness scores with the number of genera-
tions at different percentage of mutation rate for the absolute difference of probabilities
fitness function, while Fig. 4 (right) shows the comparison of the fitness scores with the
number of generations at different percentage of mutation rate for KL-fitness function.
In case of KL divergence fitness function we can see the gradual improvement in results
with increase in percentage of the mutation rate, however similar conclusion cannot be
drawn in other fitness score as the results are random.

3.2 The two other flavours: deterministic CA and stochastic CA but non-critical

We end our investigation applying the same framework to deterministic rules as well
as to stochastic CAs which do not show critical behavior. Here, we fix the parameters
with 15 gates and 10% mutation probability. The desired probabilities for Rule 90, and
Rule 110 (the deterministic rule, so the probabilities will of the 8 neighborhoods will
be either 0 or 1), and 8 randomly generated probabilities with 3 repetition are used as
target probabilities. The target probabilities for each condition are shown in Tab. 1 and
results are shown in Fig. 5. The fitness scores for the deterministic CA (Rule 90 and Rule
110) is very good as shown in figure Fig. 5 (left), therefore it is quite successful to run
quantum circuit for deterministic CA. For the stochastic CA with randomly generated
probabilities with three repetition, the results are indeed promising, with best fitness
scores 0.14 and 0.27 for random2 and random 3. While the best fitness scores for random
1 is 0.685 which is not bad either but needs further experiments to be able to tune the
evolution to reduce the difference even further. Fig. 5 (right), shows the fitness scores for
the different sets of probabilities against the number of generation for two deterministic

8 S. Bhandari et al.

Fig. 6. Visualization of a circuit created by 15 number of gates, 10% mutation probability with
KL fitness scores. The circuit is the best produced circuit with fitness score of 0.3404 for critical
stochastic CA.

Fig. 7. Visualization of a circuit created by 15 number of gates, 10% mutation probability with KL
fitness scores for deterministic CA (Rule 110). The circuit is the best produced circuit with fitness
score 0.000921.

CA (Rule 90 and Rule 110) and the stochastic CA with randomly generated probabilities
with three repetition (Random1, Random2, and Random3).

Finally, we illustrate the quantum circuits generated with our algorithms. The circuit
in Fig. 6 is the result of a run that scored much better than the average runs for critical
stochastic CA. It shows a fitness score of 0.3404, using KL fitness function in Eq. (2).
Similarly, the circuit in Fig. 7, is the result of the deterministic CA Rule 90. It has a best
fitness score of 0.000921, with 15 numbers of gates, 10% mutation probability and the
KL fitness function.

4 Discussion and conclusions

In this paper we showed a simple framework to derive quantum circuits reproducing
specific CA rules, using genetic algorithms. We showed that the framework is able to
evolve quantum circuits towards several types of CA rules, ranging from deterministic
rules to stochastic updates.

An important observation for all the experiments that we did, was that most of the
times the fitness functions of the parents that would survive were not the same in the
next generations. Their fitness functions in the next generations were sometimes actually
worse than those they had in the previous generations. Mutated solutions with better
fitness functions would then take their places as parents but still these functions could
be worse than those that the first parents had originally. As a result, we did not see a
gradually decrease of the value of the best fitness function from generation to generation
as we expected or as we wanted but instead, that value had ups and downs. The above
phenomenon happened for both types of fitness functions that we used and the reason is

Quantum cellular automata 9

the following. Every quantum circuit which corresponds to a chromosome or a solution,
is executed multiple times (1000 in our case) with a simulator. The outcome probabilities
that are related with the fitness function can not be exactly the same each time we run
the same circuit in another generation. If we execute the same circuit another 1000 times
for example, we will have slight differences in our results. Even when we increased the
number of shots in the simulator (10000 and then 50000) to stabilize the probability
value, we did not succeed.

Another thing that we realized, was that for every set of desired probability outcomes,
the value of the best fitness function was achieved sooner or later either we applied the
mutation rules with different mutation probabilities each time, or we just chose random
possible solutions for the same number of generations. As we can see in Fig. 4, this
randomly happened very early, when using the sum of absolute differences as fitness
function, Eq. (1), while for the KL fitness function, Eq. (2), it does not happen in the
same way. One possible reason for this is that the pool of possible solutions is not very
big based on the number of gates that we used, although the type of gates that we had
were enough to build almost any quantum circuit. As far as concerned the two different
fitness functions, we can not really say that one performs better than the other. One small
observation though is that the diagrams which corresponds to the KL fitness function
have more gentle fluctuations and they reach their final range of values in the early
generations.

Moreover, there are some parameters that could be further tested in future investi-
gations, as well as considering additional genetic operators in evolutionary algorithms,
e.g. crossover.

References

1. Operations glossary. https://quantum-computing.ibm.com/composer/docs/iqx/operations_
glossary, accessed: 2022-3-22

2. Giraldi, G.A., Portugal, R., Thess, R.N.: Genetic algorithms and quantum computation. CoRR
cs.NE/0403003 (2004), http://arxiv.org/abs/cs/0403003

3. Holland, J.H.: Genetic algorithms. Scholarpedia 7(12), 1482 (2012). https://doi.org/10.4249/
scholarpedia.1482, revision #128222

4. Lucas, S.M., Volz, V.: Tile pattern kl-divergence for analysing and evolving game levels.
Proceedings of the Genetic and Evolutionary Computation Conference (Jul 2019). https:
//doi.org/10.1145/3321707.3321781, http://dx.doi.org/10.1145/3321707.3321781

5. Lukac, M., Perkowski, M.: Evolving quantum circuits using genetic algorithm. In: Proceedings
2002 NASA/DoD Conference on Evolvable Hardware. pp. 177–185 (2002). https://doi.org/
10.1109/EH.2002.1029883

6. Martín, F., Moreno, L., Garrido, S., Blanco, D.: Kullback-leibler divergence-based differential
evolution markov chain filter for global localization of mobile robots. Sensors 15(9), 23431–
23458 (2015). https://doi.org/10.3390/s150923431, https://www.mdpi.com/1424-8220/15/9/
23431

7. Mukherjee, D., Chakrabarti, A., Bhattacharjee, D., Choudhury, A.: Synthesis of quantum
circuits using genetic algorithm. FULL PAPER International Journal of Recent Trends in
Engineering 2 (12 2009)

8. Pontes-Filho, S., Lind, P., Yazidi, A., Zhang, J., Hammer, H., Mello, G.B., Sandvig, I.,
Tufte, G., Nichele, S.: A neuro-inspired general framework for the evolution of stochastic

https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary
https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary
http://arxiv.org/abs/cs/0403003
https://doi.org/10.4249/scholarpedia.1482
https://doi.org/10.4249/scholarpedia.1482
https://doi.org/10.4249/scholarpedia.1482
https://doi.org/10.4249/scholarpedia.1482
https://doi.org/10.1145/3321707.3321781
https://doi.org/10.1145/3321707.3321781
https://doi.org/10.1145/3321707.3321781
https://doi.org/10.1145/3321707.3321781
http://dx.doi.org/10.1145/3321707.3321781
https://doi.org/10.1109/EH.2002.1029883
https://doi.org/10.1109/EH.2002.1029883
https://doi.org/10.1109/EH.2002.1029883
https://doi.org/10.1109/EH.2002.1029883
https://doi.org/10.3390/s150923431
https://doi.org/10.3390/s150923431
https://www.mdpi.com/1424-8220/15/9/23431
https://www.mdpi.com/1424-8220/15/9/23431

10 S. Bhandari et al.

dynamical systems: Cellular automata, random Boolean networks and echo state networks
towards criticality. Cognitive Neurodynamics 14(5), 657–674 (2020). https://doi.org/10.1007/
s11571-020-09600-x, https://doi.org/10.1007/s11571-020-09600-x

9. Sutor, R.S.: Dancing with Qubits. Packt Publishing (2019)
10. Wolfram, S.: Cellular automata as models of complexity. Nature (London) 311(5985), 419–

424 (1984)
11. Yabuki, T.Y.: Genetic algorithms for quantum circuit design –evolving a simpler teleportation

circuit–. In: In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference. pp. 421–425. Morgan Kauffman Publishers (2000)

https://doi.org/10.1007/s11571-020-09600-x
https://doi.org/10.1007/s11571-020-09600-x
https://doi.org/10.1007/s11571-020-09600-x
https://doi.org/10.1007/s11571-020-09600-x
https://doi.org/10.1007/s11571-020-09600-x

	Evolving quantum circuits to implement stochastic and deterministic cellular automata rules

