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Abstract: The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one 
counterexample to the “𝑃𝑃 = 𝑁𝑁𝑃𝑃” conjecture. A certain class of problems being such counterexamples 
will be formulated. This implies the rejection of the hypothesis “𝑃𝑃 = 𝑁𝑁𝑃𝑃” for any conditions satisfying 
the formulation of the problem. Thus, the solution “𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃” of the problem in general is proved. The 
class of counterexamples can be interpreted as any quantum superposition of any finite set of 
quantum states. The Kochen-Specker theorem is involved. Any fundamentally random choice among 
a finite set of alternatives belong to “NP’ but not to “P”. The conjecture that the set complement of “P” 
to “NP” can be described by that kind of choice exhaustively is formulated. 
 
I Introduction 
Let the problem be: “is Schrödinger’s cat alive or dead?” One should guess its “state” in advance, before 
any actual observation. 
No Turing machine can resolve it in advance in principle, for if it could do this, hidden variables would 
exist necessarily in quantum mechanics. However, the Kochen-Specker theorem (1967) states that the 
latter is not the case. 
Well, now: the door of the cat's cell is open, and the Turing machine can check very quickly whether the 
cat is alive or not. Thus, "NP" (the latter checking time, "very quickly") is different from "P" (the former 
infinite time necessary for any Turing machine to guess in advance whether the cat is alive or not). 
The utilized metaphor of „Schrödinger’s cat” is directed triply: it means immediately a quantum 
superposition, but furthermore a “fundamentally random choice” (defined rigorously bellow) as well as the 
work of a quantum computer in coherent state.  
Informally, a fundamentally random choice has to be distinguished from “random choice” in common 
sense such as “coin flipping” or “playing dice”. Both examples are deterministic in fact. There exist “hidden 
variables” remaining unknown as usual, but absolutely and exactly quantitatively knowable in principle. 
By inputting them in a computer, it will be able to calculate unambiguously the result of such an ostensibly 
random choice.  
Thus, “flipping coin” and “Schrödinger’s cat” are fundamentally different as to a choice claiming to be 
random. A nonempty finite set of hidden variables is available in the former, but not in the latter, and this 
distinguishes them. The Kochen – Specker theorem (1967) states the absence of hidden variables in 
quantum mechanics at all and allows for a rigorous definition of “fundamentally random choice” (which 
cannot be predetermined by any way in principle) in terms of “Turing machine”: thus, it can be referred to 
the “P vs NP” problem directly.  
Speaking figuratively, the “coin flipping” unlike “Schrödinger’s cat” is not “random enough” to be able to 
offer a class of examples being “non-P, but NP”.  
Furthermore, the concept of quantum superposition (Dirac 1958: 14-18) represents the work of quantum 
computer in coherent state. Thus, if the class of “non-P, but NP” problems is defined by means of 
“quantum superposition”, there exist calculations of quantum computer which cannot be simulate by any 
Turing machine in any polynomial time, but the solution of quantum computer can be checked by a Turing 
machine for a polynomial time1. 

                                                            
1 That statement does not mean the following two cases: (1) the simulation of quantum computer by a Turing machine 
for a non-polynomial, but finite time; (2) checking any result of quantum computer by a Turing for a polynomial time. 
Particularly, (1) there can exist calculations of quantum computer which cannot be simulate by any Turing machine for 
any finite time; (2) there can exist calculations of quantum computer which cannot be checked by any Turing machine 
for any finite time. 
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The calculation of quantum computer in coherent state and the definition of “absolutely random choice” 
are represented both by the same concept of “quantum superposition”, and thus, by the same 
mathematical formalism based on the separable complex Hilbert space and its elements.  
That equivalence (or isomorphism) implies the following problem needing rather a philosophical reflection 
further: is any “absolutely random choice” identical to a calculation of quantum computer in general or the 
relevant calculations of quantum computer are different class only intersecting with the class of absolutely 
random choices? That problem will not be discussed. 
The exhibition bellow involves rather elementary mathematical tools and concepts such as: the axiom of 
choice and the well-ordering principle of set theory (e.g. ZFC) as well as their equivalence; “Turing 
machine”; the separable complex Hilbert space; the Kochen-Specker theorem (1967); the principle of 
superposition in quantum mechanics formulated mathematically by Dirac in 1930.  
Peano arithmetic is not sufficient: the concept of actual infinity is utilized explicitly. However, no idea 
stronger than actual infinity is necessary.  
Thus, the exhibition is thoroughly in the framework of the standard mathematics featured by Peano 
arithmetic and ZFC set theory.   
The paper is structured as follows:  
Section II justifies the specific concepts and notations further. Section III demonstrates that the class of 
problems formulated rigorously in Section II are “non-P problems”. Section IV shows that the same class 
of problems are “NP” simultaneously and represents the results in the notations of Official Problem 
Description. Section V suggests two conjectures without proofs to outline a possible direction for future 
work.  
Two “Appendixes” are added. Appendix 1 reformulates the “Turing machine” as it defined in Official 
Problem Description in terms of the separable "𝑍𝑍2” Hilbert space. The former does not involves “actual 
infinity” unlike the latter thus preparing the complete rigorous definition of quantum computer as a 
generalization of Turing machine in Appendix 2. 
  
II A general formulation of a class of problems demonstrating that “𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃” 
The following concepts specific for this paper are used further: 
“Choice (𝐶𝐶ℎ)" means a certain choice of a certain element of a set if nothing different is written or 
complemented expressively. 
“Fundamentally random choice (FRC)”: A choice of a certain element of a set is FRC if it can be 
accomplished only in virtue of the axiom of choice.  
Furthermore, a choice of a certain element of a set can be accomplished by a finite number of criteria 
determining unambiguously a certain element of a set. That choice will be called “determined choice 
(DC)”  
If a finite number of criteria determining unambiguously a certain element of a set exists necessarily, 
but those criteria are granted as unknown, the according choice is called “hidden determined choice 
(HDC)”. The corresponding criteria (finite number) are called “hidden variables (𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹)” or “hidden 
parameters” meaning the certain values of 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹  for a certain element of a set to be chosen 
unambiguously.  
The utilized term “hidden variables” coincides with the used in the paper of Kochen and Specker 
(1968). This equivalence is essential for the proof of the theorem above, and will be demonstrated 
by the proof of the Statement 2.  
If only the existence of a finite number of criteria determining unambiguously a certain element of a 
set is proved, but those criteria cannot be explicated, the choice is called “random choice (RC)” 
respectively. 
Furthermore, all definitions and notations referring to the “P vs NP problem” are the same as in the 
“Official Problem Description” supplied by CMI2: This means Stephen Cook’s text entitled “P vs NP 

                                                            
2 https://www.claymath.org/sites/default/files/pvsnp.pdf 
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problem”. All other definitions and notations necessary for the solution of the problem are introduced 
in the present text expressively. The proof meant further is thoroughly within the standard first order 
theory of mathematics, namely the ZFC set theory. This means that the intended proof is consistent 
to ZFC. 
In fact, only a few, rather elementary tools belonging to the standard mathematics meant as above 
will be the separable complex Hilbert used explicitly further. One can enumerate them as follows: the 
principle of superposition in quantum mechanics (Dirac 1958: 14-18)3; the separable "𝑍𝑍2"5 Hilbert 
space, the Kochen – Specker theorem (1967) about the absence of hidden variables in quantum 
mechanics implied by the separable complex Hilbert space. Nothing else than all concepts involved 
expressively in the cited “Official Problem Description” is necessary. 
A quantum system Q is described to be in a coherent state QS consisting of the superposition of a 
finite set S consisting at least of two elements of experimentally measurable results 𝑅𝑅𝑛𝑛,𝑛𝑛 ≥ 2, e.g. 
an experiment about the electron spin or the photon polarization, etc. The coherent state is:  
𝑄𝑄𝑄𝑄 = (𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛) =  ∑ 𝐶𝐶𝑘𝑘𝑛𝑛

𝑘𝑘=1 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖, 𝐶𝐶𝑘𝑘 ≠ 0 are complex numbers, 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 is the k-th “axis” of the 
separable complex Hilbert space unambiguously corresponding to 𝑅𝑅𝑘𝑘.    
The problem, further notated as “QP”   belonging to the class of the problems demonstrating “𝑃𝑃 ≠
𝑁𝑁𝑃𝑃” (further notated briefly as “𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 problems”) is formulated so:  
“Which result 𝑅𝑅 among 𝑅𝑅𝑛𝑛 will be measured after a certain measurement of Q?” 
Let the measurement reduce QC to a certain result 𝑅𝑅 among 𝑅𝑅𝑛𝑛. That result R is determined 
unambiguously by a certain natural number 𝑟𝑟 ≤ 𝑛𝑛. The problem is: 
Which is that “r”? 
That problem does not belong to “P” for it cannot be resolved by a Turing machine in any finite time, 
and thus, for any polynomial time. The Kochen - Specker theorem (1967) excludes any hidden 
variable to exist for describing Q. An algorithm for Turing machine allowing for it to forecast the result 
of the measurement for any finite time is equivalent to the availability of hidden variables impossible 
according to the cited theorem. Thus, there is not any algorithm of that kind and particularly there 
does not exist any algorithm for Turing machine, able to resolve the problem for any polynomial time, 
“P”.  
Consequently, the problem QP belongs to the class of non-P problems (a rigorous proof in detail 
follows). 
Simultaneously, it belongs to the class of NP problems: the TM has to resolve whether R is a certain 
element among the finite number n of elements of S, namely 𝑅𝑅𝑛𝑛.    
Consequently: {𝑄𝑄𝑃𝑃 ⊂ ¬𝑃𝑃 ∧ 𝑁𝑁𝑃𝑃} → (𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃). 
 
III The proof in detail that QP belongs to the class of non-P problems 
Theorem: Any problem defined as QP is not a P-problem (i.e. it is a non-P problem).  
This statement will be proved as a corollary from the following:  
Theorem: No Turing machine can resolve QP for any finite time. 
Corollary: QP belongs to the class of non-P problems. 
The specific premises of the proof are: the Kochen-Specker theorem, the equivalence of the axiom 
of choice (roughly speaking, an element can be chosen from any set) and the well-ordering theorem 
(or the “principle”: any set can be ordered well). A terminological justification: “well-ordering postulate” 
will be used bellow in the same meaning as the well-ordering theorem as it is equivalent to the axiom 

                                                            
3 What is meant is the paragraph “5. Mathematical formulation of the principle” regardless of the edition, in each of 
which the cited pages are different in general. 
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of a choice rather than a conclusion from it. “Well-ordering theorem” or “well-ordering principle” are 
rather misleading4.  
The pathway of the proof can be marked by a few intermediate statements: 
Statement 1. QP implies no hidden variables in the rigorous meaning of “hidden variables” defined in 
the paper of Kochen and Specker (1967), or symbolically: 𝑄𝑄𝑃𝑃 → 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 . 
Statement 2. The meaning of the Kochen and Specker hidden variables is equivalent to a “finite set 
of unambiguous criteria (FC) for an element known as belonging to a certain set to be chosen from 
the set” (i.e. a different meaning of “hidden variables”); briefly: 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 ↔ 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 .   
Statement 3. The finite set of unambiguous criteria for an element to be chosen from its set is 
equivalent to a determined choice and to the negation of a fundamentally random choice: 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 ↔
𝐷𝐷𝐶𝐶 ↔ ¬(𝐹𝐹𝑅𝑅𝐶𝐶).  
Statement 3.1. Any Turing machine (TM) can choose a certain element of a set only by DC (i.e. by a 
finite tuple of instructions), that is, 𝐶𝐶ℎ𝑇𝑇𝑇𝑇 ↔ 𝐷𝐷𝐶𝐶. 
Statement 3.2. Any parameter (i.e. a certain value of a certain HV) needs at least one configuration 
of TM to determine a choice of a certain element of a set relevantly (i.e. a nonempty tuple of 
instructions for that HV). 
Statement 3.3. Any Turing machine needs an infinite time for FRC (for the infinite set of steps, each 
of which corresponds to one configuration); symbolically: 𝐹𝐹𝑅𝑅𝐶𝐶 → (𝑡𝑡𝑇𝑇𝑇𝑇 = ∞).  
The theorem intended to be proved and its corollary follow from Statement 3.3. Indeed, the described 
logical pathway imply the direct implication from its starting point to its end point: 𝑄𝑄𝑃𝑃 → (𝑡𝑡𝑇𝑇𝑇𝑇 = ∞); or 
by words in English: QP implies infinite time for any Turing machine to resolve it; that is the Theorem. 
One can consider the above sketch of the proof in detail bellow: 
Statement 1.𝑄𝑄𝑃𝑃 → 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆.  
Indeed, the quantum superposition being a necessary condition for QP implies in turn the theorem 
of Kochen and Specker, and a necessary of which is their definition of “hidden variables”. Thus, QP 
implies the Kochen - Specker hidden variables. 
The present paper introduces the following definition of “hidden variables (𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹)”:  
∀𝑀𝑀,∀𝑥𝑥,∃𝑛𝑛,∃𝑝𝑝1,∃𝑝𝑝2, … 𝑝𝑝𝑛𝑛: [(𝑥𝑥 ∈ 𝑀𝑀) ↔ 𝑥𝑥 = 𝑀𝑀1 ∩𝑀𝑀2 … 𝑀𝑀𝑛𝑛] ∧ [(𝑀𝑀1 ↔ 𝑝𝑝1), (𝑀𝑀2 ↔ 𝑝𝑝2), … , (𝑀𝑀𝑛𝑛 ↔ 𝑝𝑝𝑛𝑛)] 

Here, 𝑀𝑀 is an arbitrary set, 𝑥𝑥 is an element which belongs to 𝑀𝑀, 𝑛𝑛 is a certain natural 
number; 𝑀𝑀1,𝑀𝑀2, … 𝑀𝑀𝑛𝑛 are subsets of 𝑀𝑀;  𝑝𝑝1,𝑝𝑝2, … 𝑝𝑝𝑛𝑛 are the characteristic properties 
of 𝑀𝑀1,𝑀𝑀2, … 𝑀𝑀𝑛𝑛 respectively. Then, 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 are called “hidden variables (𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹)” determining the 
choice: 

𝐶𝐶ℎ: �𝑀𝑀
𝐹𝐹ℎ
�� 𝑥𝑥� ↔ 𝐶𝐶ℎ = 𝑝𝑝1 ∧ 𝑝𝑝2 ∧  …∧ 𝑝𝑝𝑛𝑛 = 𝑀𝑀1 ∩𝑀𝑀2 ∩ …∩𝑀𝑀𝑛𝑛 

Then: 𝐶𝐶ℎ = 𝐶𝐶ℎ1,𝐶𝐶ℎ2, … ,𝐶𝐶ℎ𝑛𝑛 after one means 𝐶𝐶ℎ𝑖𝑖 = (𝑀𝑀𝑖𝑖 ↔ 𝑝𝑝𝑖𝑖), and the well-ordering notated by the 
index 𝑖𝑖 means the class of equivalence of the ordinal number 𝑛𝑛 and thus, the cardinal number 𝑛𝑛 both 
finite and the same natural number 𝑛𝑛. Informally, the concept of hidden variables so defined means 
that the unambiguous choice of a single certain element of a certain set can be decomposed to an 
equivalent finite set of independent choices.        

                                                            
4 The term “well-ordering principle” is used in some papers in the same meaning. However, “well-ordering principle” is 
used in two different meanings: (1) as referring to arithmetic and equivalent to the axiom of induction; (2) as referring 
to set theory and equivalent to the axiom of choice. The axiom of choice and the axiom of induction are absolutely 
different and referring to two absolutely different theories: set theory and arithmetic respectively. The term “well-
ordering principle” implies the above inadmissible ambiguity. The other possible term “well-ordering theorem” 
originates form history and the tradition: Zermelo (1904) proved it as a theorem implied from the axiom of choice. 
Whitehead and Russell demonstrated the proof of the converse statement about ten years later, in the beginning of the 
third volume of Principia Mathematica. However, the term “theorem” does not express the equivalence of both 
statements. Those considerations underlie the term “well-ordering postulate” coined here. 
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In other words, 𝐶𝐶ℎ is the characteristic property of the set {𝑥𝑥} consisting of a single element 𝑥𝑥. So 
defined, 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 are also a finite set of propositions, each of which determines unambiguously a 
mapping of 𝑀𝑀 into the set of its subsets once 𝑀𝑀 is given, and each proposition chooses one single 
subset of its. Any of those subsets whether infinite or finite can be considered furthermore as the 
definition area of one among “𝑛𝑛” variables 𝑣𝑣1, 𝑣𝑣2. . . 𝑣𝑣𝑛𝑛 of the functions of choice defined on 𝑀𝑀 and 
determining unambiguously just 𝑥𝑥: 

{𝑀𝑀
𝐹𝐹ℎ(𝑣𝑣1,𝑣𝑣2,…,𝑣𝑣𝑛𝑛)
�⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝑥𝑥} ↔ {𝑀𝑀

𝐹𝐹ℎ1,𝐹𝐹ℎ2,… ,𝐹𝐹ℎ𝑛𝑛�⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝑥𝑥} 
The essence of that definition of 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹  is that (1) each hidden variable is an independent choice, and 
(2) both hidden variables and independent choices are the same finite set, each element of which 
can be interpreted as a hidden variable or an independent choice.   
One can admit a few, partly intersected cases of further abstraction: (1) one can prove only the 
existence of a finite set of HV, but not determine them explicitly; (2) one can define explicitly an infinite 
set of HV (i.e. the set of HV can be defined by a finite set of characteristic properties); (3) one can 
prove the existence of an infinite set of HV, but not determine them explicitly; (4) one can postulate 
the existence of a function of choice for any element of any choice: properly the axiom of choice. It 
does not imply the existence of any relevant set of its variables determining the chosen element 
unambiguously or the element chosen once can be chosen again unambiguously. FRC means just 
the last case. The definition of HV as above can be granted as the initial case, “(0)”. If one need 
elucidate the logical relation between (4) and (0), the cases (1), (2), and (3) should be represented 
by means of (0) and (4). The axiom of choice (and FRC because of it, in definition) is not referred to 
any set of hidden variables. Then, the problem is whether one can equate no reference to any set of 
hidden variables (or the slogan “ho hidden variables” as representing that “no reference” case) as in 
(4) to some infinite HV set whether known as in (2) or unknown as (3) 
Right the equivalence of the axiom of choice and the well-ordering postulate implies the positive 
answer as the solution of the problem: no HV is equivalent to an infinite set of HV. Indeed, FRC is 
equivalent to the axiom of choice in definition. Then, the axiom of choice is equivalent to the well-
ordering postulate, i.e. to a well-ordered infinite5 set of chosen elements, each of which implies a 
nonempty6, at least finite set of HV, which in turns implies for all HV corresponding to the axiom of 
choice to be infinite necessarily. 
Thus, the equivalence of the axiom of choice and the well-ordering postulate implies both 
identifications: (1) DC is equivalent to a finite set of HV; (2) FRC is equivalent to an infinite set of HV; 
(3) if any set is either finite or infinite, any choice is either DC (including HDC) or FRC, and RC can 
be distributed exhaustively into two disjunctive classes includable either in HDC (and thus in DC) or 
FRC. 
Those considerations suggest 
Statement 2. 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 ↔ 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 . 
It consists of the following two statements: 
Statement 2.1. 𝐶𝐶ℎ𝑞𝑞 → 𝐹𝐹𝑅𝑅𝐶𝐶. That is: the choice between states of quantum superposition is 
fundamentally random. The axiom of choice is necessary for it to be accomplished. The determination 
of the “non-P and NP problems” needs the case of a finite number of quantum states in superposition 
for a “guessed” solution to be checkable for a polynomial time as an item in a certain n-tuple:  
Quantum superposition of a finite number of states involves a continuum (i.e. an actual infinite set) 
of links between the elements of a finite set of states. Thus, the choice refers to an actual infinite set 
(that of links), and the check of a chosen element to a finite set (that of states).  
Furthermore, (𝐶𝐶ℎ𝑞𝑞 → 𝐹𝐹𝑅𝑅𝐶𝐶) → (¬𝐹𝐹𝑅𝑅𝐶𝐶 → ¬𝐶𝐶ℎ𝑞𝑞) → (𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 → 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆)  

                                                            
5 That set can be accepted to be infinite as any finite set can be well-ordered constructively. 
6 An empty set of characteristic properties cannot define any choice at all. 
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Statement 2.2. 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 → 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 
Only Statement 2.1 is necessary for the proof that the class of “non-P and NP problems” is not 
empty.    
Both Statement 2.1 and Statement 2.2 are necessary for the definition of the class of “non-P, but NP” 
problems in two independent, but equivalent ways: (1) directly, by quantum superposition: as any 
quantum choice among any finite set of disjunctive alternatives (being in superposition); (2) indirectly, 
by the concept of hidden variables: as the absence of any hidden variables able to determine any 
quantum choice finitely. 
One can consider the proof of each of both statements independently: 
Statement 2.1. 𝐶𝐶ℎ𝑞𝑞 → 𝐹𝐹𝑅𝑅𝐶𝐶 
Proof:  
Let 𝐴𝐴 be any observable therefore satisfying the equation (1) in the paper of Kochen and Specker 
(1967: 61).  Different values 𝐴𝐴𝑖𝑖 of 𝐴𝐴 are measured by a series of measurement 𝑀𝑀𝑖𝑖. One considers the 
set {𝐴𝐴𝑖𝑖} defined by the property any element 𝐴𝐴𝑖𝑖 to be a measured value of the observable 𝐴𝐴. The well-
ordering postulate applied to {𝐴𝐴𝑖𝑖} creates a well-ordering of {𝐴𝐴𝑖𝑖}: 𝑊𝑊𝑊𝑊𝐴𝐴 = �𝐴𝐴𝑖𝑖=1,2,…∞�. Then 𝑊𝑊𝑊𝑊𝐴𝐴 
implies that the equation (4) in the paper of Kochen and Specker (1967: 64) is satisfied.  
Indeed, that equation (4) is: 

𝑃𝑃𝑔𝑔(𝐴𝐴)𝜓𝜓(𝑈𝑈) = 𝑃𝑃𝐴𝐴𝜓𝜓𝑔𝑔−1�(𝑈𝑈)� 
Here 𝐴𝐴 is an observable, 𝜓𝜓 is a quantum state represented by its wave function unambiguously, 𝑔𝑔 is 
a Borel function of the set of real numbers 𝑅𝑅 onto itself, and 𝑈𝑈 is a certain subset of 𝑅𝑅 which is 
measurable by a probability measure 𝑃𝑃𝐴𝐴𝜓𝜓 assignable to each observable A and each quantum state 
𝜓𝜓 by a certain function 𝑃𝑃. Informally, this means that a necessary condition for HV is the inverse 
function of any statistical distribution assignable to each observable and each quantum state to be a 
statistical distribution as well.  
Interpreting that equation (4) to the present proof, it would require for the inverse function to the 
function of a series of measurements thus representing any quantum superposition of the 
observable 𝐴𝐴 as an unambiguously corresponding well-ordering 𝑊𝑊𝑊𝑊𝐴𝐴 to be again a well-orderingl. 
However, the latter contradicts to the definition of “quantum superposition”.  
Indeed, the quantum superposition implies for any two measured values of any observable, the 
superposition of their corresponding states (i.e. their sum with arbitrary complex coefficients) to be a 
valid state. Thus, the inverse mapping cannot be a Borel function as it is not any function at all: to 
those two measured values correspond a continuum of values in the inverse mapping at issue.       
That is: 𝐴𝐴 would be a hidden variable if 𝑊𝑊𝑊𝑊𝐴𝐴 existed before the series of measurements. However, 
this contradicts the Kochen-Specker theorem. Consequently, 𝑊𝑊𝑊𝑊𝐴𝐴 appears after the series of 
measurements. One need equate the quantum superposition before the series of measurements and 
𝑊𝑊𝑊𝑊𝐴𝐴 after it. This implies that the series of measurements involves necessarily the well-ordering 
postulate7. The well-ordering postulate is equivalent to the axiom of choice. Thus, any measurement 
is FRC, and Statement 2 is proved. 
The proof can be justified furthermore by the following physical interpretation. Quantum 
electrodynamics relies on the mutual consistency of quantum mechanics and special relativity. So, 
the quantity of time, which is not an observable in the nonrelativistic quantum mechanics, has to be 
equated to all other observables in quantum electrodynamics. This can be accomplished in any of 
the following two ways: 
1. The observable of time to be allowed in quantum electrodynamics. 

                                                            
7 One can notice that the series of measurements is well-ordered by itself: the first measurement, the second 
measurement, and so on. The well-ordering postulate is necessary because the actual infinity of all measurements of 
the observable 𝐴𝐴 is involved. 
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2. On admits that any observable (most frequently, space position) to be only a parameter, or “label” 
naming and distinguishing the quantum states, particularly those in any quantum superposition. 
Each of the above two options together with the Kochen-Specker theorem implies Statement 2. Thus, 
the validity of the Kochen-Specker theorem in quantum electrodynamics implies Statement 2. More 
exactly, The Kochen-Specker theorem and the consistency of quantum mechanics and special 
relativity8 implies Statement 2.     
However, Statement 2 can be released from its interpretation in terms of quantum mechanics and 
thus generalized if one considers an arbitrary class (for the quantum superposition of the observable 
𝐴𝐴) defined by any consistent property and then, that class is mapped one-to-one (for the 
measurement) into a certain set (for the set {𝐴𝐴𝑖𝑖} of all measured values of 𝐴𝐴). The above proof refers 
to an interpretation, properly a quantum interpretation, of the same isomorphic structure in general 
as here.    
Statement 2.2. 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 → 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 
Proof: 
The necessary condition for 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 to exist (Kochen, Specker 1967: 66) will be utilized in order to be 
demonstrated that it implies 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹  and Statement 2.2 to be proved as follows. 
One can demonstrate that Theorem 1 in the paper of Kochen and Specker (1967: 70) about the 
incommensurability involved by a finite partial Boolean algebra follows from one of the most ancient 
mathematical proofs about the incommensurability of the diagonal of any square to its sides (i.e. the 
proof that √2 is an irrational number). To be shown that, one need define the separable complex 
Hilbert space as a generalization of arithmetic, and then, any partial finite Boolean algebra as a 
generalization of the arithmetic conception of rational number: the Pythagorean proof about the 
incommensurability of the diagonal of the square can be generalized as that Theorem 1 at issue.  
In turn, that Theorem 1 (Kochen, Specker 1967:70) together with the necessary condition for 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 
to exist (cited above) is involved in a modus tollens deduction to be proved the absence of those 
𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 in their paper. Instead of that, one generalizes that necessary condition in the way hinted 
above for proving Statement 2.2 It follows immediately from the necessary condition generalized so.  
That plan for proving Statement 2.2 is to be explicated in detail: 
Its core is the generalization of arithmetic meant for certainty by the Peano axioms as usual where 
any natural number 𝑛𝑛 is considered as a class of equivalence of all sets consisting of 𝑛𝑛 elements, or 
with a cardinal number 𝑛𝑛 shared by all set in the same class. The approach by a class of equivalence 
to be define any natural number 𝑛𝑛 will be conserved, but what is equivalent will be changed: qubits 
rather than sets: 
A unit is the class of equivalence of all possible values of a qubit, or an “empty” qubit as an empty 
cell, in which no value is recorded yet following the scheme, by which “Turing machine” is defined. 
So, if one considers the class of equivalence of all wave functions consisting of 𝑛𝑛 successive qubits, 
the natural number 𝑛𝑛 is defined9.  
A qubit is defined as the superposition of any two orthogonal states or subspaces of the separable 
complex Hilbert space, ⟨0|1⟩ by complex coefficients 𝛼𝛼,𝛽𝛽 so that: ⌈𝛼𝛼⌉2 + ⌈𝛽𝛽⌉2 = 1. That is, “qubit” 𝑄𝑄 ≝
𝛼𝛼|0⟩ + 𝛽𝛽|1⟩,  and any pair 𝛼𝛼,𝛽𝛽 of complex numbers under the above condition are a value of qubit. 
As any two successive axis of the separable complex Hilbert space, 𝑒𝑒𝑖𝑖𝑛𝑛, 𝑒𝑒𝑖𝑖(𝑛𝑛+1) are a particular case 
of two orthogonal states of the separable complex Hilbert space, any element of it, interpreted in 
quantum mechanics as a wave function, can be equivalently represented as a series of qubits. 
                                                            
8 The same consistency of quantum mechanics and special relativity is a premise in the so-called freewill theorems 
(Conway, Kochen 2006; 2009). Furthermore, their meaning is similar to that of Statement 2.1.  They can be considered 
as relative to Statement 2. 
9 This is a “natural arithmetic” isomorphic to that defined standardly, but extracted from the physical nature itself by 
means of quantum mechanics rather than from human activity and thus, more or less conventionally. 
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Indeed, a wave function is standardly represented as the vector: 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛,𝐶𝐶𝑛𝑛+1, …,  where {𝐶𝐶𝑖𝑖} is a 
convergent series of complex coefficients. It can be transformed unambiguously in the 
vector: 𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑛𝑛,𝑄𝑄𝑛𝑛+1, … where 

 

 𝑄𝑄𝑖𝑖 = (𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖) =
𝐶𝐶𝑖𝑖

�(𝐶𝐶𝑖𝑖)2 + (𝐶𝐶𝑖𝑖+1)2
,

𝐶𝐶𝑖𝑖+1
�(𝐶𝐶𝑖𝑖)2 + (𝐶𝐶𝑖𝑖+1)2

 

 
“Qubit” can be considered as the generalization of “bit”, referring to infinite sets, and thus to set theory 
properly. Indeed, “bit” referring only to finite sets is a notion rather arithmetical. It means an 
elementary choice between two equally probable alternatives, and serves as a measure to represent 
the quantity of those elementary choices (the quantity of “information”) necessary to be chosen any 
single element from any finite set. It is useless for the quantity of choices necessary to be chosen an 
element from an infinite set. 
A new measure for a new quantity is necessary to represent the choice from an infinite set: 
Statement A: The concept of qubit 𝑄𝑄 is necessary and sufficient to represent the choice 𝐶𝐶ℎ∞ of a 
single element from any infinite set. 
To be a single choice from any infinite set possible always, the axiom of choice is necessary and 
sufficient condition. Consequently it a premise granted for the statement.  
Sufficiency 𝑄𝑄 → 𝐶𝐶ℎ∞:  
Any qubit is a continuum and thus an infinite set. Any certain value of it represents a choice of a 
single element from an infinite set, i.e. 𝐶𝐶ℎ∞; consequently, 𝑄𝑄 → 𝐶𝐶ℎ∞.  
Necessity 𝐶𝐶ℎ∞ → 𝑄𝑄:  
The axiom of choice implies the Skolem “relativity of the concept set” because it implies the necessary 
existence of some bijective mapping between any two infinite sets. Thus, some bijection exists 
between continuum (and particularly, any qubit) and any infinite set. Consequently any choice from 
the latter can be represented equivalently as some choice from the former: 𝐶𝐶ℎ∞ → 𝑄𝑄.      
The concept of qubit is introduced by quantum mechanics. Nonetheless, it has a much more general 
meaning referring to the generalization of “information” to set theory:  
A complex quantity named quantum information 𝐼𝐼𝑞𝑞 and measured in qubits can be introduced. Any 
wave function is a certain value of 𝐼𝐼𝑞𝑞. The free variable of 𝐼𝐼𝑞𝑞 is isomorphic to the separable complex 
Hilbert space.   
Statement B: The quantity of quantum information 𝐼𝐼𝑞𝑞 is necessary and sufficient to represent any 
choice from any infinite set 𝐶𝐶ℎ∞. . 
Necessity 𝐶𝐶ℎ∞ → 𝐼𝐼𝑞𝑞. Any choice from any infinite set can be defined as a class of elementary choices, 
qubits, which, furthermore, is a set of the same elementary choices, qubits.  This is true because 
“any choice from any infinite set” determines a certain element of the set of all subsets of that infinite 
set at issue. Thus, the “class of elementary choices” refers to a certain set unambiguously. Then, let 
one consider that “set of elementary choices”, which is an arbitrary set. It can be represented as a 
well-ordered series of qubits in virtue of the axiom of choice. That well-ordered series of qubits in turn 
is equivalent to a wave function, and thus, to a certain value of quantum information.  
Sufficiency 𝐼𝐼𝑞𝑞 → 𝐶𝐶∞. . Indeed, it is obvious:  𝐼𝐼𝑞𝑞 → 𝑄𝑄 → 𝐶𝐶∞ 
Then, the paper of Kochen and Specker (1967) referring only to any elements of the separable 
complex Hilbert space in the final analysis (and thus to all of them) can be interpreted thoroughly 
arithmetically one the above definition of arithmetic is introduced. Indeed, for example, the quantum 
superposition of two disjunctive possible states is an empty qubit, and thus, a unit in the so defined 
quantum arithmetic; and the crucial concept of finite partial Boolean algebra would include all rational 
numbers in the quantum arithmetic and would imply the necessary existence of irrational numbers, 
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i.e. Theorem 1 (Kochen, Specker 1967: 70) as an interpretation of the Pythagorean discovery about 
two millennia and a half ago. 
One need consider what  𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 and their necessary condition will represent after that transformation 
from the separable complex Hilbert space to arithmetic by classes of equivalence, i.e. from qubits to 
arithmetical units: any element of any partial Boolean algebra of observables in quantum mechanics 
will correspond to an ordered pair of natural numbers and thus to their fraction, i.e. to a certain rational 
number. Indeed, one has to count the number of qubits, in which any certain value is available (or 
“recorded”). Thus, any wave function will be mapped in a certain natural number.  
One is to emphasize expressively that “all natural numbers”, i.e. the concept of actual infinity is not 
involved in relation to the number of axis (equal to the number of qubits, in which certain value is 
available) of the separable complex Hilbert space after its transformation by classes of equivalence 
into arithmetic10. Thus, any wave function associated with one or more observables11 will be mapped 
as a certain natural number: and each natural number is finite, which follows immediately from the 
axiom of induction in Peano arithmetic.         
Indeed, the set of rational numbers represented as ordered pairs of integers satisfies the definition 
of finite partial Boolean algebra: 
For example, one generates a partial Boolean algebra by the separable "𝑍𝑍2"12 Hilbert space. Each 
vector in it is a binary positional notation of just one certain natural number. Then, the Kochen – 
Specker commensurability ♀ can coincide with the usual arithmetical commensurability defined by 
the availability of a common divisor.  
One can remove the mediation of the binary positional system by admitting the degenerated field 𝑍𝑍1 
consisting of a single element and where addition and multiplication coincide necessarily. The 
corresponding vectors in the separable 𝑍𝑍1 Hilbert space are interpretable directly as natural numbers 
or respectively, as their ordinals, i.e. as results of the usual counting of the elements of any finite set. 
That finite set can consist of qubits, which corresponds to the definition of an arithmetical units as the 
class of equivalence of all values of a qubit. 
Nonetheless whether 𝑍𝑍2 or 𝑍𝑍1 is used for the transition to arithmetic, the standard arithmetical 
commensurability satisfies the properties 1 – 4 (Kochen, Specker 1967: 64)  postulated for the 
commensurability ♀ necessary for any partial algebra to be defined. Then, the ordered pairs of natural 
number (i.e. the rational numbers) constitutes a partial finite Boolean algebra. 
A minimal geometrical structure (e.g. the plain, the two-dimensional Euclidean space, as in the 
original Pythagorean proof of incommensurability) is necessary to be added to the arithmetic for 
demonstrating incommensurability. In fact, the geometrical structure only exemplifies the concept of 
actual infinity, i.e. any actually infinite set. Even being countable, it is sufficient to generate 
incommensurability for any finite partial Boolean algebra. In turn, the partial Boolean algebra only 
                                                            
10 Even more, it cannot be involved in any consistent way. However, this statement need not be proved because is not 
necessary for the present proof. 
11 The case of more than one observable is discussed in the paper of Kochen—Specker (1967: 74-75). However, this case 
need not be discussed here respectively for any wave function associated with whether one or more observable is 
mapped as a certain natural number necessarily.  
12 The finite field 𝑍𝑍2 consisting of two elements is utilized as in the paper of Kochen and Specker for partial Boolean 
algebras as in Appendix 1 of present paper for the equivalent redefinition of Turing machine on the separable 𝑍𝑍2 Hilbert 
space. Here, it will used also for the definition of “partial Boolean algebra” in arithmetic. The link, historically and 
traditionally,  is directed oppositely: the arithmetical commensurability (respectively, incommensurability discovered by 
the Pythagorean school) is generalized by the concepts of “partial algebra” and “partial Boolean algebra” in their paper 
for the investigation of the problem of hidden variables in quantum mechanics. However, the present paper 
demonstrates that the arithmetical incommensurability is sufficient for the absence of hidden variables in quantum 
mechanics. That sufficiency is explicated by considering the separable complex Hilbert space of quantum mechanics as 
a generalization of arithmetic, or respectively, by considering arithmetic by classes of equivalents in that Hilbert space.   
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exemplifies any arithmetical structure sufficient to generate incommensurability being combined with 
the “actual infinity” of set theory13. 
Furthermore, if one interprets those ordered pairs of natural numbers as orthogonal vectors in the 
plain or in any other finitely dimensional Euclidean space, the length of the “diagonal” in the plain or 
a certain length in any other finitely dimensional Euclidean space (corresponding to the “finite partial 
Boolean algebra D” in Theorem 1 in the paper of Kochen and Specker (1967: 70) will be 
incommensurable with the natural numbers, i.e. it is an irrational number.  
In conclusion, any pair of wave functions being an element of any partial Boolean algebra of 
observables are mapped as a certain rational number after transition from the separable complex 
Hilbert space to arithmetic by classes of equivalence of qubits. 
The hidden variables 𝐻𝐻𝐻𝐻𝐾𝐾&𝑆𝑆 are defined as observables. A certain natural number 𝑛𝑛 thus finite 
corresponds to any observable represented by "𝑛𝑛" qubits after the transformation in arithmetic by 
classes of equivalence. Each of those"𝑛𝑛" qubits can be consider as an independent choice, totally a 
finite set consisting of "𝑛𝑛" elements as well. Thus, a finite set of 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹  is determined unambiguously. 
Statement 2.2 is proved.   
The essence of that simple proof of Statement 2.2 relies on the disjunctive distinguishability of the 
arithmetical finiteness from the set theory actual infinity in the concept of the separable complex 
Hilbert space in the final analysis. Its redefinition by means of qubits as well as the quantum definition 
of Peano arithmetic visualizes that distinguishability: actual infinity is only “within” the qubits, which 
as classes of equivalence, i.e. “outside of” them can be considered only arithmetically. Furthermore, 
the same approach visualizes the implicit arithmetical essence of the Kochen-Specker theorem as 
generalizing and thus corresponding to the ancient proof about the existence of incommensurability 
A statement sufficient for the proof is that any single 𝐶𝐶ℎ𝑞𝑞 between a finite set of states implies an 
infinite set of hidden variables. Statements 1 and 2 being more general imply it. This has to be 
translated in terms of “Turing machine” according to Official Problem Description. First of all, “hidden 
variable” needs that translation: 
Any hidden variable is equivalent to a set whether finite or infinite and to its characteristic property 
finite always. Only the latter can be processed by a Turing machine in general. The characteristic 
property can be meant in the program only, unlike the elements of a certain set, which are 
transformed into those of another set by the program. Indeed, the definition of Turing machine 
requires for it to process only finite sets by finite programs in order to be able to finish in any finite 
time for the time of a single step is neither zero nor infinitesimally small. Thus, any Turing machine 
can mean any infinite set only by means of its characteristic property as a finite tuple of instructions. 
Then, any hidden variable being equivalent to both finite and infinite sets in general has to refer to a 
certain finite tuple of instructions unambiguously.  
Anyway, if some hidden variable corresponds to a finite set, it can be represented absolutely in the 
tape of Turing machine, particularly in the input string, as a certain substring corresponding one-to-
one to that hidden variable. This corresponds to defining a set by the complete enumeration of its 
elements not needing any characteristic property. Thus, the corresponding tuple of instructions can 
be empty. If that is the case, only an infinite simultaneous substring can represent unambiguously an 
infinite set of hidden variables, each of which is represented in turn by a finite set on the tape (as far 
as the corresponding tuple of instructions is empty an no movement of tape is possible).  
This implies: (1) either the input string to be infinite, which the definition of Turing machine does not 
admit; (2) or the length of the tape to include an infinite set of cells simultaneously. The latter implies 

                                                            
13 That kind of incommensurability (i.e. the incommensurability of arithmetical finiteness and set-theory actual infinite) 
is inferred as “incompleteness” in the famous paper of Kurt Gödel published in 1931. It is not cited in the present paper 
for it is mentioned only as an illustration not being used as a premise in the deduction, furthermore being well-known. 
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an infinite time for processing because that infinite set cells needs infinite set of steps (configurations) 
as it to be obtained from the finite input string as it to be processed. 
Furthermore, that finite tuple cannot be empty for no set is defined by a zero tuple for there is no 
characteristic property. Consequently any hidden variable corresponds unambiguously to a tuple 
containing at least one instructions.  
Briefly, any infinite set of hidden variables needs an infinite set of finite tuples of instructions (roughly 
speaking, an “infinite program”) or an infinite set of cells simultaneously as a substring of the tape 
(roughly speaking, an “infinite tape”). Each of them implies an infinite set of steps of Turing machine 
and thus an infinite time of work.       
This consideration can be summarized as a few statements:    
Statement 3. The finite set of unambiguous criteria for an element to be chosen from its set is 
equivalent to a determined choice and to the negation of a fundamentally random choice: 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹 ↔
𝐷𝐷𝐶𝐶 ↔ ¬(𝐹𝐹𝑅𝑅𝐶𝐶). 
Statement 3.1. Any Turing machine can choose a certain element of a set only by DC (i.e. by a finite 
tuple of instructions).  
Statement 3.2. Any parameter (i.e. a certain value of a certain HV) needs at least one configuration 
of TM to determine a choice of a certain element of a set relevantly (i.e. a nonempty tuple of 
instructions for that HV). 
Statement 3.3. Any Turing machine needs an infinite time for FRC (for the infinite set of steps, each 
of which corresponds to one configuration).   
The last statement implies immediately the theorem which had to be proven as well as its corollary, 
which will be used further (because FRC is equivalent to QP according to Statements 1 and 2 above): 
Theorem: No Turing machine can resolve QP for any finite time. 
Corollary: QP belongs to the class of non-P problems. 
 
IV A description of both problem and solution in the notations of the “Official Problem Description” 
of CMI: 
The Turing machine trying to resolve the problem deterministically and denoted by “TM” is a Turing 
machine as it is defined in the appendix of the Official Problem Description. Let its input alphabet 
consist of two symbols: 𝛴𝛴 = ("0", "1"). Let 𝛴𝛴∗ be the set of finite strings written by the alphabet “𝛴𝛴” 
consisting of two elements. Let 𝜔𝜔 be an element of 𝛴𝛴∗ which is the input of 𝑅𝑅𝑛𝑛. As the computation of 
TM never halts, TM does not accept the string 𝜔𝜔.  Thus, the calculation of the input string 𝜔𝜔  by “TM” 
does not belong to “P”.  
Nonetheless, it belongs to “NP”. Indeed:  
The checking Turing machine (“CTM”) only tests deterministically a hypothetical solution X obtained 
non-deterministically somehow, e.g. “guessed”. Let its input alphabet consist also of the same two 
symbols 𝛴𝛴1 = ("0", "1"). The problem of CTM is whether X belongs to an “n-tuple” consisting of 𝑅𝑅𝑛𝑛 or 
not. The checking relation is defined so: 𝐶𝐶𝑅𝑅 = 𝑅𝑅𝑛𝑛 × 𝑋𝑋 ⊂ 𝛴𝛴∗ × 𝛴𝛴1∗. Thus, 𝐶𝐶𝑅𝑅 consists of “𝑛𝑛” elements 
as well as the associate language 𝐿𝐿𝐹𝐹𝐶𝐶. Consequently, 𝐿𝐿𝐹𝐹𝐶𝐶 ∈ 𝑃𝑃, and 𝐶𝐶𝑅𝑅 “is polynomial time”: 
Thus, the language of “TM” belongs to NP since |𝑋𝑋| is finite, and then: 
 ∀𝑅𝑅 ∈ 𝑅𝑅𝑛𝑛,∃𝑘𝑘 ∈ ℕ: {|𝑋𝑋| ≤ |𝑅𝑅|𝑘𝑘 and 𝐶𝐶𝑅𝑅(𝑅𝑅,𝑋𝑋) is polynomial-time}. 
Obviously, the restriction for both alphabets 𝛴𝛴 and 𝛴𝛴1 to consist of only two symbols is incidental: it 
originates from the practical realization of contemporary computer. Any of both alphabets can 
consists of any number of symbols, satisfying the “Official Problem Description”14, any finite natural 
number such that |𝛴𝛴|, |𝛴𝛴1| ≥ 2. 

                                                            
14 “It is easy to see that the answer is independent of the size of the alphabet 𝛴𝛴 (we assume |𝛴𝛴| ≥ 2), since strings over 
an alphabet of any fixed size can be efficiently coded by strings over a binary alphabet” (p. 2). 
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The assumption is that X is an arbitrary rational (or real) number represented with a certain accuracy 
as a finite string. However, the formulation of the problem imposes the requirement for X to be a 
certain element of the n-tuple 𝑅𝑅𝑛𝑛. Obviously, the solution above includes that restriction as a particular 
case.  
A class of problems is proved to be NP, but not P. Informally, that class includes all problems about 
the fundamentally random choice of an alternative among a finite set of possible alternatives. The 
Kochen – Specker theorem allows for a formal definition of “fundamentally random choice”, which 
can be discussed further in terms of Turing machine so that it can be proved to be undecidable 
problem for any Turing machine needing “infinite time” to resolve it and thus, being a non-P problem. 
Nonetheless, this is a NP problem since a finite set of possible solutions is necessary to be checked. 
 
V Two conjectures for further research: 
Intuitively, the following consideration seems to be convincing. Any non-P problem needs an infinite 
time to be resolved because any finite time is polynomial in the final analysis. This means that the 
following first conjecture would be granted: there exists an algorithm of Turing machine able to 
resolve any problem for a polynomial time if there exists an algorithm of Turing machine able to 
resolve the same problem for any finite time. On the contrary, any NP problems needs a certain finite 
and thus, polynomial time to be resolved. Consequently, the “P vs NP” should be isomorphic to a 
one-to-one mapping of an infinite set into a finite one: at first glance, a mistake in definition as far as 
the corresponding set seems to be empty.  
However, at least one class of solutions was demonstrated above and that set is not empty.  
A second conjecture is that the class at issue includes all possible solutions of the “P vs NP”.  
One need prove that only a fundamentally random choice is able to map an infinite set into a finite 
set one-to-one, furthermore. Outlines of that proof might be: 
The finite set, into which any infinite set is able to be mapped one-to-one is granted as a Dedekind 
finite set, i.e. there does not exist any one-to-one mapping of that single infinite set into any set being 
a “Dedekind finite set”.  
In order not to exist any one-to-one mapping, it is sufficient not to exist any mapping of that kind at 
all (i.e. including any one-to-one mapping). The latter is satisfied if the infinite set at issue is “mapped” 
into a set of finite sets as it is not properly a true mapping so that only one single certain set to 
correspond to the infinite set. The last “set of finite sets” in turn can be as (1) finite as (2) infinite.  
Though the case (2) by itself is very interesting, one can ignore it in the present context because it 
implies “non-NP”.  
If (1) is the case, one may exclude any “hidden variables”15, which would determine the choice of a 
certain finite set as the image of the infinite set implicitly. Indeed, if the latter could be the case, one 
might complement the defective “mapping” to a normal mapping by means of relevant values of those 
hidden variables. However, the normal mapping of an infinite set into a (non-Dedekind) finite set is 
impossible, thus, the “hidden variables” are also impossible in virtue of modus tollens. 
If no hidden variable can exist, this is equivalent for the choice of a finite set as corresponding to the 
infinite set to be fundamentally random, at least intuitively convincingly.  
The method involving the Dedekind finiteness for proving the second conjecture need be “doubled” 
for proving the first conjecture. One utilizes two probabilistic mappings (each implying a different 
statistic distribution) of the same countable set into two different finite sets rather than only a single 
one as for proving the second conjecture. This is what is meant as the method to be “doubled”. 
Then, the one-to-one mapping of the countable set into the first finite set implies the reverse bijective 
mapping. Further, a bijective mapping composed by the latter one (as the first one in the composed 
mapping) and the other mapping of the countable set in the second finite set (as the second one in 

                                                            
15 The introduced term coincides with the analogical one in quantum mechanics purposely. 
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the composed mapping exists necessarily. It can be defined to be a “Dedekind bijective mapping” 
between any two finite sets consisting of different numbers of elements. 
Then, the same kind of “Dedekind bijective mapping” is able to equate any algorithm consisting of 
any finite number steps (e.g. an algorithm ending for any finite time) to any other of the same kind 
(e.g. an algorithm ending for any polynomial time). The proof by “Dedekind bijective mapping” would 
prove only “pure existence” for the latter algorithm because of the only statistical link between the 
former and the latter algorithm. 
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Appendix 1: Redefinition of Turing machine in terms of the separable "𝑍𝑍2"16 Hilbert space 

The redefinition extends the arithmetical definition of Turing machine (without any reference to “actual 
infinity”) to an equivalent definition, to which the “infinite” calculations of quantum computer can make 
sense. This is not necessary for the formal proof of the “P vs NP problem”, but for the meaning of the 
class “non-P, but NP” to be understood. 
The separable "𝑍𝑍2" Hilbert space is defined on the field of two elements, e.g. so that the axiom of fil  
The redefinition consists in the replacement of one interpretation of a formal structure by another and 
equivalent interpretation of the same formal structure. Thus, the redefinition represents the 
successive equivalent replacement of the terms that is necessary to be substituted in the “Appendix” 
of the “Official Problem Description” by the terms relevant to the separable "𝑍𝑍2" Hilbert space. 
Anyway, what need not be replaced is repeated without change to be conserved the context. What 
is substituted or added is underlined in order to be clear what is changed: 
A Turing machine M consists of a finite state control (i.e., a finite program) attached to a read/write 
head moving on an infinite tape. The separable "𝑍𝑍2" Hilbert space is the tape T with a specified input 
alphabet 𝛴𝛴 consisting of the two elements of 𝑍𝑍2, which is a true subset of the alphabet 𝛤𝛤 consisting 
of three symbols: the two elements of 𝑍𝑍2 and b meaning any axis of T. At each step in a computation, 
M is in some state q in a specified finite set Q of possible states. Initially, an infinite subspace of T is 
chosen by a finite (complementing) vector 𝐻𝐻0 of T (thus, “written” on adjacent axes of T), the head 
scans the left-most symbol of the vector 𝐻𝐻0, and M is in the initial state 𝑞𝑞0. At each step M is in some 
state q and the head is scanning a tape axis containing some value 𝑠𝑠, and the action performed 
depends on the pair (q, s) and is specified by the machine’s transition function (or program). The 
action consists of the choice of a certain value on the scanned axis, moving the head left or right one 
axis, and assuming a new state. 
Formally, a Turing machine M is a tuple (𝛴𝛴,𝛤𝛤,𝑄𝑄, 𝛿𝛿), where 𝛴𝛴,𝛤𝛤,𝑄𝑄 are finite nonempty sets with 
 𝛴𝛴 ⊆ 𝛤𝛤 and 𝑏𝑏 ∈ 𝛤𝛤 −  𝛴𝛴. Here, "𝛴𝛴" is interpreted as the two elements of 𝑍𝑍2, "𝛤𝛤" as any axis of T, and 
“b” means the “empty” axis, on which no value (i.e. no element of 𝑍𝑍2) is chosen.  The state set Q 
contains three special states 𝑞𝑞0, 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎. The transition function 𝛿𝛿 satisfies: 

𝛿𝛿: �𝑄𝑄 − �𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎�� × 𝛤𝛤 → 𝑄𝑄 × 𝛤𝛤 × {−1,1} 
If 𝛿𝛿(𝑞𝑞, 𝑠𝑠)  = (𝑞𝑞′, 𝑠𝑠′, ℎ), the interpretation is that, if M is in state q scanning the value s, then q’ is the 
new state, s’ is the value changed, and the tape head moves left or right one square depending on 
whether h is −1 or 1. This means that the transition function 𝛿𝛿(q,s) can choose exactly one option 
according to the program among a few: either (1) q’=q+h (three disjunctive options), and “s” does 
not matter; or (2) s=s’ (two disjunctive options: “s” either conserves or changes), and “h” does no 
matter. “q” is interpreted as a certain finite dimension of T; “q-1” means a certain vector, and “q+1” 
either a certain vector or a relevant “blank” subspace of T; both “s” and “s’” can be equal to any of 
the two values of  𝑍𝑍2. 
We assume that the sets Q and 𝛤𝛤 are disjoint. This means that 𝛤𝛤 is restricted to refer only to the 
infinite subspace of T unambiguously determined by any finite Q.  
A configuration of 𝑀𝑀 is a string 𝑥𝑥𝑞𝑞𝑥𝑥 with 𝑥𝑥,𝑥𝑥 ∈ 𝛤𝛤∗, 𝑥𝑥 not the empty string, and 𝑞𝑞 ∈ 𝑄𝑄. The language 
Γ∗ is defined on T as follows: all ordered pairs of (i) a finite vector of T (corresponding to the 
alphabet Σ) and (ii) a finite subspace T (corresponding to the symbol b = Γ − Σ). 
The interpretation of the configuration 𝑥𝑥𝑞𝑞𝑥𝑥 is that M is in state 𝑞𝑞 with 𝑥𝑥𝑥𝑥 ∈ 𝛤𝛤∗, with its head scanning 
the left-most symbol of 𝑥𝑥 where 𝑥𝑥 is a finite vector of T, and 𝑥𝑥 ∈ 𝛤𝛤∗.   
If 𝐶𝐶 and 𝐶𝐶’ are configurations, then 𝐶𝐶

𝑇𝑇
→ 𝐶𝐶′ if 𝐶𝐶 =  𝑥𝑥𝑞𝑞𝑠𝑠𝑥𝑥 and 𝛿𝛿(𝑞𝑞, 𝑠𝑠)  =  𝛿𝛿(𝑞𝑞′, 𝑠𝑠′, ℎ) and one of the 

following holds: 
"𝐶𝐶′ =  𝑥𝑥𝑠𝑠′𝑞𝑞′𝑥𝑥 and ℎ =  1 and 𝑥𝑥 is nonempty. 

                                                            
16 "𝑍𝑍2" is a finite field consisting of two elements equivalent to an alphabet 𝛴𝛴 of Turing machine. 
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𝐶𝐶′ =  𝑥𝑥𝑠𝑠′𝑞𝑞′𝑏𝑏 and ℎ =  1 and 𝑥𝑥 is empty. 
𝐶𝐶′ =  𝑥𝑥′𝑞𝑞′𝑎𝑎𝑠𝑠′𝑥𝑥 and ℎ =  −1 and 𝑥𝑥 =  𝑥𝑥′𝑎𝑎 for some 𝑎𝑎 ∈  𝛤𝛤. 
𝐶𝐶′ =  𝑞𝑞′𝑏𝑏𝑠𝑠′𝑥𝑥 and ℎ =  −1 and 𝑥𝑥 is empty. 
A configuration 𝑥𝑥𝑞𝑞𝑥𝑥 is halting if 𝑞𝑞 ∈ {𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎}. Note that for each nonhalting configuration 𝐶𝐶 

there is a unique configuration 𝐶𝐶′ such that 𝐶𝐶
 𝑇𝑇 
�� 𝐶𝐶′. 

The computation of M on input 𝜔𝜔 ∈  𝛴𝛴∗ (where is 𝛴𝛴∗ is a language written by the alphabet 𝛴𝛴) is the 
unique sequence 𝐶𝐶0,𝐶𝐶1, . .. of configurations such that 𝐶𝐶0  =  𝑞𝑞0𝜔𝜔 (or 𝐶𝐶0  =  𝑞𝑞0𝑏𝑏 if𝜔𝜔 is empty) and 

 𝐶𝐶𝑖𝑖
 𝑇𝑇 
�� 𝐶𝐶𝑖𝑖+1for each 𝑖𝑖 with 𝐶𝐶𝑖𝑖+1 in the computation, and either the sequence is infinite or it ends in a 

halting configuration. If the computation is finite, then the number of steps is one less than the number 
of configurations; otherwise the number of steps is infinite. We say that M accepts 𝜔𝜔 iff the 
computation is finite and the final configuration contains the state 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
Informally, any Turing machine finds a certain result (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎) starting from a 
certain input 𝜔𝜔 for a finite number of configurations or not. Those three cases are disjunctively. In 
fact, the definition by Hilbert space T as above is a generalization as far as it admits to find a result 
(𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) not for a finite number of configurations. The generalization (unlike a properly 
arithmetical definition of Turing machine) needs “actual infinity” for the transfinite calculations to make 
sense: 
New and new dimensions of T are added to the dimension of the finite input 𝜔𝜔 according to the 
program unambiguously until a result be obtained (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎). A calculation 
being defined by Hilbert space T can continue as if “in infinity” where it also can obtain a result  
(𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎). If any Turing machine makes that calculation, it would need an 
infinite number of configurations and thus, infinite time. However, if the same calculation is made by 
a quantum computer, it can finish in a certain (even zero, theoretically) time. Once a certain result of 
that calculation whether (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎) is delivered by a quantum computer, it can 
be checked by a Turing machine for some polynomial time(“non-P, but NP) or not (“non-P and non-
NP”): the paper demonstrates that the former class is not empty.   
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Appendix 2. Definition of quantum computer as a generalization of Turing machine 
The utilized subclass of non-P problems cannot be resolved by any Turing machine for any finite 
time. Their definition relies on the concept of quantum superposition and involves implicitly “quantum 
computer” as that calculating machine able to resolve them in some finite time.  
Quantum computer is defined bellow as a minimal generalization of Turing machine allowing for an 
actual infinite set as its alphabet 𝛤𝛤 consisting of infinite set 𝛴𝛴 of possible values of any single qubit 
and their class of equivalence, the same for all qubits, the single symbol “blanc” 𝑏𝑏: the 
complement 𝛤𝛤 − 𝛴𝛴 of 𝛴𝛴 to 𝛤𝛤. This implies an infinite set of words admissible in the language 𝛴𝛴∗ and 
writable by the infinite alphabet 𝛴𝛴. The program of quantum computer is also finite as that of Turing 
machine. 
Informally, this means that all bits of the tape of Turing machine are replaced by qubits on the 
corresponding tape of quantum computer and this is the single and exhausting difference between 
Turing machine and quantum computer. Furthermore, that model is sufficient to describe the work of 
any real quantum computer as far as it accomplishes a certain finite program utilizing a finite set of 
qubits. Indeed, if that is the case, the tape of quantum computer is the separable complex Hilbert 
space. The state set Q of quantum computer refers to some finite subspace of the separable complex 
Hilbert space.  Any other state set 𝑄𝑄∞, which refers to some infinite subspace of its, can be 
equivalently redefined to the former case of finite subspaces. The actual infinity implicitly involved in 
the definition of a single qubit is sufficient to describe any infinite calculation17 or at least a very wide 
class of infinite calculations. That assumption allows for conserving the program of quantum 
computer as finite as the same or isomorphic to that of Turing machine. Indeed, any infinite 
configuration of quantum computer can be equivalently described by a certain finite configuration, to 
which is added a single specific qubit being able to describe exhaustively the difference between 
meant infinite configuration and the certain finite configuration. 
The above redefinition of Turing machine in terms of the separable "𝑍𝑍2" Hilbert space can be 
considered also as an intermediate stage for defining quantum computer as follows, where Z2 is 
generalized to the field of complex numbers.    
What follows is a new, relevantly generalized repetition of the above redefinition of Turing machine 
already in terms of the separable complex Hilbert space. What is changed in comparison to the 
redefinition of Turing machine in Appendix 1 is italicized. It corresponds unambiguously to what is 
underlined in the previous redefinition: both redefinitions share the same context of the official 
definition of Turing machine, which is not changed on both cases and being not italicized nor 
underlined. Anyway, the term “Turing machine” is replaced by “quantum computer” in the following 
redefinition even in the context, and this only differs the contexts in both cases: 
 
A quantum computer C consists of a finite state control (i.e., a finite program) attached to a read/write 
head moving on an infinite tape. The separable complex  Hilbert space is the tape T with a specified 
input alphabet 𝛴𝛴 consisting of the infinite set of elements of the field of complex numbers, which is a 
true subset of the alphabet 𝛤𝛤 consisting of an infinite set of symbols: the infinite set of elements of 
the field of complex numbers, and b meaning any axis of T. At each step in a computation, M is in 
some state q in a specified finite set Q of possible states. Initially, an infinite subspace of T is chosen 
by a finite (complementing) vector 𝐻𝐻0 of T (thus, “written” on adjacent axes of T), the head scans the 
left-most symbol of the vector 𝐻𝐻0, and M is in the initial state 𝑞𝑞0. At each step M is in some state q 
and the head is scanning a tape axis containing some value 𝑠𝑠, and the action performed depends on 
the pair (q, s) and is specified by the machine’s transition function (or program). The action consists 
of the choice of a certain value on the scanned axis, moving the head left or right one axis, and 
assuming a new state. 
                                                            
17 Of course, this is only a conjecture needing a rigorous mathematical proof. Furthermore, this conjecture is 
equivalent to the assumption that quantum computer is able to resolve any problem for a certain finite time.   



17 
 
Formally, a quantum computer C is a tuple (𝛴𝛴,𝛤𝛤,𝑄𝑄, 𝛿𝛿) infinite in general, where only 𝑄𝑄 is a finite 
nonempty set, and 𝛴𝛴,𝛤𝛤 are infinite sets in general with 𝛴𝛴 ⊆ 𝛤𝛤 and 𝑏𝑏 ∈ 𝛤𝛤 −  𝛴𝛴. Here, "𝛴𝛴" is interpreted 
as the infinite set of the field of complex numbers, "𝛤𝛤" as any axis of T, and “b” means the “empty” 
axis, on which no value (i.e. no element of the field of complex numbers) is chosen.  The state set Q 
contains three special states 𝑞𝑞0, 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎. The transition function 𝛿𝛿 satisfies: 

𝛿𝛿: �𝑄𝑄 − �𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎�� × 𝛤𝛤 → 𝑄𝑄 × 𝛤𝛤 × {−1,1} 
If 𝛿𝛿(𝑞𝑞, 𝑠𝑠)  = (𝑞𝑞′, 𝑠𝑠′, ℎ), the interpretation is that, if M is in state q scanning the value s, then q’ is the 
new state, s’ is the value changed, and the tape head moves left or right one square depending on 
whether h is −1 or 1. This means that the transition function 𝛿𝛿(q,s) can choose exactly one option 
according to the program among a few: either (1) q’=q+h (three disjunctive options), and “s” does not 
matter; or (2) s=s’ (two disjunctive options: “s” either conserves or changes), and “h” does no matter. 
“q” is interpreted as a certain finite dimension of T; “q-1” means a certain vector, and “q+1” either a 
certain vector or a relevant “blank” subspace of T; both “s” and “s’” can be equal to any of the two 
values of  𝑍𝑍2. 
We assume that the sets Q and 𝛤𝛤 are disjoint. This means that 𝛤𝛤 is restricted to refer only to the 
infinite subspace of T unambiguously determined by any finite Q.  
A configuration of 𝑀𝑀 is a string 𝑥𝑥𝑞𝑞𝑥𝑥 with 𝑥𝑥,𝑥𝑥 ∈ 𝛤𝛤∗, 𝑥𝑥 not the empty string, and 𝑞𝑞 ∈ 𝑄𝑄. The language 
Γ∗ is defined on T as follows: all ordered pairs of (i) a finite vector of T (corresponding to the 
alphabet Σ) and (ii) a finite subspace T (corresponding to the symbol b = Γ − Σ). 
The interpretation of the configuration 𝑥𝑥𝑞𝑞𝑥𝑥 is that M is in state 𝑞𝑞 with 𝑥𝑥𝑥𝑥 ∈ 𝛤𝛤∗, with its head scanning 
the left-most symbol of 𝑥𝑥 where 𝑥𝑥 is a finite vector of T, and 𝑥𝑥 ∈ 𝛤𝛤∗.   
If 𝐶𝐶 and 𝐶𝐶’ are configurations, then 𝐶𝐶

𝑇𝑇
→ 𝐶𝐶′ if 𝐶𝐶 =  𝑥𝑥𝑞𝑞𝑠𝑠𝑥𝑥 and 𝛿𝛿(𝑞𝑞, 𝑠𝑠)  =  𝛿𝛿(𝑞𝑞′, 𝑠𝑠′, ℎ) and one of the 

following holds: 
"𝐶𝐶′ =  𝑥𝑥𝑠𝑠′𝑞𝑞′𝑥𝑥 and ℎ =  1 and 𝑥𝑥 is nonempty. 
𝐶𝐶′ =  𝑥𝑥𝑠𝑠′𝑞𝑞′𝑏𝑏 and ℎ =  1 and 𝑥𝑥 is empty. 
𝐶𝐶′ =  𝑥𝑥′𝑞𝑞′𝑎𝑎𝑠𝑠′𝑥𝑥 and ℎ =  −1 and 𝑥𝑥 =  𝑥𝑥′𝑎𝑎 for some 𝑎𝑎 ∈  𝛤𝛤. 
𝐶𝐶′ =  𝑞𝑞′𝑏𝑏𝑠𝑠′𝑥𝑥 and ℎ =  −1 and 𝑥𝑥 is empty. 
A configuration 𝑥𝑥𝑞𝑞𝑥𝑥 is halting if 𝑞𝑞 ∈ {𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎}. Note that for each nonhalting configuration 𝐶𝐶 

there is a unique configuration 𝐶𝐶′ such that 𝐶𝐶
 𝑇𝑇 
�� 𝐶𝐶′. 

The computation of M on input 𝜔𝜔 ∈  𝛴𝛴∗ (where is 𝛴𝛴∗ is a language written by the alphabet 𝛴𝛴) is the 
unique sequence 𝐶𝐶0,𝐶𝐶1, . .. of configurations such that 𝐶𝐶0  =  𝑞𝑞0𝜔𝜔 (or 𝐶𝐶0  =  𝑞𝑞0𝑏𝑏 if𝜔𝜔 is empty) and 

 𝐶𝐶𝑖𝑖
 𝑇𝑇 
�� 𝐶𝐶𝑖𝑖+1for each 𝑖𝑖 with 𝐶𝐶𝑖𝑖+1 in the computation, and either the sequence is infinite or it ends in a 

halting configuration. If the computation is finite, then the number of steps is one less than the number 
of configurations; otherwise the number of steps is infinite. We say that M accepts 𝜔𝜔 iff the 
computation is finite and the final configuration contains the state 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
Informally, any quantum computer finds a certain result (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎) starting from 
a certain input 𝜔𝜔 for a finite number of configurations or not. Those three cases are disjunctively. In 
fact, the definition by Hilbert space T as above is a generalization as far as it admits to find a result 
(𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) not for a finite number of configurations. The generalization (unlike a properly 
arithmetical definition of Turing machine) needs “actual infinity” for the transfinite calculations to make 
sense: 
New and new dimensions of T are added to the dimension of the finite input 𝜔𝜔 according to the 
program unambiguously until a result be obtained (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎). A calculation 
being defined by Hilbert space T can continue as if “in infinity” where it also can obtain a result  
(𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎). If any Turing machine makes that calculation, it would need an 
infinite number of configurations and thus, infinite time. However, if the same calculation is made by 
a quantum computer, it can finish in a certain (even zero, theoretically) time. Once a certain result of 
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that calculation whether (𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or not (𝑞𝑞 = 𝑞𝑞𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎) is delivered by a quantum computer, it can 
be checked by a Turing machine for some polynomial time(“non-P, but NP) or not (“non-P and non-
NP”): the paper demonstrates that the former class is not empty.     
Quantum computer differs from Turing machine by actual infinity, which is allowed for the former. 
Anyway, the use of actual infinity is restricted only to the alphabet in the definition of quantum 
computer. The restriction relies on the intermediate stage of the redefinition of Turing machine by an 
infinitely dimensional vector space on a finite field. That finite field is transformed into an infinite field 
in the ultimate definition of quantum computer and allows for the aspects of arithmetic (finite) and set 
theory (actual infinite) to be both unified and disjunctively divided: the finite, arithmetical aspect is 
referred to the dimensionality of the vector space, and the actually infinite, set theory aspect to the 
field, on which the vector space is defined. An eventual appearance of actual infinity in the steps and 
configurations of quantum computer can be transferred always into the values of qubits, thus 
conserving the former finite, and the corresponding calculation as accomplishable for a certain finite 
time, theoretically even zero.         
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