
EasyChair Preprint
№ 15439

From Java to Flutter: Evaluating Modern
Frameworks in Mobile App Development with
Semantic Editor

Balachandran Nair Sumadevi Sarada

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 18, 2024

Abstract —This study investigates the transition from Java to

Flutter in mobile app development, using the Semantic Editor

application as a case study. It evaluates the benefits of adopting

Flutter over traditional Java methods in the fast-evolving mobile

technology landscape. The research starts with an overview of

Java's historical significance in app development and introduces

Flutter as a contemporary framework designed to tackle issues

like platform fragmentation and code redundancy. Versions of

the Semantic Editor were developed in both Java and Flutter to

compare aspects such as development efficiency, user interface

quality, and overall performance. The findings demonstrate that

Flutter significantly enhances development speed, interface

adaptability, and user experience when compared to Java.

Additionally, a theoretical comparison with React Native was

performed, ultimately favoring Flutter for its superior

performance and UI capabilities. This study offers valuable

insights for development teams considering a switch to Flutter,

providing guidance for strategic decision-making in future

mobile app projects. The results suggest that Flutter's cross-

platform approach and advanced features make it an attractive

choice for modern mobile app development, especially for

applications demanding complex user interfaces and real-time

collaboration functionalities.

Index Terms— Java, Flutter, React Native, Cross-Platform

Development, Mobile App Development, User Interface,

Performance, Code Reusability.

I. INTRODUCTION

In recent years, the rapid growth of mobile technologies has

significantly increased the demand for mobile applications.

This surge has necessitated crucial decisions regarding the

choice of technology stacks used in application development,

particularly for the Android operating system. Historically,

Java has been the primary language for Android development

since the OS's inception in 2008, being widely recognized for

its robustness and versatility. Java's features such as object-

oriented structure, platform independence, automatic garbage

collection, type safety, and multithreading support have

established it as a foundational language in mobile

development.

However, despite Java's capabilities and its pivotal role in

the evolution of mobile applications, it presents several

limitations such as substantial memory consumption,

performance overhead, longer "cold start" times, and limited

control over memory and hardware. These constraints have

propelled developers to seek more efficient and flexible

alternatives.

Enter Flutter, introduced by Google in 2016, which has

quickly garnered attention in the mobile development realm.

Unlike traditional frameworks that relied on web views or

native components, Flutter utilizes a unique approach by

employing a rendering engine to generate custom interfaces

directly. This method ensures a highly native-like user

experience across different platforms. Flutter's advantages

include cross-platform development capabilities, a rich set of

customizable widgets, efficient rendering engines, and the

innovative "Stateful Hot Reload" feature, which accelerates

development cycles by allowing developers to instantly see

changes in the app.

Transitioning from Java to Flutter

Motivation and Background

The shift from Java to Flutter is not merely a change of

tools but a strategic response to evolving development needs.

This transition is motivated by several factors:

Enhanced Development Speed: Flutter's hot reload feature

significantly shortens the development loop by allowing

immediate visual feedback for changes, enhancing developer

productivity.

Cross-Platform Efficiency: With Flutter, developers can

maintain a single codebase for both Android and iOS

platforms, which simplifies the development process and

reduces time and resources.

Expressive and Dynamic UIs: Flutter's widget-based

architecture allows the creation of highly responsive and

aesthetically pleasing user interfaces, which can be more

cumbersome to achieve with Java.

Growing Community and Ecosystem: Flutter's increasing

popularity has fostered a vibrant community and a growing

ecosystem of tools and libraries, providing robust support for

developers.

Resource Optimization: By utilizing a single codebase,

Flutter reduces the need for platform-specific teams, cutting

down on the overhead associated with managing separate

development streams for Android and iOS.

II. BACKGROUND

The development of mobile applications has undergone

significant transformations over the past few decades, driven

largely by advances in programming languages and

development frameworks. Java, introduced by Sun

Microsystems in 1995, has been a staple in the development

community, not least because of its adoption as the official

language for Android development when Google launched

From Java to Flutter: Evaluating Modern

Frameworks in Mobile App Development with

Semantic Editor

SARADA BALACHANDRAN NAIR SUMADEVI

Decentralized Bigdata Team, RIKEN, Tokyo

the operating system in 2008. Java's architecture, which

emphasizes security, portability, and high performance, made

it an ideal choice for the burgeoning mobile app market

(Oracle, "Java Language and Virtual Machine

Specifications," Oracle, 2021).

Despite its strengths, Java has faced criticism for its

verbosity, memory consumption, and sometimes sluggish

performance on less capable devices, which are critical

considerations in mobile environments. These limitations

have prompted the exploration of more versatile and efficient

technologies (Lindholm, T., Yellin, F., & Walrath, K., "The

Java Virtual Machine Specification," Addison-Wesley, 1999).

In response to these evolving needs, Google introduced

Flutter in 2017, initially as an open-source mobile application

development framework. Flutter allows developers to build

high-performance, natively compiled applications for mobile,

web, and desktop from a single codebase. Unlike traditional

frameworks that require separate views for each platform,

Flutter employs a unique approach by using a proprietary

rendering engine to draw UIs, thus offering excellent

performance and visual consistency across platforms (Google,

"Introducing Flutter," Google, 2017).

The use of Dart, a language optimized for client-side

development, as Flutter's programming language further

simplifies the development process, providing features like

just-in-time compilation and hot reload that significantly

enhance developer productivity (Google, "Dart Language

Overview," Google, 2021).

As mobile technology continues to advance, the shift from

Java to more dynamic frameworks like Flutter represents not

just a technological evolution but also a response to the global

market's demand for more responsive and visually appealing

applications.

Why Flutter not React Native ?

In this comparative analysis [12], a fair and comprehensive

evaluation was conducted between Flutter and React Native

across several performance metrics, including CPU usage,

memory usage, and janky frames, under different test

conditions. Overall, Flutter demonstrated superior CPU

performance with an average CPU usage of 43.42%,

compared to React Native’s higher average of 52.92%.

Although Flutter exhibited higher initial spikes in CPU usage,

it stabilized more efficiently over time. In terms of memory

usage, React Native had a slight edge with an average usage

of 7.85%, while Flutter’s average was marginally higher at

8.06%. However, Flutter excelled in maintaining smoother

performance with fewer janky frames, averaging 2.6

compared to React Native’s 3.6.

When evaluating the performance of accessing hardware

functionality through the camera implementation, the results

indicated mixed outcomes. React Native showed better CPU

efficiency with an average usage of 49.06%, significantly

lower than Flutter's 81.63%. Conversely, Flutter

outperformed React Native in memory usage, averaging

5.62% compared to React Native’s 7.76%, and in reducing

janky frames, with Flutter averaging just 0.8 compared to

React Native's substantial 52.6.

Additionally, in evaluating the application’s search feature,

Flutter consistently demonstrated superior performance

across all metrics. The average CPU usage for Flutter was

11.34%, markedly lower than React Native’s 36.21%.

Similarly, Flutter had better memory efficiency with an

average usage of 4.91%, compared to React Native’s 5.77%.

Flutter also maintained smoother performance with fewer

janky frames, averaging 2, whereas React Native averaged

6.6 janky frames.

This fair comparison has highlighted Flutter's consistent

superiority in CPU efficiency and reducing janky frames

across various conditions, although React Native

occasionally exhibited slightly better memory usage. These

insights have been instrumental in choosing Flutter over

React Native for its overall performance advantages.

Fig 1. Performance Comparison of Flutter and React Native Across

Multiple Metrics

III. PROBLEM DEFINITION

This section revisits pertinent previous studies to set the

stage for this research, which aims to critically evaluate and

compare the user interface (UI) quality and performance of

the Semantic Editor developed in Java and Flutter. This

comparison aims to determine which development

framework better suits the needs of modern application

design, particularly in terms of efficiency and user experience.

i. Purpose

The Semantic Editor has been implemented using both

Java and Flutter to explore which platform offers superior

support for creating intuitive and effective user interfaces.

Despite the foundational role of these technologies in

application development, a systematic comparison of their

capabilities in actual use scenarios, particularly in UI

responsiveness and overall performance, has been lacking.

To address this gap, a series of experiments were

conducted focusing on analyzing and comparing the UI

design capabilities and performance metrics of the Semantic

Editor across these two platforms. The experiments aimed to

assess aspects such as the ease of use, responsiveness of the

interface, and the smoothness of interactions within

collaborative environments.

Expected outcomes from this comparative analysis

include detailed insights into the advantages and

limitations of Java and Flutter in application development.

Additionally, a theoretical evaluation of React Native was

conducted to broaden the perspective. Based on this

evaluation, Flutter was chosen over React Native for its

superior performance and UI design capabilities. These

findings will help identify which platform better meets the

criteria for effective UI design and performance and will

guide future enhancements to the Semantic Editor.

Ultimately, this research contributes to broader discussions

on choosing appropriate technologies for developing high-

performance, user-friendly applications.

ii. Hypotheses

The general hypothesis of this study is:

The Semantic Editor developed in Flutter will overall

outperform the Java version in terms of development

efficiency, user interface quality, and end-user

satisfaction, demonstrating the advantages of modern

cross-platform frameworks in creating superior

application experiences.

To comprehensively test this general hypothesis, we have

delineated it into the following three specific hypotheses,

each addressing distinct aspects of the application's

performance and user interaction, as outlined earlier:

Hypothesis 1: Flutter will exhibit faster development

cycles and reduced time-to-market for the Semantic Editor

compared to Java, owing to its single codebase approach and

hot reload capabilities.

Hypothesis 2: The Semantic Editor developed in Flutter

will provide a more responsive and visually appealing user

interface than its Java counterpart, due to Flutter's rich set of

customizable widgets and inherent high-performance

rendering engine.

Hypothesis 3: Users will experience greater satisfaction

and higher efficiency when collaborating using the Semantic

Editor developed in Flutter compared to Java, primarily

because of Flutter’s streamlined UI components and better

performance consistency across platforms.

These hypotheses are crafted to explore and validate the

various benefits of using Flutter over Java in different phases

of software development and user engagement, providing a

structured framework for our experimental evaluation.

IV. INTRODUCTION TO THE SYSTEM

i. Semantic Editor Overview

Semantic Editor [11] is an innovative application

specifically designed to facilitate the practice of the

Diagrammatic Semantic Authoring (DSA) standard.

This tool is pivotal for those engaged in the creation

and manipulation of semantic graphs through

collaborative efforts.

Core Features include,

1. Graph-Based Editing System:

The Semantic Editor offers a sophisticated graph-

based editing system, enabling users to interactively

create, move, delete, and modify nodes and links

within a graphical interface.

Each link is annotated within the DSA framework,

signifying the semantic relationships between nodes,

which are crucial for interpreting the underlying

structure and meaning of the data.

2. Collaborative Editing Capabilities:

The application is engineered to support real-time

collaborative editing, allowing multiple users at

different locations to work concurrently on the same

document.

It achieves this through a cloud-based architecture

that integrates a graphical synchronization system,

ensuring that all changes are reflected instantly

across all users’ views.

3. Security and Data Sharing

Personal Life Repository (PLR)[11]: Semantic

Editor incorporates the Personal Life Repository

(PLR) to enhance communication security. PLR is a

decentralized, secure, low-cost, and scalable

Personal Data Store (PDS) that facilitates the social

sharing and utilization of personal and other data

based on the intentions of the data subjects.

End-to-End Encryption: Users, including

individuals and organizations, can securely share

their data directly, bypassing any intermediaries,

thanks to end-to-end encryption.

4. Cost-Efficiency: The operational cost for both

application/service providers and end-users is

minimized as the platform supports the use of

common cloud storage solutions like Google

Drive and OneDrive for storing shared data.

ii. Functionalities

RDF-Graph Composition: Users have the capability

to dynamically interact with the RDF graph by

creating, moving, deleting, and modifying nodes and

links. Nodes are versatile, capable of containing text

such as simple sentences or phrases, which adds

another layer of data representation.

Real-Time Collaboration: The editor is designed to

support seamless, real-time collaboration among

multiple users, facilitated by robust data

synchronization through public clouds. This feature

is essential for teams that operate in fast-paced

environments where immediate feedback and

iterative changes are common.

Semantic Relationships

The tool utilizes an ontology of discourse and other

relationships to comprehensively address and

manage the interactions among nodes. This ontology

is crucial as it defines the basic semantic and

pragmatic relations, which are fundamental for

maintaining the integrity and utility of the semantic

graphs created within the editor.

iii. Technical Architecture

The technical architecture of semantic editor in

both Java and flutter is discussed in this paper.
1. Java Architecture

Fig 2: Java Architecture of Semantic Editor

The system architecture revolves around the Semantic

Editor application, which is designed using JavaFX, a robust

platform for creating desktop applications with sophisticated

graphical user interfaces (GUIs). JavaFX serves as the

backbone of the Semantic Editor, enabling developers to craft

an intuitive and visually appealing interface for users to

interact with. Through its seamless integration with the PLR

PLR system

GUI in JavaFX

Google Drive, SkyDrive

library, JavaFX ensures that the Semantic Editor's

functionalities align with the PLR standard, facilitating

compatibility and interoperability with other PLR-compliant

applications. This integration allows users to seamlessly

create, edit, and manage public land records data within the

Semantic Editor's user-friendly interface, leveraging

JavaFX's rich set of UI controls and layout options.

Furthermore, JavaFX's integration with the PLR library

extends to crucial aspects such as user identification, security

management, and encryption, ensuring a secure and seamless

user experience within the PLR ecosystem. Overall, JavaFX

plays a pivotal role in empowering users to interact with

public land records data efficiently and securely through the

Semantic Editor application.

Fig 3: Java UI of Semantic Editor

In our current system architecture, which relies heavily on

JavaFX for the development of the Semantic Editor's

graphical user interface (GUI), we've encountered notable

drawbacks that have significantly impacted user experience

and system performance.

• Lack of robust optimization options within

JavaFX: JavaFX's limited optimization options

make it difficult to fine-tune the application's

performance for better responsiveness and

efficiency. The UI components were very limited

compared to flutter which made it difficult to

implement the requirements.

• Continued performance bottlenecks and

instability despite optimization efforts: Despite

attempts to optimize the application's

performance, performance bottlenecks persist,

leading to unstable behavior and inconsistent user

experience. When multiple threads were running

in the backend the application freeze most of the

time which affected the usability of the

application.

• Slower performance compared to native GUI

frameworks: JavaFX's performance is slower

when compared to native GUI frameworks,

affecting the overall responsiveness and speed of

the application. Each time the screen refresh was

called when a new node is added which caused

freezing for longer time when the number of

nodes were more than 10.

• Negative impact on user satisfaction and

application adoption: The performance issues and

limitations negatively impact user satisfaction

and may hinder the adoption of the application by

users, leading to reduced productivity and

efficiency.

1. Flutter Architecture

Flutter as the primary technology for developing

the graphical user interface (GUI) of our Semantic

Editor application. This strategic decision was

made in response to the significant performance

challenges and limitations experienced with

JavaFX, including frequent application hang-ups,

sluggish behavior, and optimization difficulties.

By leveraging Flutter's fast rendering capabilities,

optimized performance, and ability to compile

down to native code, we have effectively

addressed these issues.

GUI in Flutter

Fig 4: Flutter Architecture of Semantic Editor

The transition to Flutter has resulted in a marked

improvement in performance, with smoother and

more responsive user interactions, thereby

mitigating the performance bottlenecks and

instability that persisted with JavaFX.

Additionally, Flutter's robust optimization

options have empowered our development team

to fine-tune the application's performance

effectively. This successful transition not only

ensures a seamless and efficient user experience

but also aligns with our commitment to delivering

high-quality software within our system

architecture.

Fig 5: Flutter UI of Semantic Editor

Moreover, the adoption of Flutter has not only resolved

performance issues but has also significantly improved

the graphical user interface (GUI) compared to

traditional applications, providing users with a more

visually appealing and intuitive experience.

Indeed, the transition to Flutter has brought about

significant enhancements to the user interface (UI),

offering a splendid view across various devices,

including mobile and desktop platforms. Flutter's

flexibility allows for seamless adaptation to different

PLR System
Google Drive, SkyDrive

screen sizes and resolutions, ensuring a consistent and

visually appealing experience across devices.

Additionally, Flutter's extensive set of features, such as

the addition of a minimap, further enhances user

experience by providing additional navigation options

and improving overall usability. These advancements

underscore our commitment to delivering a top-notch

user interface that exceeds expectations and enhances

user satisfaction.

IV. FUTURE WORK

As part of our future work, we are excited to explore the

integration of generative AI technologies into the Semantic

Editor application built on Flutter. By harnessing the

power of generative AI, we aim to revolutionize content

creation within the application. This will involve

implementing AI-driven tools that can assist users in

generating and customizing content such as textual

descriptions, graphical elements, and visualizations. These

AI-powered features will not only streamline the content

creation process but also unlock new possibilities for

creativity and innovation.

Furthermore, we plan to leverage generative AI to enhance

the user experience in novel ways. For example, we

envision incorporating AI-generated suggestions and

recommendations to assist users in their tasks within the

Semantic Editor. This could include intelligent prompts for

optimizing document layouts, suggesting relevant

keywords or tags, or even generating design variations

based on user preferences and project requirements.

In addition, we see potential in using generative AI to

automate repetitive tasks and accelerate the creation of

complex content. By training AI models on existing

datasets and user interactions, we can develop smart

algorithms capable of autonomously generating content

elements tailored to specific user needs. This will not only

save time and effort but also enable users to focus on

higher-level creative tasks while the AI handles mundane

and repetitive aspects of content creation.

Overall, the integration of generative AI technologies into

the Semantic Editor application represents an exciting

opportunity to push the boundaries of what is possible with

Flutter. By combining the power of Flutter's versatile UI

capabilities with generative AI's creativity and automation,

we aim to deliver a groundbreaking user experience that

empowers users to create, customize, and collaborate on

content in innovative ways.

V. REFERENCES

[1] Mirghani Hassan, A. (2020). "JAVA and DART programming

languages: Conceptual comparison." Indonesian Journal of

Electrical Engineering and Computer Science, 17(2), 845-849.
DOI: 10.11591/ijeecs.v17.i2.pp845-849

[2] Singh, G., & Sagga, S. (2018). "A Review Paper on Developer’s

Choice: Java or C++." JETIR, 5(10).
[3] Martinez, M., & Mateus, B. G. (2022). "Why Did Developers

Migrate Android Applications From Java to Kotlin?" IEEE

Transactions on Software Engineering, 48(11).
[4] Robillard, M. P., & Kutschera, K. (Year). "Lessons Learned in

Migrating from Swing to JavaFX."
[5] Sharma, S., Khare, S., Unival, V., & Verma, S. (Year). "Hybrid

Development in Flutter and its Widgets." Proceedings of the

International Conference on Cyber Resilience (ICCR).
[6] Kurale, R., & Bala, K. (2021). "A Comparative Study of Flutter

with other Cross-Platform Mobile Application Development."

International Journal of Computer Science and Information
Technologies, 9(12).

[7] Oracle. (2021). Java Language and Virtual Machine

Specifications. Retrieved from

https://www.oracle.com/java/technologies/javase/vm-spec.html

[8] Lindholm, T., Yellin, F., & Walrath, K. (1999). The Java Virtual
Machine Specification. Addison-Wesley.

[9] Google. (2017). Introducing Flutter. Retrieved from
https://flutter.dev/docs/get-started/flutter-for/android-devs

[10] Google. (2021). Dart Language Overview. Retrieved from
https://dart.dev/guides/language

[11] Hasida K. Personal life repository as a distributed PDS and its

dissemination strategy for healthcare

services. In2014 AAAI Spring Symposium Series 2014 Mar 22.

[12] Gustav Tollin,Marcus Lidekrans(2023) React Native vs. Flutter:

A performance comparison between cross-platform mobile

application development frameworks.
Linköping University | Innovativ programmering HT 2023 |

https://dart.dev/guides/language

