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Abstract Autonomous coverage has tremendous importance for environmental sur-
veying and exploration tasks performed on rivers both in terms of efficiency and
data collection quality. Most surveys of rivers are performed manually using quite
similar approaches. Using these practices to automate these processes improves the
quality of survey operations. In addition to human expertise on the type of patterns,
the coverage of a river can be optimized using the river meanders to determine the
direction of coverage. In this work we use the implicit information on the speed of
the water current, inferred from the curves of the river, to reduce the cost of cover-
age. We use autonomous surface vehicles (ASVs) to deploy the proposed methods
and demonstrate the efficiency of our method. In addition we compare the proposed
method with previous coverage techniques developed in our lab. When taking into
account meanders the coverage time has been decreased in average by more than
20%. The deployments of the ASVs were performed on the Congaree River, SC,
USA, and resulted in more than 27 km of total coverage trajectories.

1 Introduction

Significant work has been done in the field of autonomous area coverage [6, 3],
utilizing single or multiple robot systems. Depending on the goal or constraints
of the coverage operation different variations have been presented: coverage under
limited resources [20, 12], information driven coverage [13], complete coverage
[7, 19], sampling based coverage, passive coverage [11]. One of the most common
approaches is known as boustrophedon coverage, that performs back and forth or
lawn mower motions [2, 1]. This method performs very well in open areas that do
not have many changes in the shape [12, 19]. Coverage is a central problem in mul-
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tiple domains, such as: agriculture, environmental monitoring, search and rescue,
and marine exploration. For each domain the desired solution has different priori-
ties, and can be influenced by different factors. Therefore, having prior knowledge
about the physics of the environment can enhance coverage strategies applied in that
domain.

Fig. 1 Autonomous Surface Vehicle (ASV) dur-
ing coverage operations at the Congaree River.

To the best of our knowledge we
were the first to implement system-
atic coverage in a riverine environ-
ment [8]. These algorithms differ from
well known approaches in a way that
they provide domain specific geomet-
ric solutions. For the tight and un-
even spaces prior algorithms were not
as effective. The following work ad-
dresses the river coverage problem, us-
ing current flow speed information con-
ditioned by the meanders of the river, to
enhance time and energy efficiency of the robots operation.

River morphology is quite complicated, especially, the twists and turns a river
takes, called meanders. Due to these curves, the water flow at different speeds across
the river, which in turns contributes to different rates of erosion and sediment de-
posits. ASV operations are heavily affected by the water currents encountered [15],
as such, the efficiency of the ASV’s navigation can be improved by choosing to go
against the slower currents and with the faster currents.

In the following section we present a survey of related work. Next, Section 3 will
define the coverage problem and present the meander based algorithm with some
discussion on improvement of that method as well. Section 4 presents the exper-
imental setting and the results of field trials with discussion of outcomes. Finally
Section 5, gives a summary of the proposed method and some remarks on the future
work.

2 Related Work

Substantial work has been done on the design and operations of autonomous surface
vehicles (ASVs) in rivers. One of the works show how to design and operate ASVs
for performing bathymetric surveys [5]. There has been some work also studying
the problem of navigating a river with an ASV [21].

In our recent work on river coverage [8] we have proposed different coverage
techniques that vary by the available resources and the application domain. One of
the approaches proposed was termed zig-zag (Z-cover) approach performing a sin-
gle pass over a river segment by bouncing back and forth across the shores of the
river. Such an approach is utilized when there is limited time available (e.g. fuel
constraints). Another approach termed Transversal Coverage (T-cover) performed
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boustrophedon coverage in between the shores. While inefficient due to the many
turns, T-cover is utilized during sediment studies. Finally, the most efficient was
Longitudinal coverage (L-cover), which is a complete coverage algorithm. It de-
composes the river along the length based on the width information, such that each
cluster of the river has approximately the same width. Then each of the clusters is
decomposed into passes based on the size of the sensor footprint of the vehicle. Nev-
ertheless in that work we do not consider any of the geological properties of rivers.
As such some work has been done to find connection between river meanders and
the speed of river current [17, 16] or to model the external forces [15]. As a matter
of fact the first one that understood how flow affects the length of meanders and its
down-flow migration was Albert Einstein [4]. In another work Kai Qin and Dylan A.
Shell use the well studied model of the geometry of meanders to estimate the shape
of the unseen portion of the river [17]. Using this information as an input, a boat
can adjust the speed and perform more optimal and smooth paths when performing
online navigation.

The problem approached in this paper is a variation of the well-studied coverage
problem [6]. Of particular relevance are two works dealing with the coverage of
rivers using drifters: vehicles that do not have sufficient power to travel against the
current [11, 10] and another work dealing with coverage path planning for a group
of energy-constrained robots [20]. One notable work breaks from the tendency to
emphasize complete coverage, instead attempting to conserve time and fuel by fo-
cusing coverage on regions of interest [13]. This allowed them to create a map of
a coral reef area with half the distance coverage and power use than a lawnmower-
style complete coverage algorithm would have required. Another paper, in which
lawnmower-style coverage is applied to a Dubins vehicle, reformulates the prob-
lem as a variant of the Traveling Salesman Problem in order to obtain an optimal
solution [12].

Even though, there is substantial work done in the literature for area coverage,
they do not address the coverage in tight and uneven spaces, such as rivers. More-
over, to the best of our knowledge no one has addressed the efficiency problem of
river navigation taking into account meanders information or any other river spe-
cific variables. Meanwhile autonomous navigation on river can help reduce long
and expensive exploration expeditions that scientists have to take for studying or
monitoring rivers or marine environments in general.

In this work, we address the autonomous coverage problem for river surveying
by taking advantage of the river meanders. We use the implicit information encoded
in the shape of meanders regarding the speed of the river to choose a more efficient
route when travelling downstream or upstream. In the following section, the problem
is formally defined and the meander based coverage approach is described with a
suggestion for a possible improvement.
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3 Proposed Method

The objective of this work is to perform complete coverage of a river segment by
taking into account the varying speeds of water current across the river. We study the
problem with an Autonomous Surface Vehicle (ASV) that is deployed on a known
environment. The ASV is equipped with different types of depth sensors. We acquire
the environment map from Google satellite images and convert it to an occupancy
grid map M : R2→{0,1}. Values of 0 indicate the portion of the river that is within
the region of interest, while 1 indicates locations that we treat as obstacles. Assum-
ing that the exact bounding box of the interest region is given together with starting
point vs, we can infer implicitly the general direction of the coverage.

3.1 Meander Based Coverage (M-cover)

In the meander based coverage we are assuming that on the inner bend, the down-
river speed of the current is slower from any neighbour region closer to the outside
bend of the river. As it is shown in Figure 2 (b) along the passes that connect green
dots the water flow is faster, whereas orange ones indicate region where the flow
is slower. To find the meanders, we are looking into the intersection of two con-
secutive tangent lines to the curve of the river contour (Figure 2 (a)). If the lines
intersect inside the river then inner curve is identified (orange vertex), otherwise
if the intersection is on land then the outside bend is found (green vertex). Using
this information the M-cover algorithm depicted in Algorithm 1 finds an efficient
complete coverage path. It takes as input the map of the river M, a starting point vs,
and the spacing width information (sensor footprint size). First, the direction of the
coverage is identified implicitly from vs and M, then, the directional contour Cvec is
generated (Line 2). Consequently, the river is split into Svec segments, utilizing the
meander information, using the above explained intuition (Line 4). Each segment is
split into segments that the robot can cover in a single pass (Line 6). We decompose
area into even number of segments in order to return back to the initial starting point
vs. Each of the passes are assigned a direction: the first pass that is closest to the in-
ner bank of the river is getting reserved for upwards travel, whereas the ones closer
to the outer side are getting reserved for downwards travel (Lines 7-14). A pass is
added between each consecutive segment of meanders: from orange to the closest
green on the opposite edge of the river (Lines 16-17).

The simple M-cover approach does not take into account the change in the width
of the river, which can affect the number of the passes one can generate. To solve
that problem we propose to adapt the L-cover algorithm introduced in previous work
on river coverage [8]. With this modification the algorithm will perform coverage
in segments that have the same width (see Algorithm 2). In the same way the width
based approach will take as an input the map M, the starting point vs and the spacing
information. In this case we simply apply the L-Cover algorithm, to split the area
into regions that have approximately the same width (Line 4), and then on each
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Algorithm 1 M-Cover
Input: binary map of river M, starting point vs, spacing parameter s
Output: a π path
1: ∆w← initialize()
2: Cvec← getDirectionalContours(M)
3: α ← getDownRiverDirection(Cvec,vs)
4: Svec← getMeanderSegments(∆w,Cvec,α)
5: for each S ∈ Svec do
6: P← splitIntoEvenPasses(S,Cvec,s)
7: k← |P|
8: for each pi, pk/2+i ∈ P do
9: if pi is on outside bend then

10: pi← down direction, pk/2+i← up direction
11: else
12: pk/2+i← down direction, pi← up direction
13: append pi, pk/2+i to π

14: end if
15: end for
16: Sprev← S
17: p← createPassBetween(Sprev,S)
18: append p to π

19: end for
20: return π

Fig. 2 A sketch for finding the meanders. (a) The procedure of checking the intersection of a
neighbor pair of tangents. (b) The order of vertices the algorithm will visit if coverage is to be
performed upwards.

of those segments we apply the M-Cover algorithm to generate the more efficient
path. The Figure 3 shows the resulting clusters for the same segment of river with
different spacing value s.



6 Nare Karapetyan, Jason Moulton, and Ioannis Rekleitis

Algorithm 2 Width Based M-Cover
Input: binary map of river M, starting point vs spacing parameter s
Output: a π path
1: Cvec← getDirectionalContours(M)
2: θ ← getDownRiverDirection(Cvec,vs)
3: Clvec← getSameWidthClusters(Cvec,θ ,s)
4: for each Cl ∈Clvec do
5: p←M-Cover(Cl,vs,s)
6: append p to π

7: end for
8: return π

Fig. 3 An example of splitting an area into segments based on the width information.

4 Results

The proposed M-cover algorithm was deployed with an ASV on different sizes
of river segments, performing overall nearly 27km of coverage on the Congaree
River,SC. We have used the AFRL jetyaks [14] equipped with a PixHawk controller
for performing GPS-based waypoint navigation, a Raspberry Pi computer which
runs the Robot Operating System (ROS) framework [18] and records sensor data
and GPS coordinates (Figure 4).

The main objective of the experiments is to demonstrate that even with dynami-
cally changing environments the proposed M-cover approach ensures more efficient
coverage. We have deployed the ASV on 4.12 km and 2.76 km segments of the
Congaree river; see Table 1. The width of the river in average is 90m. The long seg-
ment was covered with small value of spacing which resulted in four passes (Figure
7 (a)), whereas in the smaller segment the ASV performed only two passes (Fig-
ure 5). In addition, we run the L-cover algorithm with same spacing for the smaller
region and similar to the M-cover two passes were generated (Figure 6). For the
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Fig. 4 The AFRL jetyak used
during the field deployments.
The main controller is the
PixHawk that performs GPS-
based way-point navigation.
In addition different depth
sensors are mounted on the
boat for surveying operations.

longer region with the same spacing value the L-cover generated segments with ei-
ther three or five passes, though it resulted with a similar length of the coverage
trajectory (Figure 7 (b)). When the execution time of the coverage operation of M-
cover is compared with the L-cover for both experiments the M-cover is on average
20% more efficient. Note that results are only based on the performed field trials. It
has been observed that the river current data change even in an hourly base. There-
fore, generating a graph model that will represent the approximate currents would
not be a comprehensive representation of a real world scenario.

In addition we have sampled small portions of the river and compared the cov-
erage time for the two opposite banks of the river to show the affect of the current
on coverage time. The results showed that when travelling upstream on the out-
side portion of the meander the coverage time is almost twice longer than if going
downstream (approximately 47%).

In Figure 7 we show the way-points generated by the different river coverage
algorithms to illustrate the different patterns. If looking into complete coverage al-
gorithms we have shown in our previous work that L-cover is the more efficient
approach, thus we compared the execution times of proposed approach only with
the L-cover approach. The T-cover approach fails mostly because of the cost of
travelling back to the starting position, whereas the M-cover still performs coverage
on the way back.

Table 1 The experimental results of deployments

Algorithm Total Area Path Length Duration # of Passes

M-Cover 4.12km x 90m 16.6km 2h 55m 4
L-Cover 4.12km x 90m 16.3km 3h 35m 3 and 5
M-Cover 2.76km x 90m 5,32km 47m 36s 2
L-cover 2.76km x 90m 5.13km 59m 46s 2
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Fig. 5 The way-points generated by the M-cover algorithm (right) with the actual GPS trajectory
(left) executed on the 2.76km long river segment.

Fig. 6 The way-points for covering a river segment without taking into account meanders (right)
with the actual GPS trajectory (left) executed on the 2.76km long river segment.
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Fig. 7 Way-points of the different coverage patterns executed on the 4.2km long segment of Con-
garee river, SC. (a) M-cover, (b) L-cover, (c) T-cover, (d) Z-cover
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In addition from the data collected on the smaller river segment with a CruzPro
DSP Active Depth, Temperature single ping SONAR Transducer, we have generated
the depth map of the river segment using a Gaussian Process method (see Figure 8).

Fig. 8 Depth map generated by Gaussian Process with RMSE on the left, indicating the accuracy
of the prediction.

5 Conclusion

The following work introduced a new coverage method specifically designed for
rivers. It takes into account the connection of the bend of curve on meanders to
choose the most optimal way of travelling along the river. The proposed M-cover
method is a complete and more efficient coverage approach. We have demonstrated
the improvements of the coverage performance by experimental results. The ex-
periments were performed with an ASV on 4.12km and 2.76km long segments of
the Congaree River, SC. In our previous work on river coverage we showed that a
complete coverage method termed L-cover is the most efficient. Therefore, we have
deployed the ASV performing both the L-cover and the M-cover trajectories. The
results demonstrated that the M-cover algorithm outperforms the L-cover approach
by decreasing coverage time on average by 20%. In addition, we proposed a pos-
sible improvement of the M-cover by combining it with the L-cover algorithm to
take into account also the width of the river, which can optimize also the number of
passes generated per section. Finally, the depth map was generated using the data
collected from CruzPro DSP single ping SONAR Transducer.

Taking into account the challenges encountered during field deployments, obsta-
cle avoidance strategies must be implemented for both underwater and above water
obstacles. The important next contribution will be to extend this work on multiple
robots [7, 9]. In addition given the dynamic changes of the environment, we are
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interested in generating a robust model of the water current of the river [15]. With
this model path planning will associate different cost values and perform adaptive
coverage.
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