
EasyChair Preprint
№ 15317

Simulation of a Digital Communication System
to Assess the BER in Noisy Channels Using
Arduino

Oscar Carrion

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 28, 2024

Simulation of a digital communication system to
assess the BER in noisy channels using Arduino

Oscar Carrion
Dept. of Telecommunications

Pontificia Universidad Catolica del Peru
Lima, Peru

https://orcid.org/0009-0005-8041-8849

Abstract—In this work, a digital baseband
communication system is simulated using the Arduino
environment and a C language program. In this
program we can adjust several parameters of the
transmission system, such as the number of data bits
and the noise level in the channel. Then, this C program
is used to simulate a noisy channel and calculates the
number of error bits during transmission essays. This
simulation will serve to calculate and analyze the BER
(bit error rate) vs SNR (signal to noise ratio) ratio which
is a standard for quality assessments in a digital
communications system. In addition, Hamming coding
techniques are implemented in the system to allow a
comparison between a transmission with and without
channel coding.

Keywords—Digital communication, BER vs SNR, noisy
channel.

I. INTRODUCTION

Simulating a digital communication system is important
since it allows us to evaluate the quality of communication
when digital information is transmitted over a noisy channel
[1]. Additionally, implementing a simulator enables students
and researchers to observe how noise affects transmitted
information and experimentally calculate BER vs. SNR
curves [2].

Using the Arduino module for simulation has several
advantages: it encourages creative thinking and imagination
in students, serves as a low-cost platform for creating
projects (simulations), and features a C programming
language that is easy to learn and understand, making
Arduino programs easy to handle and improve [3].

Nowadays, there are several simulators of digital
communication systems. Most of them related to this paper
are quoted following: In [4], a study about the significance
of information theory is presented and then, channel coding
techniques are explained with a number of simulations.
Most of these simulations are performed by MATLAB. On
the other hand, paper [5] presents a method to modify the
PDF (probability distribution function) where non-linearity
in the channel is considered. Once the PDF is correctly
modified, the tail probability methods to determine BER
can be applied. Other simulation program is described in [6]
where a complete communication system model is
simulated including source coding, channel coding, digital
modulation and the various types of antenna array systems.
Also a AWGN (Additive White Gaussian Noise) channel is
implemented in the simulation program.

The remainder of this work is structured as follows:
Chapter 2 describes a mathematical model of the digital
communication system, implemented through various
functions in a C program. Chapter 3 details the
experimental calculation of the BER using the proposed
simulator, along with graphical results such as BER vs SNR
curves and time-domain representations of transmitted and
received signals. Finally, in Chapter 4 conclusions are
addressed.

II. SYSTEM DESIGN

Here, the parts of the designed communication system
are described and how they were implemented in the
Arduino program.

A. Digital Data Generator

The digital data generator generates digital data in
blocks of 4 bits. These 4 bit-blocks will be suitable to
perform the channel coding later. The 4 bit-blocks are
obtained using (1).

s (θ , k)=⟦A×sin (θ)+B⟧
A=2(k−1)−1
B=2(k−1)

(1)

Where A, B ℤ+, k is the length of bit blocks and ℝ
is the angle of the sine function in radians. Equation (1) is
obtained experimentally and yields integer sinusoidal data.

We use sinusoidal data in the communication system
because it is easily recognizable at the receiver and simple
to generate [7], [8]. We need only positive values which are
obtained by adding an offset B to the sine function (1).
Finally, the greatest integer function ⟦⟧ rounds the values
resulting in positive integer values between B – A and B +
A.

If we replace k = 4 into (1), we get (2):

s (θ ,4)=⟦7×sin (θ)+8⟧ (2)

The output in (2) is in the range from 1 to 15. In base-2,
from 0001(2) to 1111(2).

Equation (2) is programmed into the gen.sine function,
as shown in (3). This function has two arguments: t is the
time interval between two consecutive data and T is the
number of periods of the sine wave. Both arguments
determine the amount of data to transmit.

data=gen . sine (Δ t , T) (3)

https://orcid.org/0009-0005-8041-8849

The function (3) is programmed in the microcontroller
embedded in an Arduino Nano board according (2).

The amount of data required, named NB, can be
estimated using the confidence level formula [9], given by
(4).

NB=
−ln (1−CL)

BERE

(4)

Where CL is the percentage confidence level and BERE

is the expected error rate for a given application. For the
current application we have CL = 95% [9] and BERE = 10-3

if we consider transmitting voice signals. When those
values are substituted in (4), we need NB ≥ 3000 bits of data
to experimentally calculate the BER.

B. Hamming 7,4 Encoder

A Hamming encoder with a binary multiplier is
implemented, which multiplies the data generated in (3) by
the parity matrix in (5) and then the parity bits are obtained.
The parity bits are then joined to the left of the message
(data) using the left shift operator (<<), as done in (6) [10].

parity=data×[1 1 0
0 1 1
1 1 1
1 0 1

] (5)

code=(parity≪4)+data (6)

Operations in (5) and (6) are implemented in function
(7) where the encoding algorithm is performed. This
function receives data with a length of 4 bits as an argument
and returns data with a length of 7 bits, which are stored in
the variable "code" given in (7). This variable represents the
encoded word [10].

code=Hamming. enc (data) (7)

Next, the code word in (7) is send through the channel
corrupted by noise. The generation of noise will be
explained in the following section.

C. Generation of noise

Noise is necessary to simulate the transmission channel
of digital communication system, so a logical noise
generator will be implemented in this section.

Logical noise is defined by 2 values: "0" indicates that
there is no errors and "1" indicates that one error exists. The
logic noise generator must generate error noise blocks of 4
or 7 bits in length [10].

Noise blocks are generated using the gen.noise function,
as in (8). The arguments of (8) are N0 and Lb. N0 is the
percentage of error blocks from the whole data in a test
transmission. Lb defines the size of the noise block and can
take 2 values: If Lb is 24, it will generate 4-bit noise blocks
and if Lb is 27 it will generate 7-bit noise blocks. Variable N0

is equivalent to the noise intensity levels at this model.

W i=gen .noise(N0 , Lb) (8)

The function (8) generates integer random blocks within

the range [0, 2Lb−1]. During a test transmission, depending
on the error percentage (N0), some blocks (Wi) will be error-
free, while the remaining blocks will contain between 1 to 3
errors. The remainder blocks with errors must be
programmed with a Gaussian PDF [11]. This PDF is a
standard distribution for modeling noise in digital
communication channels [11]. The Gaussian distribution is
defined in (9) [12].

Pe (x)=
1

√2π σ
⋅e

−
(x−μ)2

2σ 2

(9)

Simplifying (9) with mean equal 0 and variance equal 1
we obtain the normalized Gaussian distribution. A graphical
approximation is shown in figure 1 [12].

To simplify the channel model, we can limit the number
of errors in each noise block generated from 1 to 3 bits.
Errors greater than 3 bits are neglected.

Now, we can divide the Gaussian PDF in 3 regions as
shown in Figure 2 [12]. Region I has an error probability for
blocks with 1-bit errors. Similarly, regions II and III
correspond to error probabilities for blocks with 2-bit and 3-
bit errors, respectively.

According Figure 2, we can calculate the error
probability for blocks with 1-bit error in (10) [12]:

Fig. 1: Normalized Gaussian distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5

Errors

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
e

Gaussian PDF

Fig. 2. Probability regions of errors

Pe(x=1)=
1

√2π∫−1
1

e−x2/2dx (10)

Solving (10) from tables [12] yield Pe(x=1) = 0.684.
Similarly, we calculate the Pe(x=2) with integration limits
in region II and Pe(x=3) with integration limits in region 3.
Results are Pe(x=2) = 0.273 and Pe(x=3) = 0.0426.

Once the error probabilities for the 3 cases of error
blocks have been defined, an algorithm is configured in (8),
whose explanation is detailed below:

• First, we use the Random() function, which follows a
uniform PDF [14]. This function generates two
random numbers: n1, which takes values from 1 to
100, and n2, which is a noise block with a uniform
PDF, but it must have a Gaussian PDF [12]. To carry
the conversion out [13], we count the bits in n2 using
a specific bit-counting algorithm [15]. The result of
the counting is stored in the variable nb..

• Next, two probability decision thresholds 'Th1' and
'Th2' (Th1 > Th2) are defined to classify the error
blocks. Thresholds are determined using the average
value between 2 previously calculated error
probabilities Pe(x). For example, for Th1:

Th1=
Pe(x=1)+Pe(x=2)

2
(11)

Similarly for Th2. Numeric values are Th1 = 0.478
and Th2 = 0.157. Thus, following rules are made to
classify error blocks.

• If n1 > 100Th1, all error blocks will be converted to
1-bit error blocks and flag = 1.

• If 100Th2 < n1 < 100Th1, all error blocks will be
converted to 2-bit error blocks and flag = 2.

• If n1 < 100Th2, all error blocks will be converted to
3-bit error blocks and flag = 3.

• We find the difference between nb and the ‘flag’ such
as (12).

ndiff=nb−flag (12)

• Following, we use this difference to convert error
blocks using an algorithm [15] to add or remove
complementary bits in error blocks, according the
next rules:

• If ndiff>0, remove a bit in n2 until ndiff=0.
• If ndiff<0, add a bit in n2 until ndiff=0.
• if ndiff=0 return n2. Then Wi = n2 in (8).

After generating noise error blocks using (8) and storing
them in ‘Wi’, these blocks are added to the ‘data’ variable in
(3) for uncoded test transmission, or to the ‘code’ variable
in (7) for test transmission with Hamming coding. The XOR
operator is used to add noise blocks because it does not
produce a carry, as in (13).

Rd=data⊕W 4

Rc=code⊕W 7

(13)

D. Hamming 7,4 Decoder

A Hamming decoder is implemented with a binary
multiplier (as in the Hamming encoder) that multiplies the
RC block in (13) by a parity check matrix and the syndrome
vector Sn is obtained in (14) [10]. The syndrome vector is
used to find and correct 1-bit error in the variable ‘RC’ given
in (13). Function f(Sn) in (15) represents the standard array
used to find the position of wrong bits in noise blocks [10].

S n=Rc×[
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

] (14)

decode=Rc⊕2
f (Sn) (15)

Operations in (14) and (15) are implemented in function
(16) in the simulation program. This function receives
coded data plus logical noise from (13), and return the
variable "decode".

decode=Hamming .dec(Rc) (16)

Finally, the original data can be recovered trimmed the
decode variable from (16) using the AND operator as in
(17).

rec .data=(decode∧0 x 0F) (17)

III. SIMULATION RESULTS

At this point, two digital communication systems are
simulated as shown in Figure 3. Both systems have the
same data source defined in Section II-A. The difference
between the systems is that the lower system has Hamming
coding implemented. At the receiver, bit errors are
identified by comparing the original data with received data
corrupted by logic noise.

First, a quantitative procedure is carried out, where the
transmitted bits and error bits are counted using the created
program and, from this information, the BER for various
noise levels N0 is calculated. On the other hand, a
qualitative procedure is carried out, where the original data
and the received data are plotted for both systems shown in
Fig. 3. In this way, the impact of noise in a digital
transmission can be evaluated in the time domain.

A. Quantitative Results

The value of BER for various noise levels can be
calculated using (18). The input arguments are obtained
directly from the data printed by the Arduino Nano board to
the serial monitor of the computer.

BER=
∑
i=1

3

(wi×wrongdata)

Total data×(N °bits /data)
 (18)

Where wi is the amount of bit errors in a wrong datum.
The BER is calculated using (18) for both cases: System
without coding and System with Hamming coding. Eleven
noise levels and NB = 7406 data bits at most according (4)
are taken for the calculation. An example is given below for
a noise level of 15%, 503 data samples, and 7 bits per
sample.

• N° Wrong bits = (1)58+(2)11+(3)13 = 119
• Total data = 503
• N° Total bits = 503(7 bit) = 3521

Then, the BER in this case is:

BER= 119
503×7

=0.01732

The BER calculation for other noise levels and system
types are tabulated in Table I.

In Fig. 4, the collected data is represented through the
BER vs SNR curves. In the figure, the units of the SNR axis
are in decibels (dB) and the BER axis should be on a
logarithmic scale for a standard representation of BER, such
as in reference [11]. To transform noise levels (N0) to dB we
use the following formula [11]:

SNR (dB)=10 log (1/N 0) (19)

The BER vs SNR curves in Fig. 4 are very similar to the
curves in references [11], [16]-[18]. In this figure, we
observe the red curve, which are the encoded data, has a
lower BER than the green curve which represents the
unencoded data and, on the other hand, we observe that the
lower the noise level, the lower the BER.

B. Qualitative Results

The original sine signal from (3) and the received signal
from both systems given in Fig. 3 are plotted
simultaneously in real time using a script of MATLAB.

The script reads data from 3 sources, which are
multiplexed in time. The sources are: the original sinusoidal
signal, the received sinusoidal signal without coding (upper
system in fig. 3), and the received sinusoidal signal with
coding (lower system in fig. 3).

The script uses the readline() function that belongs to
the "USB and serial communication" library of MATLAB
[19]. This function allows to read and demultiplex the data,

TABLE I. CALCULATION OF BER FROM SIMULATION

BER

% error
levels N0 Without coding With Hamming coding

0.05 0.01870 0.00446

0.1 0.03741 0.01272

0.2 0.07978 0.02056

0.3 0.12098 0.03450

0.4 0.14962 0.06791

0.5 0.17116 0.06723

0.6 0.21330 0.07210

0.7 0.28220 0.08577

0.8 0.26918 0.07806

0.9 0.27841 0.07860

1.0 0.35890 0.08739

then this separated data is saved in the "data" array,
according to (20).

data(M,p) = readline(S_arduino) (20)

Where ‘M’ is the integer number of data and p is the
selection variable of the multiplexed data. The variable 'p'
can take 3 values depending on the source of data read. The
argument ‘S_arduino’ in (20) is an object that stores the
parameters of the serial communication, which are the port
name and baud rate.

Once the data was read and separated, they are plotted in
Fig. 5. The signals in Fig. 5 are described as follows: the
blue signal is the original sine wave signal before being
transmitted, the red signal is the received sine wave signal
without coding, and the magenta signal is the received sine
wave signal with the effects of the Hamming 7,4 coding.

A comparison between the signals is made in Fig. 5.
There, we can see that the red signal without coding has
more data errors than the magenta signal with Hamming 7,4
coding, which also has a lower BER, according to Fig. 4.

 Therefore, it has been experimentally proven that
channel coding reduces data errors in a digital transmission.

Fig. 3. Transmission scheme to be simulated

Fig. 4. BER vs SNR for transmitted data.

IV. CONCLUSIONS

The main contribution of this paper is the simulation
developed entirely within the Arduino environment. This
simulation is valuable because digital transmissions are
tested on external hardware, with signals represented by
voltage levels that can be transmitted over physical guided
media. Therefore, the simulation closely mirrors real-world
systems. Furthermore, the simulated system can help
development of creativity and technical abilities for
undergraduate students and researches.

During the simulations carried out in section III, a total
of 1058 4-bit and 7-bit blocks were used. Since this is a
statistical process, the measured BER only approaches the
actual BER when the number of tested bits approaches
infinity [9]. Therefore, the measured BER will be closer to
the actual BER if the number of bit samples increases.

The noise model defined in section II-C can be used in
other applications or digital communication systems where
discrete noise is required to analyze such systems. These
applications can include channel coding, source coding,
channel equalization, among others.

REFERENCES

[1] M. C. Jeruchim, P. Balaban, K S. Shanmugan, Simulation of
Communication Systems Modeling, Methodology and Techniques.
2nd ed., 2000, pp 1-12.

[2] J. G. Proakis, M. Salehi, G. Bauch, Contemporary Communication
Systems Using MATLAB, 3th. ed., 2013, p. iii.

[3] J. A. Tukhtanazarovich, “Advantage of the Arduino Platform In
Forming Creative Skills In Youth” JournalNX- A Multidisciplinary
Peer Reviewed Journal, July 2021.

[4] G. Sheng, X. Zhao, H. Zhang, H. Song, Z. Lv., “Mathematical
Models for Simulating Coded Digital Communication: A
Comprehensive Tutorial by Big Data Analytics in Cyber-Physical
Systems”. IEEE 2016.

[5] G. Malhotra, “Method for analytically calculating BER in presence of
non-linearity”, Xilinx, DesignCon 2014.

[6] A. Güngör, F.Arıkan, O. Arıkan, “Simulation of a Digital
Communication System”, Ankara, Turkey.

[7] V. Papez, J. Roztocil and S. Dado, “Sine wave signal sources for
testing high-speed High-resolution a/d converters,” XIX IMEKO
World Congress, January 2009.

[8] B. K. Vasan, S. K Sudani, D. J Chen, R. L Geiger, “Sinusoidal signal
generation for production testing and BIST applications,” Conference
Paper, May 2012.

[9] N. Faubert, “BER – Is it Bit Error Rate or Bit Error Ratio?”, ©
Keysight Technologies 2000–2024, March 2019.

[10] S. Haykin, Communication Systems, 4th ed., 2001, pp. 3, 626-641.
[11] L. W. Couch, Digital and Analog Communication Systems, 8th ed.,

2013, pp. 20-28, 682-703.
[12] S. Lipschutz, M. Lipson, Schaum's Outline of Probability, 3rd ed.,

2021. pp. 105-108.
[13] G. Roussas, An Introduction to Probability and Statistical Inference,

2nd ed., 2015, pp. 207-243.
[14] Random Numbers, Arduino Documentation-Programming, ©

Arduino 2024.
[15] B. Kernighan, D. M. Ritchie, The C programming Language, 2nd ed.,

1988, p. 50.
[16] W. Rurik, A. Mazumdar, “Hamming Codes as Error-Reducing

Codes,” 2016 IEEE Information Theory Workshop (ITW), September
2016.

[17] Nasaruddin, B.Yuhanda, Elizar, Syahrial, “Design and performance
analysis of channel coding scheme based on multiplication by
alphabet-9”, Journal of Telecommunication, Electronic and Computer
Engineering.

[18] R. E. Ziemer, W. H. Tranter, Principles of Communication, 7th ed.,
2015. p. 652.

[19] Serial Port Devices Functions, MATLAB Documentation, © 1994-
2021 The MathWorks, Inc.

Fig. 5. Comparison of the transmitted signals.

