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Abstract—Contemporary neural network (NN) detectors for
power systems face two primary challenges. First, each power sys-
tem requires individual training of NN detectors to accommodate
its unique configuration and base demands. Second, significant
changes within the power system, such as the introduction of
new substations or new generators, necessitate retraining. To
overcome these issues, we introduce a novel architecture, the
Nodal Graph Convolutional Neural Network (NGCN), which
utilizes graph convolutions at each bus and its neighborhoods.
This approach allows the training process to encompass multiple
power systems and include all buses, thereby enhancing the
transferability of the method across different power systems.
The NGCN is particularly effective for detection tasks, such as
cyber-attacks on smart inverters and false data injection attacks.
Our tests demonstrate that the NGCN significantly improves
performance over traditional NNs, boosting detection accuracy
from approximately 85% to around 97% for the aforementioned
task. Furthermore, the transferable NGCN, which is trained by
samples from multiple power systems, performs considerably
better in evaluations than the NGCN trained on a single power
system.

I. INTRODUCTION

A. Background and Motivation

Power systems are safety-critical infrastructures highly sus-
ceptible to cyber-attacks [1]. These attacks, targeting de-
vices like smart inverters, can trigger destabilizing oscillations
within the system [2]. Moreover, cyber-attacks on power
generators may lead to even more severe consequences, such
as widespread blackouts [3]. It is, therefore, imperative to
detect such attacks promptly as they occur. Early detection
allows for the necessary control actions to be taken to mitigate
or completely avert these disruptive events [4].

Recent research has increasingly concentrated on utilizing
machine learning methods, especially deep learning, to detect
cyber-attacks and false data injection (FDI) attacks in power
systems. A thorough review of these advancements can be
found in [5]. Deep learning leverages neural networks to
train detectors based on available labeled data. In grid ap-
plications these data can be generated through simulations,
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since historical labeled data from cyber-attacks are often not
available. The neural networks trained are highly effective in
discerning the complex relationships between PMU (Phasor
Measurement Unit) or AMI (Advanced Metering Infrastruc-
ture) measurements in the presence of attacks, identifying not
only if an attack is occurring within the power system [6] but
also pointing out the specific buses or devices under attack
[7]. Neural network-based detectors are typically trained on
data simulated for a specific power system, meaning they
rely on samples generated using the target grid’s unique
configuration, including factors like the number of buses,
branches, and base demand. Since these configurations can
differ substantially between systems, the model parameters
often need to be retrained for each new environment. Minor
perturbations in the system do not pose significant issues
and generally do not necessitate retraining. In the case of
significant changes within the power system, such as the
introduction of new solar PV inverters, load points, substations
or generators, the retraining of these detectors is, unfortunately,
necessary. Each retraining process is time-consuming, creating
a significant operational challenge and associated financial and
manpower costs. Moreover, the resources and expertise needed
for effective training are not commonly available to power
system operators, particularly at the distribution level, where
this issue is especially pronounced.

B. Related Work

Existing machine learning methods for detecting cyber-
attacks in power grids are broadly classified into two cat-
egories: physics-agnostic deep learning [8–11] and physics-
aware graph convolutional network (GCN) methods [7, 12,
13]. For physics-agnostic approaches, [10, 11] employed fully
connected neural networks to detect cyber-attacks targeting
power systems and transmission protective relays. [8] applied
convolutional neural networks to leverage the local corre-
lations of voltage phasors. Additionally, [9] utilized recur-
rent neural networks to capture the temporal correlations in
time-series measurements of power systems. In the physics-
aware category, [7, 13] implemented spatio-temporal GCNs
for detecting FDI in power systems. Furthermore, [12] ex-
tended GCNs into the complex domain, considering the power
system’s admittance matrix as the graph shift operator. This
method significantly outperforms other neural networks and
GCNs in detecting false data injection attacks due to its
ability to extract different graph spectral components of volt-
age phasors to analyze, exploiting the low-pass properties
of normal voltage phasors and the high-pass properties of
attacked measurements [14].
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C. Contributions and Organization

This paper introduces what we refer to as Nodal Graph
Convolutional Neural Networks (NGCNs), a new graph neural
network architecture designed for scalable training across
buses from different power systems. Rather than training on
data that simulate label date from a single system our method
includes two components: 1) a neural network architecture that
can be adapted to different topologies and 2) a training process
involves sampling features data from sub-graphs that are part
of various power systems and smart inverters configuration and
attack scenarios, to develop a universal detector that can be
adapted without retraining for another arbitrary system. The
main contributions of our research are outlined below:

• We have developed a novel NGCN framework capable of
performing node convolutions for each bus and its neigh-
boring areas. This framework has been further enhanced
to perform both graph and temporal convolutions, captur-
ing the spatio-temporal correlations of voltage phasors.
Our NGCN effectively extracts graph spectral features
that are critical for distinguishing between normal and
attacked states. This distinction is based on the obser-
vation that normal voltage phasors typically result from
the outputs of low-pass graph filters [14], which primarily
exhibit smooth components, whereas attacked states often
resemble high-pass or band-pass graph signals.

• We show how one can curate a training set for the NGCN
that encompasses a variety of power grids simulations,
with subsets of buses equipped with smart inverters of
different sizes. The NGCN is trained by subsampling
different power grids and buses, with labels indicating
the presence or absence of a cyber attack. Once trained,
the NGCN can be deployed across any power system and
bus to perform detection tasks. Additionally, we extend
the transferable NGCN to detect FDI attacks across buses
in different power systems.

D. Notation

The grid network is modeled as an undirected weighted
graph G(V, E), where the set of nodes V = {1, . . . , N}
represents the buses, and the set of edges E ⊊ V × V
corresponds to the transmission lines, which can be overhead
or underground. The subset of buses equipped with smart
inverters is denoted by Vs, with Ns representing its cardinality.
For each node n ∈ V , let vn ∈ C be the complex line-to-
ground voltage, and v = [v1, . . . , vN ]⊤ the vector of voltage
phasors across all buses, where vn has magnitude |vn| and
phase angle θn. Similarly, the vectors i, s, p, and q represent
current injection phasors, apparent power injections, active
power, and reactive power injections, respectively, all having
the same dimension as v. The apparent power vector is defined
as s = p+ jq, where j =

√
−1 is the imaginary unit.

II. SPATIO-TEMPORAL NODAL GRAPH CONVOLUTIONAL
NEURAL NETWORKS

In this section, we first explore the concept of graph
filters and reveal the essential mechanisms for adapting their
application to data, guided by the underlying physics of the

grid. In this study, we extend our previous work as detailed
in [12] to the development of NGCN sampling graph data
clusters from different power systems.

A. Physics-Aware Grid GCN over One Graph

To enhance the feature extraction layers in comparison to
traditional neural networks, graph filters can be leveraged for
improved representation capabilities. To define these filters,
we first introduce some key concepts, starting with the Graph
Shift Operator (GSO). A graph signal, denoted by x ∈ CN ,
is a vector indexed by the nodes of a graph; for example,
it represents the state vector of voltage phasors at each bus
in a power grid. The neighborhood of node i, represented as
Vδ(i), refers to the set of nodes directly connected to node i,
where δ(i) denotes the neighborhoods of node i. The GSO,
represented by the matrix S ∈ CN×N , is a neighborhood
operator that only combines the values from neighboring
nodes. We consider complex symmetric GSOs, i.e., S = S⊤.
Typically designed to mimic a differential operator, the GSO
is commonly selected as a graph weighted Laplacian matrix.
A graph filter is a linear matrix operator H(S), which is a
function of the GSO. It acts on graph signals as follows:

x1 = H(S)x0, (1)

where x0 denotes the input features. In power systems appli-
cations, x0 is typically the state vector v.

The key characteristic of the graph filter H(S) is that it
must be shift-invariant with GSO, similar to the time-invariant
filters in the time domain. This means that H(S) must satisfy
the condition H(S)S = SH(S). This property holds only if
H(S) can be expressed as a matrix polynomial:

H(S) =

K∑
k=0

hkS
k, (2)

where the graph filter order K can potentially be infinite.
Based on Eq. (2), we can construct the graph neural network
perceptron, which is expressed as

xℓ = σ

[
K−1∑
k=0

hkS
kxℓ−1

]
, ℓ = 1, · · · , N (3)

where the input feature vector is x0 = v ∈ CN or x0 =
[|v|,∠v] ∈ RN×2. The GSO raised to the power k, denoted
as Sk, is a matrix of size CN×N . The resulting graph signal
x also belongs to CN , while hk ∈ C represents a scalar
coefficient. The function σ(·) denotes the activation function,
typically chosen as ReLU for the hidden layers. The final layer
of the GCN for a node-level task is given by:

y = σ

[
Θ

(
ℜ(xL)
ℑ(xL)

)]
(4)

where Θ ∈ RN×2N contains the trainable parameters of the
output layer, and xL is the feature representation from the last
hidden layer. However, a major limitation of traditional GCNs
is that for different graphs, a separate set of hk must be trained
for each distinct S, since the dimensions of both S and the
graph signal x can vary across different graphs. As a result,
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the dimensionality of Θ also changes, making it impossible
to design a single neural network that can process all graphs
with varying S and x.

B. Graph Convolution across Different Graphs

To make GCNs transferable across different graphs with
varying S and x, one potential method is to employ the
decomposition of full graph convolutions into nodal graph
convolutions. Unlike [15], where the graph is divided into
subgraphs containing several neighborhoods, we decompose
the entire graph into individual nodes neighborhoods and mix
nodes from different graphs during training. By sampling data
of neighbohoods that are part of multiple power systems, By
sampling neighborhood data from multiple power systems, a
single GCN can be trained and applied to any bus in different
power grids that is statistically similar to the ensemble used for
training. This uniqueness allows the model to be transferable
across different systems. In the following sections, we intro-
duce new settings that address general subgraph convolutions.
As a special case, these settings enable us to develop nodal-
graph convolutional neural networks.

More specifically, consider Q distinct power systems, each
represented as a connected component within a large, uncon-
nected graph. Each component corresponds to a specific power
system. Each component corresponds to a specific power
system, and from this point, we refer to each as a subgraph.
This unconnected graph can be thought of as being sampled
from the set Q = [1, 2, . . . , Q]. For each power system q ∈ Q,
the graph Gq consists of a node set Vq , where Nq = |Vq| is the
number of nodes, a weighted Laplacian matrix Sq ∈ CNq×Nq ,
and a node data matrix Xq ∈ CNq×m0 , where m0 represents
the number of node features. To represent all Q power systems
together, we define a global, “big” Laplacian matrix for the
combined system. Let N =

∑Q
q=1 Nq be the total number of

nodes across all infrastructures. With a slight abuse of notation,
this global Laplacian matrix captures the relationships across
the nodes of all power systems combined:

S :=

S1

... 0
...

. . .
...

0 . . . SQ

 ∈ CN×N . (5)

Similarly, we can define the global “big” node feature matrix
X and the global graph shift operator S to represent all
infrastructures combined. For each subgraph Gm, we introduce
the matrix PGm

∈ RN×N (or simply Pm), a diagonal matrix
where the n-th diagonal entry is zero if the n-th node is
not part of the node set Vm of subgraph Gm. More formally,
[Pm]nn = 0 if n /∈ Vm, and [Pm]n′n′ = 1 if n′ ∈ Vm. For
each subgraph Gm = {Vm, Em}, sampled from any of the Q
infrastructures {Gq}, we define the corresponding “expanded”
Laplacian matrix as Sm = PmSPm ∈ CN×N . This expanded
Laplacian captures the structure of the m-th subgraph in the
global context as follows:

Sm = PmSPm = (6)

0 . . . 0
... INm

...
0 . . . 0

×

S1 . . . 0
...

. . .
...

0 . . . SQ

×

0 . . . 0
... INm

...
0 . . . 0

 (7)

where INm
is an Nm ×Nm identity matrix with Nm = |Vm|.

Since N is very large, training the entire N -dimensional
vector Sm may appear to be a daunting task. In reality, the
large matrix Sm has only one active subgraph within itself,
which is the one selected by Pm. To clarify, while we express
the operations and loss function in terms of the larger Sm for
the mathematical formulation, in our practical implementation
of the training, we only consider the non-zero elements that
correspond to the sampled sub-graph, i.e. the neighborhoods
we sampled. Importantly, let Vk

m be the set of nodes that
includes the m-th node and all its neighbors up to k-hops.
The matrix Pk

m is a diagonal matrix that selects the nodes in
Vk
m, while zeroing out all other nodes in the global system.

The diagonal entries of Pk
m can be defined as:

[Pk
m]nn =

{
1 if n ∈ Vk

m

0 otherwise
(8)

Given Pk
m, the expanded Laplacian matrix Sk

m can be defined
as:

Sk
m = Pk

mSkPk
m, (9)

where S is the global Laplacian matrix representing the entire
system of subgraphs. The matrix Sk

m captures the interactions
between nodes within the k-hop neighborhood of the m-th
node.

Remark 1 A special case arises when k = 0. In this case,
V0
m consists of only the m-th node, and S0 = I, the identity

matrix. The matrix P0
m selects only the m-th node from the

global graph. In matrix form, P0
m can be written as:

P0
m =

0 . . . 0
... 1

...
0 . . . 0

 (10)

Thus, the expanded Laplacian matrix for k = 0, denoted S0
m,

is:

S0
m = P0

mIP0
m = P0

m (11)

In this case, S0
m effectively isolates the m-th node and treats

it independently because S0 = I does not introduce any
interaction between the nodes.

C. Nodal-Graph Convolution Neural Network

For multi-feature input, let X = [x1; . . . ;xm0 ] ∈ RN×m0

represent the input feature set, and H ∈ Rml×ml+1 denote the
multi-channel outputs. Here, ml refers to the total number of
input features, and ml+1 represents the total number of output
channels. The filtering operation can then be expressed as:

Xl+1 = σ

(
K−1∑
k=0

Sk
mXlHl

k

)
, (12)
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Fig. 1: General Graph AI node sampling across different power systems. The two
distinct power system graphs at the top illustrate how nodes are selected for sampling
from different grids. The dashed circles highlight the nodes being sampled. The lower
section of the figure shows the corresponding computational graph, where node features
are propagated through different layers (h0, h1, h2), representing hierarchical node
embeddings over various depths of the graph. The dashed boxes indicate that the
parameters are shared among nodes in the same layer, while the color-coded edges
signify the use of identical trainable parameters across different graphs.

where σ(·) is a non-linear activation function (e.g., sigmoid
or ReLU), and Hl

k ∈ Rml×ml+1 are the k-th trainable weight
matrices that map the node features from ml to ml+1. Each
element of Hl

k corresponds to hk in (3). Importantly, the
operation Sk

m should first perform the graph convolution,
followed by the selection process using Pm.

For all Q graphs {Gq}Qq=1, we define the corresponding
sampling matrices {Pm}Mm=1. The training objective function
is then expressed as:

min
H

L(H;S,X) :=
1

M

M∑
m=1

ℓ(H;PmSPm,X, ym)︸ ︷︷ ︸
L(H;S,X,Pm)

, (13)

where {ym} denotes the set of labeled nodes across the union
of all subgraphs, represented as

⋃
m Vm.

In (13), the goal is to learn a GCN model H that is shared
across multiple subgraphs from different infrastructures. One
advantage of this subgraph-based training objective is that
it trains the GCN model using only local information from
subgraphs. For example, during stochastic gradient descent, for
a selected subgraph Gm and GCN weights {Hl}, the forward
pass computes the embedding of (12). Because the sampling
matrix PmSPm selects a node i ∈ Gm, the embedding (row)
vector xl+1

i at layer l + 1 follows the recursion:

xl+1
i = σ

 ∑
j∈Ni(Gm)

K−1∑
k=0

[Sk
m]ij(x

l
i)

⊤Hl
k

 ∈ R1×ml+1 ,

where Ni(Gm) represents the neighbors of node i in the
subgraph Gm, and xi is its corresponding node feature. The
node selection by Pm ensures that only one diagonal element
is set to 1, corresponding to node i. After this selection, each
data sample has a dimension of 1×mL.

To illustrate this, consider the toy example in Fig. 1,
which features two graphs with K = 3. Each nodal graph
consists of a node along with its first-order and second-order
neighborhoods, which we define as the computational nodal
graph. These graphs use local data to train the parameters Hk.
It is important to emphasize that, in this NGCN framework,
the training of Hk is performed independently by each node
and its neighborhoods. However, all nodal graphs share the
same set of parameters Hk. Additionally, these computational
nodal graphs from different power systems must converge
to a unified set of Hk. Therefore, each training batch will
include computational nodal graphs sampled from different
power systems to ensure consistency across the network.
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Fig. 2: Volt-Var (VV) and Volt-Watt (VW) piece-wise functions.

III. TRANSFERABLE NGCN APPLICATIONS IN POWER
SYSTEMS

This section presents two applications of the Transferable
NGCN for enhancing security in power systems: detecting
cyber-attacks on smart inverters and identifying FDI attacks.

A. Cyber-Attack Detection on Smart Inverters

The proposed model uses voltage phasor from each inverter
(node) and its neighboring nodes as input. The output of
the NGCN will predict whether an inverter is under attack,
denoted as yi = 1, or functioning normally, denoted as yi = 0.
This approach allows for a scalable, system-agnostic solution
that enhances the security of smart inverters in varying power
network configurations. To provide a clear context, we first
outline the operational model of smart inverters below:

1) Smart Inverter Control Model: The control of power
injection for smart inverters is determined by two piecewise
linear functions, known as Volt-Var (VV) and Volt-Watt (VW)
curves. These droop curves dictate the reactive and active
power outputs based on the voltage magnitude. As shown
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in Fig. 2, these curves are parameterized by five key values,
denoted as η = [η1, η2, η3, η4, η5]

⊤ ∈ R5, which define the
segments of the curves. The Volt-Var curve is defined as:

fq
n(|ṽi|) =



q̄ |ṽi| ≤ η1,(
η2−|ṽi|
η2−η1

)
q̄ η1 < |ṽi| ≤ η2,

0 η2 < |ṽi| ≤ η3,

−
(

η4−|ṽi|
η4−η3

)
q̄ η3 < |ṽi| ≤ η4,

−q̄ |ṽi| > η4,

(14)

and the Volt-Watt curve is described by:

fp
i (|ṽi|) =


p̃ |ṽi| ≤ η4,(

η5−|ṽi|
η5−η4

)
p̄ η4 < |ṽi| ≤ η5,

0 |ṽi| > η5,

(15)

where p̄ and q̄ represent the active and reactive power outputs,
respectively, based on the filtered voltage magnitude |ṽi|. The
filtered voltage, |ṽi|, is obtained by applying a low-pass filter
to the measured voltage |vi,t| at bus i, thereby reducing noise.
The filtering process is given by:

|ṽi,t| = |ṽi,t−1|+ τ cn(|vi,t| − |ṽi,t−1|), (16)

where τ cn is the time constant of the low-pass filter. The
operation of the smart inverter is constrained by its capacity
limit s̄, which bounds the active and reactive power outputs:

q̄2 + fp(|ṽi,t|)2 ≤ s̄2. (17)

To ensure smooth transitions in power injection, the dynamics
of active and reactive power evolve gradually over time by

pi,t = pi,t−1 + τo(fp
i (|ṽi,t|)− pi,t−1),

qi,t = qi,t−1 + τo(fq
n(|ṽi,t|)− qi,t−1),

(18)

where τo is a time constant that regulates the rate of change.
The resulting complex power injected into the system at each
time step is expressed as si,t = pi,t + jqi,t.

2) Cyber-Attacks on Smart Inverters: Cyber-attacks tar-
geting smart inverters can destabilize the power system by
manipulating the VV and VW control settings. To frame this
scenario, we assume each node in the network is equipped with
a smart inverter capable of VV/VW control, making the total
number of inverters Ns. The set of inverters, Vs, can be divided
into two subsets: H, representing compromised inverters, and
U , representing uncompromised ones, such that H ∪ U = Vs.

For compromised inverters, an attacker can maliciously
alter the VV and VW setpoints, denoted by the vector
η = [η1, η2, η3, η4, η5]

⊤ ∈ R5. Typically, these setpoints
are configured as η = [0.94, 0.97, 1.03, 1.06, 1.10] under
normal operating conditions. However, an adversary can ma-
nipulate them to a more detrimental configuration, such as
η = [0.98, 0.99, 1.01, 1.02, 1.10], potentially destabilizing the
system. These changes can trigger instability by reducing the
deadband of the VV control curves, which leads to oscilla-
tion in power injections, particularly in the reactive power
component, qi,t. This causes the reactive power to oscillate
between negative and positive values, resulting in oscillations
in the voltage profile across the system. To detect such attacks,

we employ a loss function based on Binary Cross-Entropy.
The model’s input consists of time-series voltage phasor data,
including both voltage magnitudes and phase angles.

B. False Data Injection Detection

The second task for the transferable NGCN is the detection
of FDI attacks. Unlike cyber-attacks, which alter input features
while maintaining power system states that satisfy power flow
equations, FDI attacks violate these equations. FDI detection is
commonly formulated as a binary hypothesis testing problem,
where the null hypothesis assumes no false data, and the
alternative hypothesis represents the presence of compromised
measurements. This subsection focuses on localizing these
compromised measurements (the FDI localization problem),
which can be framed as a multi-label classification task. Each
measurement is classified as either valid or false.

Stealth FDI attacks are particularly challenging, as they are
designed to escape detection by residual-based state estimation
methods. To effectively detect such attacks, it is crucial to
account for the physical laws that govern power systems,
namely Kirchhoff’s and Ohm’s laws. These relationships can
be expressed as follows:

i = Y v, vn = |vn|ejφ
v
n , in = |in|ejφ

i
n , ∀n ∈ V, (19)

where v ∈ CN×1 and |v| ∈ RN×1
+ represent the vectors of bus

voltage phasors and magnitudes, respectively, and i ∈ CN×1

and |i| ∈ RN×1
+ denote the vectors of bus current phasors and

magnitudes. Let A denote the set of available measurements,
and U represent the set of unavailable measurements. Using
this setup, we can express the observed data zt as follows:[

îA
v̂A

]
︸ ︷︷ ︸
zt

=

[
Y AA Y AU
I|A| 0

]
︸ ︷︷ ︸

H

[
vA
vU

]
︸ ︷︷ ︸
xt

+εt,
(20)

where εt is the measurement noise vector.
A stealth FDI attack manipulates voltage and current phasor

measurements at specific buses, denoted as C, by introducing
a perturbation vector δxt. This perturbation is defined as:

δx⊤
t =

[
δx⊤

C 0⊤
P+U

]
, where Y P+CδxC = 0, C ⊂ A.

(21)
The set C ⊂ A consists of randomly sampled buses that have
been compromised by the FDI attack. Here, P represents the
set of unaffected (honest) nodes. The condition Y P+CδxC = 0
ensures that the perturbation remains undetected, as it satisfies
the power flow equations at honest nodes. As a result, the
observable data under an FDI attack is given by:

zt = H(xt + δxt) + εt. (22)

To detect these attacks, we construct a ground-truth label
vector y, where each entry is defined using the logit function:

yi = logit(δxi), (23)

where logit(·) is an indicator function such that [y]i = 1 if
[δx]i ̸= 0, and [y]i = 0 otherwise.
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IV. CASE STUDIES

In this section, we evaluate the performance of the trans-
ferable NGCN across different power systems by testing
two applications: cyber-attack detection and FDI detection.
These case studies aim to demonstrate the NGCN’s ability
to generalize across various grid configurations.

Fig. 3: Comparison of Cyber Attack Detection Using Spatiotemporal Features.

A. Simulation Settings

For the simulation, we train a universal NGCN using data
from the IEEE 17-bus, 18-bus, 22-bus, and 28-bus radial
distribution systems. These systems are equipped with 5, 5,
7, and 8 smart inverters, respectively. The power demand
data is sourced from real-world measurements in Texas 1,
while photovoltaic (PV) power data for the smart inverters
is obtained from the National Renewable Energy Laboratory
(NREL) 2.

For the cyber-attack detection task, we utilize 25 compu-
tational nodal graphs, with each graph corresponding to a
specific smart inverter. In these cases, cyber-attacks modify the
VV-VW control functionalities of the smart inverters, leading
to oscillatory events. We select K = 3 to define the neigh-
borhood size for constructing the computational graphs. The
input to the NGCN consists of time-series voltage phasor data,
with m0 = 20 channels, representing the multi-channel input
format. The network architecture for cyber-attack detection
comprises a NGCN layer for feature extraction, followed by
two fully connected layers, each containing 256 neurons. For
the FDI detection task, the goal is to identify anomalous data
across all nodes in the IEEE 17-bus, 18-bus, 22-bus, and 28-
bus systems. In this case, we focus exclusively on spatial
information, excluding time-series data from the inputs. The
network architecture for FDI detection mirrors that of the
cyber-attack detection task, with a NGCN layer for spatial
feature extraction, followed by two fully connected layers,
each containing 256 neurons.

B. Cyber-Attack Detection

The simulation results, shown in Fig. 3, illustrate a com-
parison of different detector models for cyber-attack detection

1https://www.ercot.com/gridinfo/load/load hist
2https://www.nrel.gov/grid/solar-power-data.html

Fig. 4: Comparison of NGCN Training Accuracy: Universal vs. Local Graph Training.

using spatiotemporal features. Three models were evaluated:
a feedforward neural network (FNN), a convolutional neural
network (CNN), and a NGCN. As depicted, the NGCN
significantly outperforms both the FNN and CNN, achieving
an accuracy of 98.91%, compared to 78.92% for the FNN
and 81.21% for the CNN. This demonstrates the effectiveness
of incorporating spatiotemporal features into the NGCN for
cyber-attack detection tasks.

Fig. 4 presents a performance comparison between universal
NGCN training and local graph training. In the universal
training approach, the model is trained using data from all
four power systems and validated individually on each one.
Conversely, the local training approach involves training and
validating the model on each system’s data independently. For
the IEEE 22-bus system (referred to as “Case 22” in Fig.
4), universal NGCN training achieves an accuracy of 97.38%,
significantly higher than the 91.01% achieved by local graph
training. Similarly, in “Case 28” (the IEEE 28-bus system),
universal training achieves 95.69%, outperforming the 88.00%
of local training. These results highlight how universal train-
ing, by sampling across multiple power systems, enhances the
model’s generalization across different grid configurations.

Fig. 5: Comparison of FDI Detection Using Only Spatial Features.

C. FDI Detection

The results shown in Fig. 5 illustrate the performance of
different models in detecting FDI attacks using spatial features.
Although the accuracy of the NGCN decreases slightly to
95.21%, it still significantly outperforms both the FNN, which
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achieves 74.27%, and the CNN, which reaches 77.56%. These
findings underscore the effectiveness of the NGCN for FDI
detection, even when relying solely on spatial data.

V. CONCLUSIONS

In conclusion, this study demonstrates the effectiveness of
the NGCN in addressing the limitations of traditional neural
network detectors for power systems. By leveraging graph
convolutions at each bus and its neighborhoods, the NGCN
architecture enables the generalization of the detection model
across multiple power systems, reducing the need for system-
specific training and retraining in the face of system changes.
The results from our experiments, particularly in the detection
of cyber-attacks on smart inverters, show a significant im-
provement in detection accuracy, increasing from around 85%
to approximately 97%. These findings highlight the NGCN’s
potential to provide a more robust and scalable solution for
power system monitoring and cyber-attack detection.
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