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Abstract—In the field of anomaly detection, the boundaries
of anomalies are always blurred, and professional knowledge is
required to define them, which consumes a lot of manpower and
time to mark what anomalies are. In this paper, a Variational
Auto-Encoder(VAE) neural network model is used, and an
unsupervised learning anomaly detection model that considers
both temporal dependencies and reconstructed features. In the
calculus of marking outliers, we propose a two-dimensional
sliding window with a clustering algorithm to solve the traditional
method of judging outliers using a single threshold. Experimental
results based on Yahoo Webscope dataset show that the perfor-
mance can be ameliorated by the proposed method.

Index Terms—Anomaly detection, Variational Auto-Encoder,
two-dimensional sliding window

I. INTRODUCTION

Anomaly detection has been one of the areas of machine
learning research for a long time due to the wide range of
applications. In everyday life, the anomalies we observe are the
focus of our attention. When something deviates significantly
from the rest of the distribution, it is marked as an anomaly
or outlier. Anomaly is a well-defined normal behavior in the
data that is different from the behavior pattern, also known as
discordant observations in different fields or exceptions , etc.

Anomaly detection algorithms usually output their results
for use and verification. There are two common ways of out-
putting results [1]. One is anomaly scores, anomaly detection
algorithms score each piece of data. The degree of abnormality
of the data to the normal situation. The second is abnormal
mark, marking each piece of data as a binary mark of abnormal
or normal. The anomaly score is more flexible in application.
In actual use, the anomaly score can be combined with the
threshold to generate the anomaly label. The anomaly label
can be used to determine the index of the algorithm, and the
result of the model is good or bad, which is more clear in
application.

Common anomaly detection algorithms include statistical-
based anomaly detection. Statistical anomaly detection algo-
rithms can generally be divided into two categories, parametric
methods and nonparametric methods. Parametric methods,
such as Gaussian Model and Regression Model, use the
Gaussian distribution of the data to find values other than
three standard deviations from the mean value as abnormal
data [2], and the non-parametric method has Histogram-Based

algorithm [3] [4], this method first optimizes the algorithm
model by establishing a histogram, if the test data can be
divided into a certain histogram , it is normal, otherwise it
is abnormal. According to the set size of the histogram, the
abnormal and normal classification will be affected. If the
histogram is set too small, the normal data may be outside
the histogram, otherwise, the abnormal data may be within
the histogram.

A novel VAE based anomaly detector is proposed in this
paper. A generative model, VAE, will be used to extract the
high level features and reconstruction errors.

II. METHODOLOGY
A. Architecture of Variational Auto-Encoder

The framework of the time series anomaly detection system
developed by this research can be divided into two frame-
works. One is the time series reconstructor, which reconstructs
the data to the original through data preprocessing and Vari-
ational Autoencoder. the second , as an anomaly detector,
according to the reconstruction error, the two-dimensional
diagonal sliding window proposed by us and the clustering
algorithm are used to detect the cluster to which the anomalous
data belongs.

Fig. 1. Time Series Anomaly Detection Architecture

VAE is a generative model. The model can learn a distri-
bution P (X) that is very close to the real distribution of the
data, and then generate real data through P (X), but this is



not easy to get, since there are so many factors that affect the
distribution of the real data, we cannot be exhaustive about it,
so introduce a random variable z in the generative model to
help the modeling.Suppose there is a dataset X = {x(i)}mi=1

,m is the feature.The function is shown as follow:

Pθ(X
(i)) =

∫
Pθ(x

(i)|z)Pθ(z)dz (1)

θ∗ = argmax
θ

n∏
i=1

Pθ(x
(i)) (2)

Unfortunately, it is not easy to compute Pθ(X
(i)) in this way,

as it is very expensive to check all the possible values of z
and sum them up. To narrow down the value space to facilitate
faster search, we would like to introduce a new approximation
function to output what is a likely code given an input x,
qϕ(z|x), parametrized by ϕ.

B. Loss Function

The estimated posterior qϕ(z|x) should be very close to
the real one Pθ(z|x). We can use Kullback-Leibler divergence
to quantify the distance between these two distributions. KL
divergence DKL(X||Y ) measures how much information is
lost if the distribution Y is used to represent X . In our case
we want to minimize DKL(qϕ(z|x)||pθ(z|x)) with respect to
ϕ. So we have:

DKL(qϕ(z|x)||pθ(z|x)) = log(Pθ(x))

+DKL(qϕ(z|x)||pθ(z))− Ez qϕ(z|x)log(p(x|z))
(3)

we want to maximize the log-likelihood of generating real
data (that is log(p(x) and also minimize the difference between
the real and estimated posterior distributions (the term DKL,
works like a regularizer). Note that Pθ(x) is fixed with respect
to qϕ. The loss function is shown as follow:

LV AE(θ, ϕ) = −log(Pθ(x)) +DKL(qϕ(z|x)||Pθ(Z|x))
= −Ez qϕ(z|x)log(p(x|z)) +DKL(qϕ(z|x)||pθ(z))

(4)

θ∗, ϕ∗ = argmin
θ,ϕ

LV AE (5)

In Variational Bayesian methods, this loss function is known
as the variational lower bound, or evidence lower bound. The
”lower bound” part in the name comes from the fact that KL
divergence is always non-negative and thus −LV AE is the
lower bound of log(Pθ(x)).

−LV AE = log(Pθ(x))−DKL(qϕ(z|x)||pθ(z|x)) ≤ log(Pθ(x))
(6)

C. Training

Ideally, we could train the VAE with the entire time series as
input ,and the model output the entire reconstruction. However,
in many practical applications, time series are often very long.

To solve this problem, we use sliding windows tech-
nique(7),dividing the long time series into short chunks. The

sliding windows is controlled by one parameters: window size
w . Specifically, for each dataset x ∈ RT , we have:

X =


x1 x2 · · · xw

x2 x3 · · · xw+1

...
...

. . .
...

xL xL+1 · · · xT

 (7)

L = T − w + 1 (8)

D. Anomaly Score

The next step is to compute anomaly score for each data
point x, the input data of VAE model is a chunk of time series
X , and the reconstruction output of the model X ′. We choose
absolute reconstruction error as error e, so we have :

e = |X − X ′| (9)

e =


x1 − x′

1 x2 − x′
2 · · · xw − x′

w

x2 − x′
2 x3 − x′

3 · · · xw+1 − x′
w+1

...
...

. . .
...

xL − x′
L xL+1 − x′

L+1 · · · xT − x′
T


(10)

E =


e1,1 e1,2 · · · e1,w
e2,2 e2,3 · · · e2,w+1

...
...

. . .
...

eL,L eL,L+1 · · · eL,T

 (11)

We take the anti-diagonal of the error matrix(11)slide the
w/timesw window size. We call this technique two-dimension
sliding window , and we have diagonal error DE :

DE =


e1,w e2,w · · · ew,w

e2,w+1 e3,w+1 · · · ew+1,w+1

...
...

. . .
...

e(L−w+1),L e(L−w+2),L · · · eL,L


(12)

III. EXPERIMENTAL RESULTS

A. DATA SET DESCRIPTION

Yahoo Webscope data set is a publicly available data set
released by Yahoo Labs. This data set consists of 367 real
and synthetic time series with point anomaly labels. Each time
series contains 1, 420 - 1, 680 instances. This anomaly detec-
tion benchmark is further divided into four sub-benchmarks
namely A1 Benchmark, A2 Benchmark, A3 Benchmark, and
A4 Benchmark.

A1 Benchmark contains real Yahoo membership login data,
which tracks the aggregate status of logins on Yahoo network
, whereas, other three sub-benchmarks contain synthetic data.
A2Benchmark and A3Benchmark contain only outliers, while
A4Benchmark also contains change-point anomalies. In syn-
thetic data, outliers are present on random positions. In each
data file, there is a Boolean attribute – label – indicating if the



value at a particular time stamp is considered as anomalous
or normal. In addition to value and label, A3Benchmark and
A4Benchmark contain additional fields such as change-point,
trend, noise, and seasonality. However, we are discarding all
the additional attributes and only using value attribute for all
the experiments.

B. EVALUATION METRIC

F-score is most commonly used singleton metric which
serves as an indicator of the model’s performance. Therefore,
we employed F-score (13) as the evaluation metric for our
models. All the anomaly detection methods in this experimen-
tal setting are applied on each time series separately. Average
F-scores per sub-benchmark are reported for each method.

F − score = 2.
P recision.Recall

Precision+Recall
(13)
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