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Abstract— In this article, minimal surfaces in Galilean space are 

studied. The circumference of the parabolic point of the surface 

has been studied, and it has been proven that a special parabolic 

surface is minimal. It has been shown that the cyclic surface is 

minimal and its equation has been derived. The conditions for the 

existence of a minimum surface are defined and the equations are 

shown when the surface is given by an explicit and vector 

equation. 
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I. INTRODUCTION 

The geometry of Galilean space belongs to the geometry 

of spaces with degenerate metrics. A. Artikbaev [1] and N.M. 

Makarova [2] were first engaged in solving specific problems 

of geometry “in general” in Galilean space. 

In the study of the geometry of non-Euclidean spaces we 

sometimes use the method of superimposed space, that is, the 

coordinate system of non-Euclidean space is considered as 

the coordinate system of Euclidean space [3;4]. If the 

coordinate system of Galilean space is considered as a 

Euclidean system, then some of our results about isometry are 

a generalization of the notion of “isometry of surfaces by 

section” studied in the works of A. Sharipov [5,6].   

After 2000, the geometry of Galilean space began to be 

widely studied [7;8;9]. In these works, the differential 

geometry of Galilean space was studied. The degeneracy of 

the Galilean space metric does not make it possible to study 

an arbitrary surface in Galilean space. Therefore, we consider 

only surfaces that do not have special reference planes. 

In Galilean space there is a “cyclic surface” introduced by 

A. Artikbayev. Artikbayev “cyclic surface”. The main 

properties of the “cyclic surface” are studied by E. Kurbanov 

[10]. In this article, we'll also divide the parabolic points of 

the surface into two. 
The saddle-shaped surface in the Galilean space retains its 

uniqueness in the Euclidean space. A cyclic surface in 

Galilean space is a saddle-shaped surface in Euclidean space. 

In the study of the geometry of the cyclic point of the surface, 

it is necessary to consider some new issues first, the geometry 

of the saddle surfaces in the Euclidean space and the 

geometry of the isotropic cone in the pseudo-Euclidean space 

are applied to the study of the cyclic surface in the Galilean 

space.  

It is known that in Euclidean space minimal surfaces are 

defined as surfaces with zero mean curvature.  These surfaces 

have the smallest area among surfaces with common edges 

that are a given closed contour. 

In this article, we will also divide the parabolic points of 

the surface into two parts and show the conditions for the 

minimum length of the surface, the minimality of a surface 

whose points are cyclic and specifically parabolic. 

II. PRELIMINARIES 

Let a three-dimensional affine space 𝐴3 be given, 𝑂𝑥𝑦𝑧 

be a system of affine coordinates with the origin at point 

𝑂(0,0,0) and {𝑖, 𝑗, �⃗⃗�} be the basis vectors in this space.  

The scalar product of vectors �⃗�{𝑥1, 𝑦1, 𝑧1}  and 

�⃗⃗�{𝑥2, 𝑦2 , 𝑧2} is determined by formula  

(�⃗��⃗⃗�) = {
𝑥1𝑥2, 𝑖𝑓  𝑥1𝑥2 ≠ 0,
𝑦1𝑦2 + 𝑧1𝑧2, 𝑖𝑓 𝑥1𝑥2 = 0.

   (1) 

Definition 1. An affine space in which the scalar product 

of vectors �⃗�, �⃗⃗� is defined by formula (1) is called a Galilean 

space and is denoted by 𝐺3 [11;12].  

Let us find out the geometric meaning of the distance 

between two points of Galilean space 𝐺3, defined as the norm 

of the vector connecting the points between which the 

distance is determined.  

Let points 𝐴(𝑥1, 𝑦1, 𝑧1)  and 𝐵(𝑥2, 𝑦2, 𝑧2)  be points of 

Galilean space 𝐺3, and 𝑥1 ≠ 𝑥2. Then vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗   

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ {𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1} 

and 

𝐴𝐵 = |𝐴𝐵⃗⃗⃗⃗ ⃗⃗ | = √(𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⋅ 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ) = |𝑥2 − 𝑥1|. 

The distance between points 𝐴  and 𝐵  is equal to the 

length of the projection of vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  onto axis Ох (see Fig. 

1). 

If 𝑥1 = 𝑥2 = х0, then vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  is parallel to plane О𝑦𝑧, 

and the distance between points 𝐴(𝑥0, 𝑦1, 𝑧1)  and 

𝐵(𝑥0, 𝑦2 , 𝑧2) is determined by formula  

𝐴𝐵 = |𝐴𝐵⃗⃗⃗⃗ ⃗⃗ | = √(𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2. 
Obviously, points 𝐴 and 𝐵 lie on the plane 𝑥 = х0 , and 

the distance will be the Euclidean distance between the 

corresponding points.  



 
Figure 1. 

Therefore, the geometry on the plane 𝑥 = х0 of Galilean 

space will be Euclidean; such planes are called special planes 

of Galilean space [11].  

Let 𝐹 be the surface of space 𝐺3 without special tangent 

planes. Let us introduce a special system of curvilinear 

coordinates. To do this, consider all possible intersections 𝐹 

with special planes 𝑥 = 𝑐𝑜𝑛𝑠𝑡.  

Let us choose as curvilinear coordinates 𝑢 = 𝑢0 a family 

of curves formed by intersections of the surface with special 

planes, and as coordinate lines 𝑣 = 𝑣0  – arbitrary lines 

forming a network on the surface 𝐹 . With this choice of 

curvilinear coordinates, the surface equations have the form  

𝑟
→

= 𝑟
→

(𝑢, 𝑣) = 𝑢𝑖 + 𝑦(𝑢, 𝑣)𝑗 + 𝑧(𝑢, 𝑣)�⃗⃗�. 
In this case, vectors 𝑟𝑢, 𝑟𝑣 form a basis in the tangent plane 

of the surface, which is Galilean. The direction of vector 𝑟𝑣  

corresponds to the selected direction of the Galilean plane.  

The vector equation of a line in Galilean space will look 

like this: 

𝑟
→

= 𝑟
→

(𝑠) = 𝑠𝑖 + 𝑦(𝑠)𝑗 + 𝑧(𝑠)�⃗⃗�. 
Let a curve with equation 𝑣 = 𝑣(𝑢) be given on surface 

𝐹.  Consider the length of the curve on the surface. 

Calculating the arc length of a curve segment with ends at 

points 𝐴(𝑢0) and 𝐵(𝑢1), where 𝑢1 ≠ 𝑢0, we obtain that the 

differential of the arc length is 𝑑𝑠 = |𝑟
→

𝑢𝑑𝑢 + 𝑟
→

𝑣𝑑𝑣| . 

Consequently, the square of the differential of the curve arc 

on the surface is equal to the square of the increment of 

coordinate  

𝑑𝑠2 = 𝑑𝑢2. 
We call the resulting from the first fundamental form of 

the surface [8]. When 𝑑𝑢 = 0, we have 𝑢 = 𝑐𝑜𝑛𝑠𝑡 . In this 

case, the curve lies on a special plane.  

The differential of the arc length of a curve is calculated 

using formula  

𝑑𝑠2
2 = (𝑦𝑣

2 + 𝑧𝑣
2)𝑑𝑣2 = 𝐺(𝑢, 𝑣)𝑑𝑣2, 

where 𝑑𝑠2
2  is the first additional fundamental form of the 

surface.  

Consequently, for the chosen curvilinear coordinate, the 

coefficients of the first fundamental form have the form  

𝐸(𝑢, 𝑣) = 1, 𝐺(𝑢, 𝑣) = 𝑦𝑣
2 + 𝑧𝑣

2. (2) 

Mean surface curvature  

2𝐻 = 𝑁        (3)  

and total surface curvature  

𝐾 =
𝐿𝑁 − 𝑀2

𝐺(𝑢, 𝑣)
, 

where  

𝐿 = (𝑟𝑢𝑢

→
𝑛
→

) =
𝑦𝑢𝑢𝑧𝑣−𝑧𝑢𝑢𝑦𝑣

√𝐺(𝑢,𝑣)
,

𝑀 = (𝑟𝑢𝑣

→
𝑛
→

) =
𝑦𝑢𝑣𝑧𝑣−𝑧𝑢𝑣𝑦𝑣

√𝐺(𝑢,𝑣)
,

𝑁 = (𝑟𝑣𝑣

→
𝑛
→

) =
𝑦𝑣𝑣𝑧𝑣−𝑧𝑣𝑣𝑦𝑣

√𝐺(𝑢,𝑣)
.

         (4) 

are the coefficients of the second fundamental form [11]. The 

principal curvatures of the surface are defined as follows: 

𝑘1 =  𝑎11 = 𝐿 −
𝑀2

𝑁
, 𝑘2 = 𝑎22 = 𝑁. 

When Artykbaev classified the points of surfaces, he 

proved that if the conditions 𝑁 = 0  ,   𝑀 ≠ 0  for the 

coefficients of the second fundamental form are fulfilled at 

all points of the surface, then this surface is a cyclic surface 

[13]. At 𝑁 = 0  the mean curvature of 𝐻 = 0  and 𝐾 =
−𝑀2 < 0 the Gaussian curvature is negative.  

Let a regular surface be given in Galilean space. We take 

a point 𝑀 on this surface and intersect the surface through 

this point with a special plane. When we cut, we get a curve 

𝑢 = 𝑐𝑜𝑛𝑠𝑡. If the tangent vector of the point 𝑀 of this curve 

coincides with the asymptotic direction, then this point is 

called a cyclic point. 

Definition-2. A surface whose points are all cyclic is 

called a cyclic surface. 

We define the minimal surfaces of Galilean space as well 

as in Euclidean space as a surface of mean curvature which 

converges to zero. Then we have 𝑁 = 0. 

It is easy to prove that the surface with zero mean 

curvature in 𝐺3 has the property of a minimal surface in 𝐺3. 
The area of the minimal surface will be the smallest among 

the surfaces with a common edge in 𝐺3. 

Indeed, suppose that 𝐷 is a convex region in the plane of 

general position (i.e., 𝑧 = 0 ) and 𝛾 is the boundary of this 

region.  Consider a spatial curve �̅�  mutually uniquely 

projecting onto 𝛾 .  The area of the surface 𝐹  uniquely 

projecting onto the region 𝐷  with edge �̅�  is calculated by 

formula  

𝑆 = ∬ √𝐺(𝑢, 𝑣)
𝐷

𝑑𝑢𝑑𝑣, 

where 𝐺(𝑢, 𝑣) is the coefficient of the first quadratic form of 

the surface 𝐹. Since the area 𝐷 is convex, the double integral 

can be calculated using repeated integrals, i.e.  

𝑆 = ∬ √𝐺(𝑢, 𝑣)

𝐷

𝑑𝑢𝑑𝑣 = ∫ ( ∫ √𝐺(𝑢, 𝑣)𝑑𝑣

𝜑2(𝛼)

𝜑1(𝛼)

) 𝑑𝑢

𝑏

𝑎

. 

Expression ∫ √𝐺(𝑢, 𝑣)𝑑𝑣
𝜑2(𝛼)

𝜑1(𝛼)
 - in the plane 𝑥 = 𝑢 =

𝑐𝑜𝑛𝑠𝑡  gives the arc length of the curve 𝛾 , formed by the 

intersection of the special plane with the given surface.  

Hence, the surface area is directly proportional to the arc 

length of the curve; since the edge of the surface �̅� has only 

two points in common with the plane 𝑥 = 𝑐𝑜𝑛𝑠𝑡, the length 

of the curve �̅� connecting these points will be smallest when 

�̅�  is the segment connecting these points. Furthermore, the 

coefficient 𝑁 is proportional to the curvature of the curve 𝛾. 
Equality to zero of 𝑁  means that 𝛾  is a segment. So, 

minimality of area is achieved only in this case. Hence the 

following statement can be made.  



III. MY RESULTS  

In [13] the point of the surface where the condition 𝑘1 =
𝑎11 = 0, 𝑘2 = 𝑎22 ≠ 0 is fulfilled is called parabolic. In this 

case, the surface indicatrix in Galilean space has the form  

𝑁𝑦′2 = ±1 

or is reduced to this form (see Fig. 2).  

 
Figure 2. 

In addition, we can consider the case 𝑘1 = 𝑎11 ≠ 0, 𝑘2 =
𝑎22 = 0 and 𝑀 = 0. Then the surface indicatrix has the form 

(see Fig. 3)  

𝐿𝑥′2 = ±1. 

 
Figure 3. 

The above example shows that these two possible kinds 

of parabolic surface points have different geometrical 

representations. Moreover, the motion of the tangent plane 

cannot transform them into each other. Therefore, these cases 

must be considered separately, i.e., they must be considered 

as different.   

In the first case when 𝑘1 = 𝑎11 = 0, 𝑘2 = 𝑎22 ≠ 0, the 

point will be called a parabolic point of the surface. The 

second case, when 𝑘1 = 𝑎11 ≠ 0, 𝑘2 = 𝑎22 = 0 and 𝑀 = 0, 

the point will be called a special parabolic point of the 

surface.  

Definition 3. A surface, all points of which are parabolic 

(especially parabolic), let us call it parabolic (especially 

parabolic).  

For a surface where all points are special parabolic points, 

our mean curvature 2𝐻 = 0 is equal. In parabolic points, the 

mean curvature is not 2𝐻 ≠ 0. 

This leads to the following theorem. 

Theorem 1. A special parabolic surface is minimal in 

Galilean space. 

We show the proof of these concepts in the figures.  First 

consider the vector equation of these surfaces and their graph.  

𝑟1⃗⃗⃗ ⃗(𝑢, 𝑣) = 𝑢𝑖 + 𝑣𝑗 + 𝑢2 �⃗⃗�   ;         𝑟2⃗⃗⃗⃗ (𝑢, 𝑣) = 𝑢𝑖 + 𝑣𝑗 +

𝑣2�⃗⃗�.  𝐷{−1 ≤ 𝑢 ≤ 1,   − 1 ≤ 𝑣 ≤ 1}   (1) is the area of 

definition (see Fig. 4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Now consider the curvature of these surfaces to the plane 

𝑂𝑥𝑦, that is, the unambiguous mapping of the surface to the 

plane with preserving the distances between the 

corresponding points and the distance order.  

The first surface 𝑟1⃗⃗⃗ ⃗(𝑢, 𝑣)  is mapped to the region 𝐷  is 

isometric to Galilean space. The second surface 𝑟2⃗⃗⃗⃗ (𝑢, 𝑣) is 

mapped to the area 𝐷∗{−1 ≤ 𝑢 ≤ 1,   − 𝑙 ≤ 𝑣 ≤ 𝑙} . Here 

𝑙 = ∫ √1 + 4𝑣21

−1
𝑑𝑣 is the length of the parabola.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 

The peculiarity of the surface isometry of Galilean space 

can be seen in the mapping of triangles 𝑂𝐴𝐵, 𝑂𝐶𝐷  to the 

corresponding surfaces. In Galilean space triangles 𝑂𝐴𝐵 and 

𝑂𝐴∗𝐵∗ , also 𝑂𝐶𝐷  and 𝑂𝐶∗𝐷∗  are equal to each other (see 

Fig. 5)   

Therefore, the area of the expansion of the first surface is 

equal to 𝑆 = 4. The width of the 2nd surface is equal to the 

area 𝑆 = 4𝑙 . Therefore, the surface 1 is smaller than the 

surface 2. (Surface spreads retain the surface area of the 

surfaces.) 

Assertion 1.  Cyclic surfaces are minimal Galilean 

surfaces.  

The mean curvature of the cyclic surface is equal to 2𝐻 =
0. Therefore, the surface is a minimum surface. Let's present 

the equation of this minimal surface. 

It is known [13,14] that for the points of a surface to be 

cyclic, it is necessary and sufficient that the coefficient of the 

second fundamental form 𝑁 turns to zero, i.e.:  

𝑁 =
𝑦𝑣𝑣𝑧𝑣−𝑧𝑣𝑣𝑦𝑣

√𝑦𝑣
2+𝑧𝑣

2
= 0  , 𝑀 =

𝑦𝑢𝑣𝑧𝑣−𝑧𝑢𝑣𝑦𝑣

√𝑦𝑣
2+𝑧𝑣

2
≠ 0. 

The question naturally arises whether there exist surfaces 

of Galilean space satisfying these conditions: 𝑁 = 0   𝑀 ≠ 0. 



To answer this question, let us define the general form of 

functions 𝑦(𝑢, 𝑣)  , 𝑧(𝑢, 𝑣) satisfying these conditions.  

From the above we have 

𝑦𝑣𝑣𝑧𝑣 − 𝑧𝑣𝑣𝑦𝑣 = 0 and 𝑦𝑢𝑣𝑧𝑣 − 𝑧𝑢𝑣𝑦𝑣 ≠ 0, 

or 𝑧2
𝑣(

𝑦𝑣

𝑧𝑣
)𝑣 = 0 and 𝑧2

𝑣(
𝑦𝑣

𝑧𝑣
)𝑢 ≠ 0. 

These relations show that relation 
𝑦𝑣
𝑧𝑣

 depends only on 

parameter 𝑢, i.e. 
𝑦𝑣

𝑧𝑣
= 𝐹(𝑢). We easily obtain the expressions 

for 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣) in the form  

𝑦 = 𝑓1(𝑢)𝑣 + 𝑓3(𝑢) , 𝑧 = 𝑓2(𝑢)𝑣 + 𝑓4(𝑢). 

From the obtained results we have the following equation  

𝑟
→

= 𝑟
→

(𝑢, 𝑣) = 𝑢𝑖 + (𝑓1(𝑢)𝑣 + 𝑓3(𝑢))𝑗 + (𝑓2(𝑢)𝑣 +
𝑓4(𝑢))𝑘. 

This is a general form of the equation of a minimal surface 

whose points are cyclic. 

Let the surface 𝐹  be given by an explicit equation 𝑧 =
𝑓(𝑥, 𝑦).  

Theorem 2. If condition 𝑓𝑦𝑦 = 0 is satisfied for surface 𝐹 

in Galilean space 𝐺3, then it is a minimal surface.  

Proof: Let's find the coefficients of the first and second 

fundamental form of the surface from formulas (2), (4): 

𝐸 = 1, 𝐺 = √1 + 𝑓𝑦
′, 

𝐿 =
𝑓𝑥𝑥

√1+𝑓𝑦
2
,𝑀 =

𝑓𝑥𝑦

√1+𝑓𝑦
2
,𝑁 =

𝑓𝑦𝑦

√1+𝑓𝑦
2
. 

Now, using (3), we calculate the mean curvature of the 

surface 𝐹 

2𝐻 =
𝑓𝑦𝑦

(1 + 𝑓𝑦
2)

3
2

.

 It follows that this surface is minimal if and only if  𝑓𝑦𝑦 = 0.  

Definition 4. A linear surface whose rectilinear 

formations are parallel to the same plane is called a Catalan 

surface.  

Consider an arbitrary tangent surface: 

𝑟(𝑢, 𝑣) = �⃗�(𝑢) + 𝑣𝛽(𝑢). 

It is seen that 𝑓𝑦𝑦 = 0 for this surface. This surface will be the 

minimal surface.  

Let the surface be given by the following vector equation: 

𝑟(𝑢, 𝑣) = 𝑢�⃗� + 𝑦(𝑢, 𝑣)�⃗� + 𝑧(𝑢, 𝑣)�⃗�,          (5) 

where 𝑦(𝑢, 𝑣)  and 𝑧(𝑢, 𝑣)  are functions with continuous 

partial derivatives. In order for the surface under 

consideration (3) to be a minimum surface, the following 

condition must be met 

𝑦
𝑣𝑣

𝑧𝑣 − 𝑧𝑣𝑣𝑦
𝑣

= 0.                       (6) 

Let's present the equation of the surface (5) in Galilean 

space, satisfying condition (6). To solve equation (6), we 

write the expression as follows 

𝑦
𝑣𝑣

𝑧𝑣 = 𝑧𝑣𝑣𝑦
𝑣

. 

In this equation, the derivatives are proportional 
𝑦

𝑣𝑣

𝑦
𝑣

=
𝑧𝑣𝑣

𝑧𝑣

. 

From this proportionality comes the following ratio 
𝑑

𝑑𝑣
(ln|𝑦

𝑣
|) =

𝑑

𝑑𝑣
(ln|𝑧𝑣|). 

From this 

ln|𝑦𝑣| − ln|𝑧𝑣| = 𝐶(𝑢), 
where 𝐶(𝑢)  is an arbitrary function that depends only on 

𝑢.This follows from 

|𝑦𝑣| = 𝑘(𝑢)|𝑧𝑣|, 
where 𝑘(𝑢) = 𝑒𝐶(𝑢)  is an arbitrary positive function. 

According to the above, there is the following relationship 

between 𝑦(𝑢, 𝑣) and 𝑧(𝑢, 𝑣): 

𝑦(𝑢, 𝑣) = 𝑓(𝑢) + 𝑘(𝑢)𝑧(𝑢, 𝑣), 
where 𝑓(𝑢) and 𝑘(𝑢) are arbitrary differentiable functions. 

In general, the vector equation of a surface is  

  𝑟(𝑢, 𝑣) = 𝑢�⃗� + (𝑓(𝑢) + 𝑘(𝑢)𝑧(𝑢, 𝑣))�⃗� + 𝑧(𝑢, 𝑣)�⃗�.   (7) 

If the surface is given by equation (7), then the surface is 

minimal. 

IV. CONCLUSION 

In this article, the minimum surfaces in Galilean space are 
investigated. The parabolic point of the surface has been 
studied. The features of geometry in the vicinity of parabolic 
and special parabolic points of the surface have been revealed. 
It has been proven that special parabolic and cyclic surfaces 
have a minimum surface and their equation has been shown. 
The conditions for the minimum division of surfaces given by 
the explicit and vector equations in Galilean space have been 
shown. 
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