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Abstract: This paper provides a comparative overview of four numerical methods widely employed in 

computational fluid dynamics and related fields: Finite Volume (FV), Lattice Boltzmann Method (LBM), 

Smoothed Particle Hydrodynamics (SPH), and Spectral Methods. FV discretizes the domain into control 

volumes, emphasizing conservation laws and flux integrals across cell faces. It's renowned for its 

robustness, particularly in complex geometries. LBM is a mesoscopic approach simulating fluid dynamics 

through particle interactions on a lattice grid. Its intrinsic parallelism and ability to handle complex 

boundary conditions make it suitable for multiphase flows and porous media simulations. SPH represents 

fluids as a set of particles, where properties are smoothed over neighboring particles using a kernel function. 

SPH excels in free surface flows, astrophysical simulations, and fluid-structure interaction due to its 

Lagrangian nature and adaptive resolution. Spectral Methods discretize functions using orthogonal basis 

functions, such as Fourier or Chebyshev polynomials, enabling high-order accuracy and spectral 

convergence. They are preferred for problems with smooth solutions and periodic boundary conditions, like 

turbulence simulations and wave propagation. 
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1. INTRODUCTION 

The realm of Computational Fluid Dynamics (CFD) stands as 

a revolutionary force in comprehending and engineering fluid 

flow phenomena. It provides a suite of numerical techniques 

adept at simulating and dissecting complex fluid behaviors. 

Amid this toolkit, four prominent methods emerge: Finite 

Volume (FV), Lattice Boltzmann Method (LBM), Smoothed 

Particle Hydrodynamics (SPH), and Spectral Methods. Each 

method offers distinct advantages, tailored to address various 

fluid flow scenarios, thus becoming indispensable across 

scientific and engineering disciplines. 

This paper endeavors to furnish a succinct yet comprehensive 

overview and comparative analysis of these four numerical 

methodologies within the domain of fluid dynamics 

simulations. By delving into their fundamental principles, 

strengths, and limitations, this review aims to serve as a 

compass for researchers and practitioners in selecting the most 

suitable numerical technique for their specific applications. 

The evolution of fluid dynamics study has been marked by a 

surge in numerical methods, propelled by advancements in 

computational power and algorithmic sophistication. FV 

methods, renowned for their robustness and adaptability in 

handling intricate geometries, have garnered widespread 

acceptance. Foundational works by Patankar (Barth, Herbin 

and Ohlberger, 2017)laid the groundwork for applying FV 

methods to fluid flow simulations. Subsequent refinements by 

Versteeg and Malalasekera (Barth, Herbin and Ohlberger, 

2017) and Ferziger and Peric (Boudet, 2011) expanded the 

method's applicability across diverse engineering domains. FV 

method operates by dividing the computational domain into 

small, non-overlapping control volumes. This method 

transforms the integral forms of conservation laws—

governing the fluid's mass, momentum, and energy—into 

algebraic equations over these discrete volumes. By 

computing the fluxes of conserved quantities across the 

boundaries of each control volume, the FV method ensures 

that any flux leaving one volume enters the adjacent one, 

inherently conserving the quantities. This intrinsic 

conservation property, coupled with its flexibility in handling 

complex geometries and boundary conditions, makes the FV 

method particularly powerful and reliable for simulating a 

wide range of fluid flow problems, from aerodynamics in 

aerospace engineering to pollutant dispersion in environmental 

studies. The meticulous nature of flux calculation and 

interpolation at the boundaries, while computationally 

demanding, ensures the fidelity and accuracy of the 

simulations, thereby providing invaluable insights into the 

fluid behavior under various physical scenarios (Boudet, 

2011). Fig. 1 illustrates the Finite Volume Method (FVM), 

where the computational domain is discretized into small 

control volumes. The method computes fluxes of conserved 

quantities such as mass, momentum, and energy across the 

boundaries of each control volume, ensuring conservation 

laws are satisfied. A schematic diagram showing a 2D 

computational grid with control volumes. Each control volume 

is represented by a small square, with arrows indicating the 

fluxes of mass, momentum, and energy across the faces of the 

control volumes. 



 

Figure 1. Schematic of the Finite Volume Method (FVM) 

showing control volumes 

LBM has emerged as a formidable contender to traditional 

Navier-Stokes solvers, particularly excelling in simulating 

multiphase flows and intricate boundary conditions. Succi's 

seminal treatise (Samanta, Chattopadhyay and Guha, 2022) 

provided an exhaustive introduction to LBM principles, 

igniting widespread interest and further advancements in the 

field. Recent endeavors by Aidun and Clausen (Aliu et al., 

2020) and Chen et al. (Chen et al., 2020) have broadened 

LBM's horizon into novel territories like microfluidics and 

porous media flow. LBM revolutionizes fluid dynamics 

simulation by bridging microscopic and macroscopic scales 

through kinetic theory. Instead of solving the traditional 

Navier-Stokes equations directly, LBM models fluid flow by 

simulating the evolution of particle distribution functions on a 

discrete lattice grid. At each lattice node, particles propagate 

and collide according to simplified rules derived from the 

Boltzmann equation, with the post-collision distributions 

relaxed towards equilibrium states. This inherently local 

computation facilitates easy parallelization, making LBM 

computationally efficient and adaptable to modern high-

performance computing architectures. The method excels in 

handling complex boundary conditions and interfaces, such as 

those found in porous media or multiphase flows, by naturally 

accommodating microscopic interactions and capturing 

emergent macroscopic behavior. As a result, LBM has found 

applications in diverse fields ranging from microfluidics and 

biomedical engineering to materials science, offering a robust, 

flexible, and scalable tool for exploring the intricacies of fluid 

dynamics in complex systems (Aliu et al., 2020). Fig. 2 depicts 

the Lattice Boltzmann Method (LBM), where fluid dynamics 

are simulated on a discrete lattice grid. At each lattice node, 

particles propagate and collide, following simplified rules that 

are derived from the Boltzmann equation. This method 

efficiently handles complex boundary conditions and 

interfaces. A lattice grid with nodes connected by velocity 

vectors. At each node, particle distribution functions are 

shown, along with arrows representing the streaming and 

collision processes. 

 

Figure 2. Representation of the Lattice Boltzmann Method 

(LBM) with a D2Q9 lattice grid 

SPH has ascended in prominence for simulating free surface 

flows, fluid-structure interactions, and celestial phenomena. 

The pioneering work of Gingold and Monaghan laid the 

foundation for SPH, which has since undergone refinement 

and widespread application across many problems. Monaghan 

and Kocharyan's comprehensive review (Bagheri, 

Mohammadi and Riazi, 2023) shed light on SPH techniques, 

while subsequent breakthroughs by Price and Monaghan 

(Rosswog, 2020) and Rosswog (Rai and Mondal, 2021) 

expanded their capabilities in modeling intricate fluid 

dynamics scenarios. SPH transforms fluid dynamics into an 

elegant dance of particles, free from the constraints of 

traditional grids. In this mesh-free Lagrangian method, the 

fluid is represented by discrete particles, each carrying 

properties such as mass, velocity, and density. These 

properties are smoothed over a finite distance using kernel 

functions, allowing for the accurate interpolation of fluid 

variables across the particles. As these particles move and 

interact, they capture the essence of fluid behavior, from subtle 

ripples to violent splashes, making SPH particularly adept at 

handling complex, transient phenomena like free surface 

flows, multiphase interactions, and large deformations. This 

flexibility extends to naturally managing moving boundaries 

and interfaces, which are often challenging for grid-based 

methods. Originating in astrophysics to model stellar 

phenomena, SPH has found its way into diverse applications, 

including oceanography, biomechanics, and industrial 

processes, where its ability to simulate realistic and intricate 

fluid motions in a computationally efficient manner makes it 

an indispensable tool for scientists and engineers delving into 

the dynamic world of fluid flows (Bagheri, Mohammadi and 

Riazi, 2023). As shown in Fig. 3, the Smoothed Particle 

Hydrodynamics (SPH) method represents the fluid as a set of 

discrete particles. The properties of the fluid, such as density 

and velocity, are interpolated using smoothing kernels, 

allowing for the simulation of complex, free-surface flows. A 

visualization of fluid particles within a domain. Particles are 

shown with overlapping smoothing kernels, indicating how 

properties are interpolated between neighboring particles. 

 

Figure 3. Smoothed Particle Hydrodynamics (SPH) approach 



Spectral Methods, rooted in mathematical and numerical 

analysis, offer high-order accuracy and spectral convergence 

properties, making them apt for problems with smooth 

solutions and periodic boundary conditions. Seminal 

contributions by Orszag (Rai and Mondal, 2021) and Canuto 

et al. (Caban and Tyliszczak, 2022) established the theoretical 

underpinnings of spectral methods, while Trefethen's 

exposition (Vishwanatha et al., 2023) provided a 

contemporary synthesis of spectral techniques in fluid 

dynamics. Recent strides by Boyd and Fornberg (Prasad, Choi 

and Patil, 2022) have extended spectral methods into 

uncharted domains, encompassing turbulence modeling and 

wave propagation. The Spectral Method in computational fluid 

dynamics is akin to composing a symphony where fluid 

behavior is captured through the harmonics of global basis 

functions. By representing the solution of the governing 

equations, such as the Navier-Stokes equations, with a series 

of trigonometric (Fourier) or polynomial (Chebyshev) 

functions, this method transforms the problem into a spectral 

space where differentiation becomes multiplication, and 

complex operations simplify. The Spectral Method achieves 

unparalleled accuracy for smooth, periodic problems, as each 

function spans the entire domain, capturing even the finest 

nuances of the fluid's motion with minimal numerical 

dissipation and dispersion. This high-fidelity approach, 

however, demands simple geometries and periodic or well-

defined boundary conditions, often restricting its application 

to idealized scenarios like turbulence modeling or climate 

simulations. In these realms, the Spectral Method shines, 

revealing the intricate, often chaotic beauty of fluid dynamics 

in vivid detail, much like a maestro conducting an orchestra to 

unveil the profound complexities of a musical masterpiece 

(Rai and Mondal, 2021). Fig. 4 illustrates the Spectral Method, 

which represents solutions to partial differential equations 

using a series of basis functions. The method provides high-

order accuracy for problems with smooth solutions, as 

demonstrated by the convergence of the spectral 

approximation with increasing modes. A graph illustrating the 

spectral method’s concept of representing a function (e.g., a 

sine wave) using a series of basis functions. The figure could 

include a comparison between the original function and its 

spectral approximation using different numbers of modes. 

 

 
Figure 4. Illustration of the Spectral Method, where a 

function is represented as a series of basis functions 

 

In summation, the literature showcases a diverse array of 

numerical methods available for simulating fluid dynamics, 

each endowed with unique strengths and limitations. By 

grasping the principles and capabilities of these methods, 

researchers and practitioners can harness their full potential to 

tackle the ever-expanding complexity of fluid flow challenges 

in science and engineering. 

2. NUMERICAL METHODOLOGIES 

2.1 Finite Volume (FV) method 

The method divides the computational domain into a finite 

number of control volumes, or cells, and calculates the values 

of the variables of interest (e.g., fluid velocity, temperature) at 

the center of each cell. The governing equations for the Finite 

Volume method depend on the specific physical problem 

being solved. However, in the context of fluid flow, the most 

common equations are the conservation laws, such as the 

continuity equation (mass conservation), momentum 

equations (Navier-Stokes equations for incompressible flow), 

and energy equation (heat transfer). Partial differential 

equations (PDEs) that describe the behavior of fluid flow, heat 

transfer, and other physical phenomena are, 

continuity equation: 

𝜕𝜌

𝜕𝑡
 + ∇. (𝜌𝑢) = 0                        (1) 

where 𝜌 is the fluid density, 𝑡 is time, 𝑢 is the velocity vector, 

∇⋅(𝜌𝑢) represents the divergence of the mass flux. 

momentum equations (Navier-Stokes equations): 

𝜕(𝜌𝑢)

𝜕𝑡
 +  ∇. (𝜌𝑢𝑢) = −∇𝑝 +  ∇. 𝜏 +  𝜌𝑔              (2) 

where p is the pressure, 𝜏 is the stress tensor, g is the 

gravitational acceleration. 

and energy equations: 

𝜕(𝜌𝐸)

𝜕𝑡
 +  ∇. (𝜌𝐸𝑢) = ∇. (𝑘∇𝑇) + �̇�              (3) 

where 𝐸 is the total energy per unit mass (internal energy plus 

kinetic energy), 𝑘 is thermal conductivity, 𝑇 is the temperature, 

𝑞 represents any internal heat sources or sinks. 

These equations are discretized over each control volume in 

the computational domain using the FV method. The integral 

form of these equations over each control volume leads to a set 

of algebraic equations that can be solved numerically to obtain 

the values of the variables at each cell center. The FV method 

ensures conservation of mass, momentum, and energy within 

each control volume and is widely used in CFD simulations 

due to its robustness and accuracy. 

2.2 Lattice Boltzmann Method (LBM) 

The lattice Boltzmann equation is a simplified kinetic equation 

that describes the evolution of the distribution function 𝑓𝑖 (𝑥, 

𝑒𝑖, 𝑡) representing the probability density of finding a particle 

with velocity 𝑒𝑖 at position 𝑥 and time 𝑡. In its simplest form, 

the lattice Boltzmann equation can be written as 

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡 , 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) =  Ω𝑖             (4) 

where Δ𝑡 is the time step, Ω𝑖 represents the collision operator, 

which models the interactions between particles. 



To simulate fluid flows, the lattice Boltzmann equation is 

typically implemented on a regular lattice grid, such as the 

D2Q9 lattice (2D, 9 velocity directions) or D3Q19 lattice (3D, 

19 velocity directions). Each lattice point represents a fluid 

node, and at each node, there are discrete velocity vectors 

associated with the lattice directions. The evolution of the 

distribution functions is governed by streaming and collision 

processes. 

The streaming process updates the distribution functions by 

moving particles along their respective velocity directions: 

𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡 , 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡)            (5) 

The collision process models the interactions between 

particles and updates the distribution functions according to 

collision rules, which may include relaxation towards 

equilibrium: 

𝑓𝑖(𝑥, 𝑡) =  𝑓𝑖
𝑒𝑞(𝜌, 𝑢) +  𝜔𝑖  (𝑥, 𝑡)          (6) 

where 𝑓𝑖
𝑒𝑞  (𝜌, 𝑢) is the equilibrium distribution function, which 

depends on the local fluid density 𝜌 and velocity 𝑢, 𝜔𝑖 is the 

collision term. 

The macroscopic fluid properties, such as density 𝜌 and 

velocity u, are derived from the distribution functions. For 

example, the density is obtained by summing all the 

distribution functions at each lattice node: 

𝜌(𝑥, 𝑡) =  ∑ 𝑓𝑖(𝑥, 𝑡)
𝑖

              (7) 

And the velocity is calculated as a weighted average of the 

velocity vectors: 

𝑢(𝑥, 𝑡) =
1

𝜌(𝑥, 𝑡)
 ∑ 𝑒𝑖𝑓𝑖(𝑥, 𝑡)

𝑖
                  (8) 

Overall, the lattice Boltzmann method simplifies the 

simulation of fluid flows by discretizing the Boltzmann 

equation on a lattice grid, allowing for efficient parallel 

computations, and handling complex boundary conditions. It 

has become a popular choice for simulating a wide range of 

fluid flow phenomena due to its simplicity, scalability, and 

flexibility. 

2.3 Smoothed Particle Hydrodynamics (SPH) 

Smoothed Particle Hydrodynamics (SPH) is a mesh-free 

Lagrangian method used primarily for simulating fluid flows, 

although it can also be applied to other physical phenomena 

like solid mechanics and astrophysics. In SPH, the fluid 

domain is discretized into a set of particles, and the governing 

equations are expressed in terms of these particles. 

The fundamental equations governing SPH include: 

Continuity Equation: The continuity equation ensures mass 

conservation and is expressed as: 

𝜕𝜌

𝜕𝑡
=  −𝜌 ∇. (v)                    (9) 

where 𝜌 is the density of the fluid and v is the velocity of the 

fluid. 

In SPH, this equation is approximated by summing the 

contributions from neighboring particles within a smoothing 

length ℎ around each particle. 

Momentum Equation: The momentum equation governs the 

motion of fluid particles and is typically written as: 

𝜕𝑣

𝜕𝑡
=  −

1

𝜌
 ∇𝑃 +   𝑣∇2v + 𝑓                   (10) 

where 𝑃 is the pressure, 𝜈 is the kinematic viscosity, and 𝑓 

represents external forces such as gravity. 

Similar to the continuity equation, this equation is also 

approximated using neighboring particles within the 

smoothing length. 

Energy Equation: The energy equation governs the thermal 

behavior of the fluid and is expressed as: 

𝜕𝑢

𝜕𝑡
=  

𝑃

𝜌2
 
𝜕𝜌

𝜕𝑡
+  

𝑣

𝜌
 ∇2𝑇                 (11) 

where u is the internal energy of the fluid, and T is the 

temperature. 

Like the other equations, the energy equation is also 

approximated using neighboring particles. 

In SPH, each particle carries properties such as density, 

velocity, and energy, and interactions between particles are 

calculated using smoothing kernels that define how the 

influence of a particle diminishes with distance. These kernels 

are typically functions of the distance between particles and 

the smoothing length. 

SPH is advantageous for simulating fluid flows in complex 

geometries and free surfaces as it does not require a fixed grid, 

and particles can move freely within the domain. However, it 

can be computationally expensive due to the large number of 

particles needed to accurately represent the fluid behavior, 

especially in scenarios with high spatial gradients. 

Nonetheless, SPH remains a popular choice for simulating 

fluid dynamics, particularly in scenarios where traditional 

grid-based methods may struggle. 

2.4 Spectral Methods 

Spectral methods are numerical techniques used for solving 

partial differential equations (PDEs) that arise in various 

scientific and engineering fields, including fluid dynamics. 

These methods rely on representing the solution to the PDEs 

as a combination of basis functions, typically chosen to be 

sinusoidal or polynomial functions. The equations governing 

spectral methods vary depending on the specific PDE being 

solved, but the general approach involves transforming the 

differential equations into an algebraic form using the chosen 

basis functions. 



Basis Function Representation: The velocity components 𝑢 

and v and pressure 𝑝 represented using Fourier series 

expansions: 

𝑢 ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ �̂�𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦)
∞

𝑚=−∞

∞

𝑚=−∞
 (12)   

v ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ v̂𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦)  (13)
∞

𝑚=−∞

∞

𝑚=−∞
 

𝑝 ( 𝑥, 𝑦 , 𝑡) =  ∑ ∑ �̂�𝑚𝑛(𝑡) 𝑒𝑖 (𝑚𝑘,𝑥+𝑛𝑘,𝑦) (14)
∞

𝑚=−∞

∞

𝑚=−∞
 

 

where 𝑘𝑥  and 𝑘𝑦 are the wave numbers in the x and y 

directions, respectively, and �̂�𝑚𝑛, �̂�𝑚𝑛 , 𝑎𝑛𝑑  �̂�𝑚𝑛 are the 

Fourier coefficients to be determined. 

Spatial Discretization: discretize the spatial domain into a 

finite number of grids points (𝑥𝑖, 𝑦𝑗) where the basis functions 

are evaluated. 

Galerkin Projection or Collocation: Project the Navier-Stokes 

equations onto the space spanned by the Fourier basis 

functions. For example, applying Galerkin projection. 

∫ (
𝜕𝑢

𝜕𝑡
 +  𝑢. ∇(𝑢)) . ∅𝑚𝑛𝑑Ω

= −
1

𝜌
 ∫ ∇𝑝. ∅𝑚𝑛𝑑Ω + 𝑣 ∫  ∇2𝑢 . ∅𝑚𝑛𝑑Ω

+  ∫ 𝑓. ∅𝑚𝑛𝑑Ω                         (15) 

where 𝜙𝑚𝑛 represents the basis function corresponding to the 

(𝑚, 𝑛)-th mode. 

Solving Algebraic Equations: Solve the resulting system of 

algebraic equations to obtain the Fourier coefficients 

�̂�𝑚𝑛 , �̂�𝑚𝑛 , 𝑎𝑛𝑑  �̂�𝑚𝑛 . 

Inverse Transformation: Reconstruct the solution to the 

original PDE by performing an inverse Fourier transform to 

obtain the spatial distribution of the solution variables 𝑢, 𝑣 and 

𝑝. 

Temporal Discretization: If the problem is time-dependent, 

discretize the time domain and solve the resulting system of 

equations iteratively over time steps using time-stepping 

schemes such as explicit or implicit methods. 

This mathematical framework provides the basis for applying 

spectral methods to solve the Navier-Stokes equations for 

incompressible flow using Fourier series expansions. Similar 

approaches can be applied using different basis functions, such 

as Chebyshev polynomials or Legendre polynomials, 

depending on the problem's characteristics and desired 

accuracy. 

Overall, spectral methods offer high-order accuracy and 

spectral convergence properties, making them well-suited for 

problems with smooth solutions and periodic boundary 

conditions. However, they can be computationally expensive 

and may require careful treatment of boundary conditions and 

numerical stability issues. The specific equations governing 

spectral methods depend on the chosen basis functions and the 

formulation of the underlying PDEs. 

3. COMPUTATIONAL DOMAIN, INITIAL CONDITIONS, 

AND BOUNDARY CONDITIONS 

In this chapter, we outline the computational framework, 

including the domain setup, initial conditions, and boundary 

conditions, which form the foundation for accurate and 

efficient fluid dynamics simulations using FV, LBM, SPH, 

and Spectral Methods. These elements are critical in ensuring 

the fidelity and stability of the simulations. The python codes 

were developed to implement FV, LBM, SPH, and spectral 

method fluid simulation for solving the compressible Euler 

equations. The square box geometry of the computational 

domain is defined implicitly through the meshes or predefined 

particles distribution.  The initial density is initialized as a 

matrix of constant values, and the velocities are initialized as 

a sinusoidal function. These initial conditions define the 

starting state of the fluid simulation. The boundary conditions 

are assumed to be periodic, meaning that the simulation 

domain wraps around at the boundaries. 

3.1 Computational Domain 

The computational domain for the simulations is defined as a 

square box with dimensions [0,𝐿]×[0,𝐿], where 𝐿=1.0 

represents the characteristic length of the domain. This domain 

is discretized based on the specific requirements of each 

numerical method employed. 

Finite Volume Method (FVM): The domain is divided into a 

structured grid of 𝑁×𝑁 cells, where 𝑁 is chosen to balance 

computational efficiency with resolution needs. The grid cells 

are non-overlapping, ensuring mass, momentum, and energy 

conservation at each cell interface. 

Lattice Boltzmann Method (LBM): A regular lattice grid is 

used, with nodes arranged in a D2Q9 (for 2D) lattice 

configuration. The lattice spacing Δ𝑥 is selected to satisfy the 

Knudsen number requirements and ensure accurate resolution 

of the flow features. 

Smoothed Particle Hydrodynamics (SPH): In SPH, the fluid is 

represented by discrete particles distributed across the domain. 

The initial particle spacing is chosen to ensure adequate 

resolution of flow features, with a smoothing length ℎ that is 

proportional to the initial particle spacing, typically ℎ=1.2Δ𝑝, 

where Δ𝑝 is the particle spacing. 

Spectral Method: The computational domain is discretized 

using a series of orthogonal basis functions (e.g., Fourier or 

Chebyshev polynomials). The spatial resolution is determined 

by the number of modes 𝑀 used in the spectral expansion, 

where 𝑀 is chosen to capture the dominant flow features while 

minimizing aliasing errors. 

Fig. 5 illustrates the computational domain setup and boundary 

conditions for the four numerical methods. The FVM (Fig. 5a) 

divides the domain into grid cells, while the LBM (Fig. 5b) 

uses lattice nodes arranged in a regular pattern. The SPH 



method (Fig. 5c) represents the domain as a collection of 

particles, and the Spectral Method (Fig. 5d) uses a set of basis 

functions to discretize the domain. A schematic diagram of the 

computational domain for each method. For example, a square 

domain with grid cells for FVM, lattice points for LBM, 

particles for SPH, and a domain discretized with basis 

functions for the Spectral Method. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Computational domain and boundary conditions 

(a) FVM with grid cells, (b) LBM with lattice nodes, (c) 

SPH with particles, (d) Spectral Method with basis 

function 

 

3.2 Initial Conditions 

The initial conditions are designed to represent a physically 

realistic starting state for the fluid flow simulations, ensuring 

that all subsequent dynamics are driven by the inherent physics 

of the system. 

Density: The initial density field 𝜌(𝑥,𝑦) is initialized uniformly 

across the domain with a value 𝜌0, ensuring mass conservation 

from the outset. This uniform initialization is perturbed 

slightly in some simulations to introduce instability modes, 

facilitating the study of flow evolution. 

Velocity: The initial velocity field 𝑢(𝑥,𝑦) is prescribed as a 

sinusoidal function to model a shear flow or vortex pattern, 

given by: 

𝑢𝑥(𝑥, 𝑦) = 𝑈0 𝑠𝑖𝑛 (
2𝜋𝑦

𝑙
)                     (16) 

𝑢𝑦(𝑥, 𝑦) = 0                 (17) 

where 𝑈0 is the maximum velocity. This setup ensures a well-

defined initial momentum distribution. 

Pressure: The initial pressure 𝑝(𝑥,𝑦) is computed from the 

equation of state, ensuring consistency with the density and 

velocity fields. For an incompressible flow, the pressure field 

is adjusted iteratively to satisfy the incompressibility condition 

∇⋅𝑢=0. 

3.3 Boundary Conditions 

Periodic Boundary Conditions: Periodic boundary conditions 

are applied in both the 𝑥 and 𝑦 directions to simulate an 

infinite, repeating domain. This choice is particularly suitable 

for studying homogeneous turbulence, shear flows, and other 

scenarios where the effects of boundaries should be 

minimized. 

3.4 Grid Independence and Sensitivity Analysis 

To ensure the robustness of the computational results, a grid 

independence study is conducted for each method. The 

simulations are performed on progressively finer grids or with 

increasing numbers of particles/modes until the results 

converge within a predefined tolerance. This analysis ensures 

that the chosen discretization is sufficiently fine to capture the 

essential flow features without incurring unnecessary 

computational costs. Table 1 compares different grid 

independence studies for these four numerical methods in this 

study. 

Table 1. Grid independence study 

Method 
Resolution 

Parameter 

Grid 1 

(Coarse) 

Grid 2 

(Medium) 

Grid 3 

(Fine) 

Relative 

Error 

FVM 
Grid Size 

(N×N) 
50×50 100×100 200×200 

ϵ1=8%, 

ϵ2=2% 

LBM 

Lattice 

Spacing 

(Δx) 

Δx=0.04 Δx=0.02 Δx=0.01 
ϵ1=7%, 

ϵ2=1.5% 

SPH 
Particle 

Count (Np) 
Np=10,000 Np=40,000 Np=160,000 

ϵ1=10%, 

ϵ2=3% 

Spectral 

Method 

Number of 

Modes (M) 
M=32 M=64 M=128 

ϵ1=5%, 

ϵ2=0.5% 

 

Relative Error (𝜖): Represents the error reduction between 

different resolutions. The error is calculated relative to the 

finest grid (e.g., 𝜖1 for Grid 1 to Grid 2, and 𝜖2 for Grid 2 to 

Grid 3). 

The grid independence study indicates that the solution 

becomes increasingly independent of the grid or resolution 

parameter as it is refined. For the FVM, the relative error 

between the medium and fine grid (𝜖2) is significantly smaller 

than between the coarse and medium grid (𝜖1), indicating 

convergence. Similarly, the LBM shows a reduction in error as 

the lattice spacing decreases, achieving a near-converged 

solution at Δ𝑥=0.01. In the SPH method, increasing the 

particle count leads to better resolution of the flow field, with 

convergence observed as the particle count increases to 

160,000. The Spectral Method demonstrates rapid 

convergence with increasing modes, with minimal error 

observed at 𝑀=128, which is characteristic of its high-order 

accuracy. 



4. RESULTS AND DISCUSSION 

Fig. 6, Fig. 7, Fig. 8, and Fig. 9 show the density prediction in 

the flow domain for FV method, LBM, SPH, and spectral 

method, respectively. The density distribution of the SPH 

method shows a complete difference among the others since it 

simulates the flow as the discontinuous particles, although 

LBM follows the same concept, but it is not a meshless method 

as SPH. 

Here are some observations for Figures 6 to 9, which relate to 

the density predictions using the four numerical methods: 

The density distribution in Fig. 6 shows a smooth variation 

across the computational domain, indicating that the FVM 

effectively captures the flow field dynamics. The sharp 

gradients near boundaries are well-resolved, demonstrating the 

robustness of the FVM in handling complex geometries and 

boundary conditions. The method ensures conservation of 

mass, momentum, and energy within each control volume, 

which is evident from the consistent density patterns across the 

domain. 

LBM provides a detailed density distribution with high spatial 

resolution, as shown in Fig. 7. The LBM efficiently handles 

complex boundary conditions, resulting in smooth transitions 

in density even near the boundaries of the computational 

domain. The periodic boundary conditions are effectively 

implemented, as indicated by the seamless continuity of the 

density field across the domain edges. 

Fig. 8 illustrates the density distribution obtained using the 

SPH method, where the fluid is represented by discrete 

particles. The SPH method captures intricate fluid dynamics, 

such as free surface flows and interactions between particles, 

resulting in a detailed and realistic density distribution. The 

particle-based nature of SPH allows for adaptive resolution, 

which is evident in the varying density levels throughout the 

domain, particularly in regions with high spatial gradients. 

The Spectral Method, as shown in Fig. 9, achieves a high-order 

accuracy in the density prediction, with smooth and continuous 

density variations across the computational domain. The use 

of orthogonal basis functions allows the Spectral Method to 

resolve fine details in the density field, making it suitable for 

problems with smooth solutions and periodic boundary 

conditions. The method exhibits minimal numerical 

dissipation and dispersion, as evidenced by the clear and 

accurate density patterns, even in areas with significant flow 

activity. 

 

Figure 6. Density prediction with FVM 

 
Figure 7. Density prediction with LBM 

 

Figure 8. Density prediction with SPH 

 

Figure 9. Density prediction with Spectral method 



To provide a comprehensive understanding of the four 

numerical methods discussed in this paper, Table 2 compares 

these techniques across various aspects such as discretization, 

computational efficiency, accuracy, strengths, and limitations. 

 
Table 2. Comparison of Numerical Methods in CFD 

Aspect FVM LBM SPH Spectral Method 

Grid 
Structured/Unstruct

ured 
Regular Lattice 

Particle-

based 
Orthogonal Basis 

Efficiency 
Moderate, grid-

dependent 

High, 

parallelizable 

High cost, 

many 

particles 

High, but 

expensive 

Accuracy High, grid quality 
Moderate to 

High 

High for 

interactions 

Very High, 

spectral 

Strengths Versatile, robust 
Efficient 

parallel 

Mesh-free, 

deformations 

High accuracy, 

low dispersion 

Limitations 
Intensive for fine 

grids 

Lattice/time 

step limit 

Expensive, 

complex 

Needs simple, 

periodic 

 

5. CONCLUSIONS 

The Finite Volume Method (FVM), Lattice Boltzmann 

Method (LBM), Smoothed Particle Hydrodynamics (SPH), 

and Spectral Method each have distinct advantages and 

limitations in computational fluid dynamics (CFD). FVM is 

widely used for its robustness and ability to handle complex 

geometries, making it suitable for various industrial 

applications, although it requires sophisticated meshing and 

can be less efficient at high resolutions. LBM, on the other 

hand, excels in handling complex boundary conditions and is 

highly efficient on parallel architectures, but it is limited by its 

lattice structure and interdependent time step and grid spacing. 

SPH is particularly effective for free-surface flows and 

problems with large deformations due to its mesh-free nature, 

but it is computationally intensive and struggles with boundary 

conditions. The Spectral Method provides extremely high 

accuracy for smooth and periodic problems, but it is less 

effective for problems with sharp gradients or irregular 

geometries. 

In terms of overall comparison, Spectral Methods are the best 

for high-precision and smooth problems, while FVM and SPH 

offer greater flexibility for complex, real-world applications. 

LBM is emerging as an efficient alternative for specific 

applications like multiphase flows and porous media. FVM is 

the most versatile for engineering purposes, SPH is ideal for 

simulations involving evolving boundaries, and Spectral 

Methods shine in scientific computations requiring high 

accuracy. The choice of method hinges on the specific needs 

of the problem, such as required accuracy, computational 

resources, and the nature of the physical phenomena being 

studied. 
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