
EasyChair Preprint
№ 15138

The Effects of Bi-Label Classification on the
Learning Efficiancy of Feed-Forward Neutral
Networks

Panupong Jirasetsiri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 28, 2024

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 1

THE EFFECTS OF BI-LABEL CLASSIFICATION ON THE

LEARNING EFFICIANCY OF FEED-FORWARD NEUTRAL

NETWORKS

Abstract

This study examines the impact of bi-label classification on the performance of feed-forward neural networks
(FFNNs) by comparing it with single-label classification models. The research focuses on key performance
metrics such as convergence speed, loss reduction, and model stability across three case studies of varying
complexity. The findings indicate that bi-label classification consistently achieves faster convergence, lower loss
values, and greater stability compared to single-label classification, particularly in simpler datasets. As the
complexity of the data increases, the performance gap between the two models narrows, though bi-label
classification continues to maintain a slight advantage in terms of loss reduction, generalization, and the ability
to handle diverse datasets. These results suggest that bi-label classification can significantly enhance the
efficiency of deep learning models, making them more effective in solving tasks involving multiple dependent
variables. The study’s findings are particularly relevant to fields like predictive analytics and large-scale data
classification, where processing speed and model stability are critical.

Keywords: Multi-label Classification, Bi-label classification, Single-label classification, Neural networks,
Deep learning

1. Introduction

Machine learning (ML), and more recently, deep learning (DL) [1], have revolutionized data

analysis by enabling the efficient handling of large-scale and complex datasets [2]. One of the key

applications of DL is classification, where models assign input data to predefined categories.

Classification tasks [3] are typically divided into three main types: binary classification, multi-class

classification, and multi-label classification.

A study by Kiatsupaibul and Chansiripas [4] has demonstrated the potential for improving data

efficiency through deep learning models, particularly multi-response neural networks. Their

theoretical framework compares the performance of three types of models: the single-response

model, the regular bi-response model, and the constrained bi-response model. The findings make

clear that bi-response models, especially constrained ones, outperform single-response models,

particularly in terms of convergence speed and loss reduction. During both training and testing, the

constrained bi-response model showed faster convergence and lower loss values than the single-

response model.

Building on this theoretical foundation, the current research aims to clarify these concepts through

practical applications by examining bi-label classification models. Specifically, this study compares

the performance of bi-label classification, analogous to a bi-response model, with single-label

classification, analogous to a single-response model. The research is conducted through multiple case

studies, which vary in architecture and the number of input variables. Performance is measured using

key metrics such as convergence speed and loss reduction for the dependent variables 𝑦1 in bi-label

classification and 𝑦 in single-label classification.

In addition to advancing theoretical understanding, this study seeks to clarify and extend the

practical applicability of these models, particularly in managing complex and diverse datasets. It is

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 2

expected that the results will clearly demonstrate the superior efficiency of bi-label classification in

real-world applications, reducing the time and resources required for training while enabling the

development of more effective models for future use.

2. Research Methodology

This section outlines the neural network architectures used in the study and describes the

experimental setup, including data simulation, model structure, loss function optimization and

model training.

2.1 Data Simulation

For this research, we generated input data, weights, and biases using Monte Carlo simulations

[5]. The aim was to test the performance of the models under controlled conditions. The following

summarizes the simulation process:

2.1.1 Input Features

 Input vectors 𝑥 = [𝑥1, … , 𝑥𝑑]𝑇 are generated from a multivariate normal distribution:

𝑥(𝑖)~ N(0,1), 𝑖 = 1, … , 𝑁

Here, 𝑛 is the sample size and 𝑑 is the number of features.

2.1.2 Weight Initialization

 The weights between layers are initialized randomly using a uniform distribution:

𝑤𝑘,𝑗
ℓ ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)

These weights represent the connection between node 𝑘 in layer ℓ − 1 and node 𝑗 in layer ℓ.

2.1.3 Bias Initialization

 Bias terms for each node in layer ℓ are initialized as follows:

𝑏𝑗
ℓ ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)

The biases node 𝑗 in layer ℓ account for model flexibility, shifting the activation function.

The data simulation consists of generating input features, weights, and biases for 10 rounds of

simulation in each case study. The details are as follows:

Case Study 1:

Input features: 𝑥 = [𝑥1, 𝑥2]𝑇, with 2,000 samples.

Weight: 𝑤1,1
1 , . . . , 𝑤4,2

3 .

Biases: 𝑏1
1, … , 𝑏2

3.

Case Study 2:

Input features: 𝑥 = [𝑥1, 𝑥2]𝑇, with 10,000 samples.

Weight: 𝑤1,1
1 , . . . , 𝑤4,2

5

Biases: 𝑏1
1, … , 𝑏2

5

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 3

Case Study 3:
Input features: 𝑥 = [𝑥1, . . . , 𝑥10]𝑇, with 20,000 samples.

Weight: 𝑤1,1
1 , … , 𝑤4,2

3 .

Biases: 𝑏1
1, … , 𝑏2

3.

2.2 Model Architecture

The architecture of deep learning models [6], especially in neural networks, typically consists of

multiple layers that work together to learn from data. This structure incorporates state-of-the-art

techniques and can be described as follows:

2.2.1 Input Layer

The input layer is the first layer of the neural network denoted by ℓ = 0, where the number of

nodes corresponds to the number of input variables. The number of nodes in the input layer is

denoted as 𝑚0 = 𝑑, where 𝑑 is the number of input features. For each input feature 𝑗, it is defined

as:

𝑥𝑗 = 𝑎𝑗
0 , 𝑗 = 1, … , 𝑚0

2.2.2 Hidden Layers
The neural network may contain several hidden layers, denoted by ℓ = 1, … , 𝐿 − 1. Each hidden

layer applies an activation function to transform the input it receives. Common activation functions

include the sigmoid function. The output for each hidden layer ℓ is computed as:

𝑎ℓ = 𝑓ℓ(𝑎ℓ−1 ∗ 𝑤ℓ + 𝑏ℓ)

Where

𝑎ℓ−1: The output from the previous layer.

𝑤ℓ : The weight matrix for layer ℓ.

𝑏ℓ : The bias vector for layer ℓ.

𝑓ℓ : The activation function (e.g., sigmoid).

2.2.3 Output Layer

The final layer of the neural network is the output layer ℓ = 𝐿, which predicts the target variable.

The 𝑦(𝑥)is calculated using the results from the last hidden layer:

𝑦(𝑥) = 𝑓𝐿(𝑎𝑗
𝐿−1 ∗ 𝑤𝑘,𝑗

𝐿 + 𝑏𝑗
𝐿)

Where

𝑓𝐿 : The activation function of the output layer.

In the single-label model, the output 𝑦(𝑥) = [𝑦]𝑇consists of one node corresponding to a

binary classification problem. For the bi-label model, the output 𝑦(𝑥) = [𝑦1, 𝑦2]𝑇consists of two

nodes representing the two labels to each instance.

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 4

2.2.4 Activation Function

A common activation function used in both hidden and output layers is the sigmoid function [7],

which is defined as:

𝑓ℓ(𝑥) =
exp(𝑥)

1 + exp(𝑥)

Where

 𝑓ℓ: The activation function in ℓ = 1, … , 𝐿 layer, specifically the sigmoid function in

this instance. This function maps input values to the range (0, 1), which is particularly useful

in classification problems, where the output can represent a probability.

The neural network model architecture is divided into layers: an input layer, hidden layers, and

an output layer. The number of nodes in each layer and the number of layers vary based on the

structure of each case study.

2.3 Case Studies

Three case studies were designed with different neural network architectures:

Case Study 1:

1. Two input features, 𝑥 = [𝑥1, 𝑥2]𝑇, with 2,000 samples.

2. The neural network has 2 hidden layers, each with 4 nodes.

3. The output is either 1 node for single-label classification or 2 nodes for bi-label

classification.

Figure 1: The architecture structure for Case Study 1

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 5

Case Study 2

1. Two input features 𝑥 = [𝑥1, 𝑥2]𝑇, with 10,000 samples.

2. The neural network has 4 hidden layers, each with 4 nodes.

3. The output is either 1 node for single-label classification or 2 nodes for bi-label

classification

Figure 2: The architecture structure for Case Study 2

Case Study 3

1. Ten input features 𝑥 = [𝑥1, … , 𝑥10]𝑇, with 20,000 samples.

2. The neural network has 2 hidden layers, each with 20 nodes.

3. The output is either 1 node for single-label classification or 2 nodes for bi-label

classification.

Figure 3: The architecture structure for Case Study 3

In all cases, the sigmoid activation function is applied, and the models are simulated to generate

the following results:

1. Single-label classification: 𝑦(𝑥) = [𝑦1]𝑇

2. Bi-label classification: 𝑦(𝑥) = [𝑦1, 𝑦2]𝑇

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 6

2.4 Loss Function

The binary cross-entropy (BCE) [8] loss function is used to optimize both the single-label and bi-

label models. The BCE function evaluates the loss for a single label as:

𝐿(y, 𝑝) = −(𝑦 log(p) + (1 − 𝑦) log(1 − 𝑝))

For bi-label classification, the loss is calculated for each label separately, and the total loss is the

sum of the individual losses:

𝐿(y1, y2, 𝑝1, 𝑝2) = −(y1 log(𝑝1) + (1 − y1) log(1 − 𝑝1)) − (y2 log(𝑝2) + (1 − y2) log(1 − 𝑝2))

The goal of training [9] is to minimize this loss function using stochastic gradient descent (SGD).

2.5 Model Training

For each study case, the model will be trained for 10 rounds to evaluate the model's performance

and stability. Model training involves various steps such as compiling the model using libraries like

Keras [10] and TensorFlow, setting batch size[11], and determining the number of epochs. The

training process follows these configurations:

Shared Settings for All Case Studies:
Optimizer: Stochastic Gradient Descent (SGD)

Epochs: 50

Batch Size: 100

Training/Test Split: 0.5 (50% training, 50% test)

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy

Differentiated Learning Rates:
Case Study 1: Learning rate = 0.1

Case Study 2: Learning rate = 0.01

Case Study 3: Learning rate = 0.001

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 7

3. Research Results and Discussion

The results of the study are discussed across three case studies, each varying in network

complexity and input data characteristics.

3.1 Case Study 1

Figure 4: Results from Case Study 1

Results:

Training Loss: The bi-label model showed faster convergence, reducing the loss more rapidly

than the single-label model. By epoch 25, the bi-label model achieved a stable minimum loss,

whereas the single-label model continued to oscillate slightly.

Validation Loss: The validation loss for the bi-label model was consistently lower, with a final

improvement of 0.05% over the single-label model. This indicates that the bi-label model

generalizes better to unseen data.

Conclusion: The bi-label model demonstrates superior learning speed and loss reduction for

small datasets and simpler architectures.

3.2 Case Study 2

Figure 5: Results from Case Study 2

Results:

Training Loss: Both models showed similar performance during training. The loss values

converged at nearly the same rate, with the bi-label model exhibiting a slight edge in early epochs.

Validation Loss: Although the bi-label model outperformed the single-label model, the margin

of improvement was smaller (approximately 0.00% difference). The models exhibited comparable

generalization performance as the data complexity increased.

International Conference on Applied Statistics 2024

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 8

Conclusion: For larger datasets, the difference in performance between single-label and bi-label

models diminishes. However, the bi-label model still retains a slight advantage in loss reduction.

3.3 Case Study 3

Figure 6: Results from Case Study 3

Results:

Training Loss: The bi-label model showed significant improvement in loss reduction,

converging faster than the single-label model. The bi-label model reached a stable loss after 30

epochs, while the single-label model required additional epochs to stabilize.

Validation Loss: In this case, the bi-label model reduced the validation loss by 0.08%, showing

a clear improvement in generalization for complex data.

Conclusion: With increasing complexity, the bi-label model significantly outperforms the

single-label model in terms of both training efficiency and validation performance.

4. Conclusions and Recommendations

4.1 Conclusions

This study compared the performance of single-label and bi-label classification models
across three case studies. The results indicate that bi-label classification provides faster
convergence and reduced loss, particularly in scenarios with lower data complexity. As data
complexity increases, the performance difference between the two models diminishes,
although the bi-label model continues to demonstrate slight advantages.

4.2 Advantages

Bi-label classification consistently achieves lower training and validation loss. This reduction is

evident particularly in simpler datasets, where faster convergence rates are observed. Moreover, the

bi-label model demonstrates superior stability during the validation phase when compared to the

single-label model, suggesting improved generalization performance.

4.3 Limitations

As the complexity of data increases, the performance gap between single-label and bi-label models

diminishes. Additionally, bi-label models are sensitive to the learning rate, requiring precise tuning

for optimal performance based on the dataset.

ICAS2024, October 24-25, 2024, Chiang Mai, THAILAND 9

International Conference on Applied Statistics 2024

4.4 Applications

Bi-label classification is well-suited for fields requiring multiple outputs, such as medical

diagnosis or multimedia tagging. Its ability to handle concurrent conditions or categories makes it

highly effective in such domains. This approach also proves beneficial in environments where faster

training times and improved model stability are essential.

5. Acknowledgements

6. References

1. Moroney L. AI and Machine Learning for Coders:

O'Reilly Media; 2020.

2. Sabharwal R, Miah SJ. A new theoretical

understanding of big data analytics capabilities in

organizations: a thematic analysis. Journal of Big Data.

2021;8(1).

3. Venkatesan R, Er MJ, editors. Multi-label

classification method based on extreme learning

machines. 2014 13th International Conference on

Control Automation Robotics & Vision (ICARCV);

2014 10-12 Dec. 2014.

4. Kiatsupaibul S, Chansiripas P. Data Efficiency in

Multi-response Neural Networks. Unpublished work.

2024.

5. Thaler D, Elezaj L, Bamer F, Markert B. Training

Data Selection for Machine Learning-Enhanced Monte

Carlo Simulations in Structural Dynamics. Applied

Sciences [Internet]. 2022; 12(2).

6. Géron A. Hands-on Machine Learning with Scikit-

Learn, Keras, and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems: O'Reilly Media,

Incorporated; 2019.

7. Dubey SR, Singh SK, Chaudhuri BB. Activation

functions in deep learning: A comprehensive survey and

benchmark. Neurocomputing. 2022;503:92-108.

8. Wu T, Huang Q, Liu Z, Wang Y, Lin D, editors.

Distribution-Balanced Loss for Multi-label

Classification in Long-Tailed Datasets. Computer Vision

– ECCV 2020; 2020 2020//; Cham: Springer

International Publishing.

9. Alagözlü M. Stochastic Gradient Descent Variants

and Applications2022.

10. Gulli A, Pal S. Deep Learning with Keras: Packt

Publishing; 2017.

11. Ioffe S, Szegedy C. Batch Normalization:

Accelerating Deep Network Training by Reducing

Internal Covariate Shift. 2015.

