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Abstract—Recent text-to-video (T2V) techniques have achieved
remarkable success using the text-to-image (T2I) diffusion-based
generation diagram. These methods have also been extended to
tune video content using the existing T2I model in a one-shot
manner. However, these models still struggle with temporal con-
sistency preservation and tend to cause severe jitters, especially
for moving objects. To address this issue, in this study, we propose
to incorporate segmentation guidance into the diffusion pipeline
to promote temporal stability. In particular, we first extract the
positions of user-specified objects in each frame using an object
segmentation model and generate a sequence of mask images.
Then, we utilize the features of the mask image sequence as the
query for the cross-attention mechanism in the diffusion model,
while the content features of the original video serve as the key
and value to generate the edited image sequence. As such, the
object position information in the mask guidance can effectively
guide the video generation process to reduce jitter. Experiments
demonstrate that our method contributes to improved video
quality compared to prior video tuning methods in terms of
temporal smoothness.

Index Terms—text-to-video generation, one-shot video tuning,
segmentation guidance

I. INTRODUCTION

In recent years, diffusion model-based image generation
techniques have made significant progress and have gained
wide attention. The ability of diffusion models [1] to gener-
ate high-resolution, high-quality, and highly diverse realistic
images can be primarily attributed to the iterative denoising
process, which gradually transforms random noise into re-
alistic images. Such a generative paradigm has been widely
developed to address various tasks, including image editing,
image inpainting, or image translation, using representative
frameworks such as Stable Diffusion [2], DALL-E-2 [3] utilize
CLIP [4] for creating images from textual descriptions.

Besides the task of image generation, other efforts have been
made to extend diffusion-based text-to-image (T2I) models
to tackle the task of text-to-video (T2V) generation. Unlike
static image generation, T2V requires generating coherent
and smooth image sequences along the temporal dimension.

Among these methods, Tune-A-Video (TAV) [5] is a pio-
neering work for T2V. It leverages pre-trained T2I models
and adopts a one-shot fine-tuning approach to circumvent the
burden of training with large-scale video datasets. Specifically,
TAV extends the original spatial self-attention [6] mechanism
to spatio-temporal self-attention to ensure content consistency
in generating video sequences. During inference, it employs
an implicit denoising inversion process to provide structural
guidance to maintain the overall temporal coherence. Despite
the promising results achieved by TAV in the T2V, it still
suffers from some issues. For example, when occlusions exist
in the scene where the foreground and background of the
input video cannot be clearly separated and the resulting video
generated by TAV can appear jittery, which crucially damages
the quality required in real-world applications.

To overcome such limitations of existing T2V methods, this
study proposes a novel text-based video tuning method that
focuses on promoting visual smoothness. Our core idea is
to explicitly guide the diffusion-based T2V model with the
exact location of the object in the moving scene. To this
end, we first extract the positions of user-specified objects
in each frame of the input video with an off-the-shelf object
segmentation approach and then generate the corresponding
mask image sequence. Next, based on the content features
of the original video, which serve as the key and value, we
regard such mask sequence as the query in the cross-attention
mechanism to eventually generate the target video sequence.
By explicitly incorporating the temporal positional information
of the object, our method can effectively mitigate jitter in
the tuned video, thus improving the overall visual quality
regarding smoothness and the preservation of original contents.
Moreover, benefiting from the rich information within the
mask sequence, besides the selected objects in the front
scene, our method jointly contributes to smoother and stabler
background generation. Our method can be utilized in a plug-
and-play manner for existing video tuning models. Extensive
experimental results and ablative evaluations on various types



of public video content demonstrate that our proposed mask-
guided diffusion paradigm can improve the performance of
existing T2V models.

II. RELATED WORK

Diffusion-based T2V Generation. The field of T2I generation
[7]–[9] has seen remarkable progress with the advancement of
diffusion models. Furthermore, recent efforts are also made to
T2I models to T2V generation [10]–[12] by expanding the spa-
tial diffusion mechanism into the spatial-temporal domain. The
Video Diffusion Models (VDM) by Ho et al. [13] introduced
a space-time factorized U-Net [14] architecture, leveraging
joint training on both image and video data. Based on this
model, they also used in [15] the cascaded diffusion models
with v-prediction parameterization to produce high-quality
videos. Other approaches focused on transferring the progress
made in T2I generation to T2V tasks, such as Make-A-Video
[16] and MagicVideo [17]. Despite the impressive results,
these methods rely heavily on training with large-scale video
datasets, which inevitably incurs prohibitive computational
expense.
Video Editing. Another direction of diffusion-based ap-
proaches [18]–[20] focus on editing the given input video,
especially using a slightly modified text prompt compared to
the original one. Bar et al. [18] introduced a texture-based
video editing using text prompts which enables augmenting
the scene with artistic visual effects, yet it can sometimes fail
to reflect the intended edits due to its reliance on Layered
Neural Atlases [21]. Molad et al. [19] merged the hierarchical
feature representation from low- to high-resolution to boost
source video fidelity. Gen-1 [20] showed awareness of struc-
ture and content during video editing. Recently, a one-shot
tuning T2V method [5] has been proposed to perform high-
quality editing by leveraging spatial-temporal cross attention
to learn the temporal dependency for natural video generation.
Although it largely saves computational costs, it can easily
induce heavy jittering for the fast-moving scene or occluded
objects. Our method builds upon T2V by developing a novel
consistency-preserving module, which greatly mitigates the
non-smooth inter-frame transition and thus contributes to high
visual quality.
Guidance-injected Video Generation. Providing additional
guidance as prior knowledge in video generation is also an
effective way to improve quality and allow for control over
the generation [22]–[26]. The guidance signal can be flexibly
designed considering the inherent target of different tasks. Xu
et al. [22] proposed to combine human pose and appearance
guidance to jointly maintain character identity for high-quality
character animation. Hu et al. [24] introduced an end-to-end
framework to transform static human images into videos with
arbitrary action and viewpoint guidance. The method by Chen
et al. [25] enables diverse forms of guidance regarding text,
image, and motion for controlled human motion synthesis.
Our method falls into this category by introducing mask
guidance to improve video quality. Our method also entails

a cross-attention module to effectively utilize such guidance
and focuses centrally on the promotion of video smoothness.

III. METHOD

Let V = {Ii|i = 1, · · · , N} be an input video explained by
a text prompt P , which is composed by N frames. Our goal is
to generate an edited video VT = {ITi |i = 1, · · · , N} using a
new text prompt P T . Here, P T is an edited text description
of P . Basically, P T has a similar context to P but with
additional or modified detail expressions. Although TAV [5]
can directly handle this task, it tends to induce jittery results.
To address this issue, we propose to incorporate mask guidance
to promote smoothness. In the following, we first explain
diffusion-based video tuning, and then detail our method that
explicitly guides the generation process with a mask sequence.

A. Preliminaries

Denoising Diffusion Probabilistic Models (DDPMs). Recent
image/video generation has been centrally resolved using
DDPMs by considering the remarkable capacity. Specifically,
DDPMs are generative models based on a gradual denoising
process, which learns to iteratively map a Gaussian noise to
clean data. During training, it starts from a forward process to
convert the real data to a pure Gaussian noise over T timesteps
in a Markovian fashion. The transition probability at each step
is defined as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is a predefined variance schedule. As such,
the conditional probability at an arbitrary timestep can be
expressed in a closed form q(xt|x0):

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt is another hyperparameter given by: ᾱt =
∏t

s=1(1−
βs). Note that the diffusion-based formulation regards the
sample at the T -th forward timestep as a pure Gaussian noise.

Then, beginning with a standard Gaussian distribution
p(xT ) = N (xT ; 0, I), the model learns to generate the original
data by performing iterative denoising process (i.e., reverse
process):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), t = T, · · · , 1.
(3)

Here, θ represents the learnable model parameters. The train-
ing objective is to minimize the KL divergence between
the real data distribution and the generated distribution. In
practice, this is equivalent to training a series of denoising
mapping ϵθ(xt, t) to predict the added noise:

L = Et,x0,ϵ

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2] , (4)

where ϵ denotes standard Gaussian noise. Eq. 4 drives the
DDPMs to learn complex data distributions, which allows for
the generation of high-quality samples during inference.
Tune-A-Video (TAV). TAV is a recent advancement in text-
to-video generation that leverages pre-trained T2I diffusion
models for one-shot tuning. TAV requires only a single video
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Fig. 1. Model Overview. Our proposed smoothness-promoting module for
video tuning is illustrated in the dotted area.

to avoid the need for large-scale training video datasets. In
particular, TAV tunes the T2I model parameters so that it can
learn to produce temporally coherent image sequences. Given
the tuned model parameterized by θT , it can readily generate
the tuned video sample VT with modified text P T following
the reverse process.

While TAV has shown promising results in text-guided
video editing, we notice that it struggles to maintain tem-
poral consistency, especially for moving objects when the
foreground and background are not clearly distinguishable or
occlusions occur. We next explain our method, which further
improves TAV for high-quality video results.

B. Proposed Method

To encourage smooth and natural edit results, we propose
explicitly guiding diffusion-based video generation with the
location of the moving object. To this end, we prepare a mask
sequence that identifies the object of interest and incorporates
the mask feature into the T2V framework, as shown in the
dotted area in Fig. 1.
Mask Extraction. Our method starts with foreground extrac-
tion to obtain the mask sequence. Given the input video, we let
users specify the target object and use the state-of-the-art in-
teractive object segmentation model, called Segment Anything
Model (SAM) [27], to perform frame-wise segmentation. This
yields a mask sequence M = {Mi|i = 1, ..., N} composed
by N binary images, which can be given by

Mi = SAM(Ii, Ui), i = 1, ..., N, (5)

where SAM represents the pre-trained SAM model, and
Ui = (xi, yi) denotes the user-specified coordinates for the i-th
frame. In particular, Ui is expected to be directly clicked within
the target masking object to encourage accurate segmentation.
The mask sequence M is then encoded into feature space with
a mask encoder EM : FM = EM (M) to obtain the embedding
FM . We next need to discuss how to leverage the mask feature
FM to guide video tuning.

Mask-guided Cross-Attention. In the T2V implementation,
the video feature FV is learned via spatial-temporal attention
and prompt-feature attention. Building on top of the structure,
we design an additional Mask-guided Cross-Attention (MCA)
module to further merge the FV and FM . Specifically, we
regard the FM as query (Q) and the FV as key (K) and value
(V) for the MCA learning:

FMG = MCA(Q = FMWQ,K = FV WK , V = FV WV ),
(6)

which produces the merged feature FMG. W ∗ refers to the
corresponding learnable matrix. The MCA simply follows the
dot-product-based attention calculation

MCA(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (7)

where dk is a scaling factor to balance the influence of high
feature dimensionality.

In summary, by integrating the mask information via our
MCA module during training, the diffusion-based generation
formulation can be guided to pay more attention to the regions
specified by the masks that provide additional spatial guid-
ance. This approach enables a more natural movement of the
selected objects or areas, addressing the potential instability
issues in the original TAV method. As can be seen in the
dotted area in Fig. 1, our smoothness-promoting learning can
be introduced in a plug-and-play manner to be effectively
adapted to the existing diffusion-based generation module.

IV. EXPERIMENTS

A. Implementation

To evaluate the effectiveness of our proposed mask-guided
approach, we conduct a series of experiments to compare our
method against the baseline TAV model. Our implementation
builds upon the TAV architecture, utilizing a pre-trained Stable
Diffusion [2] as the generation backbone. Following TAV, for
all experiments, we process the input videos by uniformly
sampling 24 frames from each video and resizing all frames
to 512 × 512 pixels. The mask encoder simply adopts the
ResNet architecture [28]. The extracted mask sequence is pro-
cessed similarly for size alignment. Our training configuration
included 500 epochs with a learning rate of 3 × 10−5 and a
batch size of 1. We eventually collect 10 video clips from free
online content and benchmark dataset [29]. To showcase the
strength of our method completely, the videos are selected to
contain rapidly moving objects or occlusions.

In the following sections, we present extensive experimental
results focusing on various aspects of video editing quality and
consistency, including overall visual quality, object stability,
spatial accuracy, and temporal coherence.

B. Qualitative results

We first present qualitative results against TAV in Figs. 2
∼ 5. It can be confirmed that in all cases, the edited results
are consistent with the mask guidance regarding the object
location. In particular, we can see in Fig. 2(h) that although the
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Fig. 2. Tuned result with the text prompt being “a car is drifting on the snow”.
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Fig. 3. Tuned result with the text prompt being “a woman is playing football”.

mask does not contain car (j), the result still seems realistic, in
which the snow completely covers the entire car. By contrast,
the results by TAV appear highly unnatural in (d) because the
car seems to be stretched and partitioned by the snow. Another
typical example is shown in Fig. 4, in which the result by TAV
Fig. 4(b) is missing the basketball and a part of the astronaut’s
right leg. Benefiting from the mask guidance in (i), on the
contrary, Our method produces stable visual effects even for
such moving objects with frequent interaction with humans.
Please refer to the supplementary videos for a clear visual
inspection.
Discussion. While our method produces visually satisfactory
results, it can sometimes sacrifice prompt faithfulness to gain
high smoothness. An example would be Fig. 5. Although our
method produces a stabler trajectory for the ball, the keyword

“forest” is less reflective in the result compared to the results
by TAV. We assume this trade-off between object focus and
background (i.e., prompt) fidelity demonstrates one of the
characteristics of our mask-guided cross-attention mechanism,
which directs the model’s attention to specific regions of
interest.

C. Effect of Mask Setting

Since our mask guidance incorporation depends on the
selected target object, we here investigate the influence of
mask selection on the target object’s generation quality. The
results are shown in Fig. 6. In particular, we prepare three
types of mask selection: Ball (B), Human (H), and Ball &
Human (B+H). We can see that the mask selection plays
an important role in the generation. For the B case (Fig.
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Fig. 4. Tuned result with the text prompt being “an astronaut is dribbling basketball, cartoon style”.
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Fig. 5. Tuned result with the text prompt being “a woman is playing volleyball in the forest”.

6(a)), the model focuses on the ball movement and causes
the human arm part to be less realistic, while for the H
case (Fig. 6(b)), it seems that it appears another ball in the
ground. As for B+H, the model performs the best among these
three cases, but it can slightly degrade the background quality.
We can thus confirm that a different selection for the mask
target provides different regional guidance for the model in
improving smoothness, and there exists a trade-off in fore-
and background quality. Anyhow, the smoothness for all three
cases improves significantly compared to TAV [5].

V. CONCLUSION

In this paper, we have introduced a novel mask-guided
cross-attention mechanism (MCA) for text-guided video edit-
ing. Our approach addresses the challenges of temporal con-

sistency and object stability in video editing tasks by in-
corporating user-specified mask information into the editing
process. By leveraging the segmentation model for accurate
mask extraction and integrating such positional information
through our proposed MCA, the diffusion-based generation
process can be explicitly guided to respect the mask guidance
to yield smoothness. Experimental results demonstrate that our
method outperforms existing video-tuning methods in terms of
visual naturalness and temporal consistency.

While our approach is generally effective, it still sometimes
sacrifices text fidelity for smoothness gain. We would like to
devise more powerful attention-merging schemes to hopefully
circumvent this issue in the future.



(a) (c)(b)

(d) (e) (f)

Fig. 6. Effect of mask object selection. (a,d), (b,e), and (c,f) show the
animated frame and the corresponding mask image, respectively.
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