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Fig. 2. This figure illustrates the two network architectures; on the left a)
the discriminator structure, and on the right b) the generator structure. Both
structures use convolution or convolution transpose layers.

altitude and the ground speed for the last 25NM. The
initial trajectory rate is one point every 4 seconds, but each
trajectory is resampled to obtain 256 uniformly distributed
points which fit a neural network structure.

3.2 Neural Network Structures and Learning Process
In order to generate aircraft trajectories, specific neu-

ral network structures were built using convolutional and
transpose convolutional neural networks. The structure of
the various networks is illustrated in figure 2. A uniform
distribution of the noise z was arbitrarily chosen in a
4-dimensional space since the output space considers 4
dimensions (longitude, latitude, altitude, ground speed). In
addition to convolutional structure, each layer is followed
by a batch normalization, max pooling, and dropout layers
in order to regularize the network.

The learning task was made using Adam optimizer [19]
with a decay. The learning rate starts from 10−3 and de-
creases to 10−7. Networks were trained during 30 000 steps
on a multi-GPU cluster. The cluster is composed of a dual
ship Intel Xeon E5-2640 v4 - Deca-core (10 Core) 2,40GHz
- Socket LGA 2011-v3 with 8 GPU GF GTX 1080 Ti 11
Go GDDR5X PCIe 3.0.

3.3 Generated Trajectories
After the learning phase, the generator was able to

compute new trajectories from sampled noise distribution.

Fig. 3. Illustration of 1000 generated trajectories at Paris Orly Airport.
In blue are represented the original trajectories and in green the generated
trajectories. At the top, the longitudinal path is represented, in the center,
the altitude profile, and at the bottom the ground speed profile.

However, the obtained trajectories were noisy with mainly
high-frequency noise. Therefore, a smoothing filter was
applied. In particular, a cubic smoothing spline interpolation
was computed to remove the noise from the generated
trajectories. Figure 3 illustrates filtered generated trajectories
for all the parameters.

The overall shape and distribution of the generated tra-
jectories was satisfying since they followed the original
distribution. Nevertheless, one can see that the generator
was not able to capture some types of patterns. For the
altitude profile, it is known that aircraft follow levelled-
off path before descending on the glide path, but this was
not captured by the generator. The same behavior was
observed for the extended runway centre line which should
be followed from 10NM to the threshold, but the generated
trajectories barely followed the localizer path for the last
nautical miles. This may be linked to the difficulty of
convergence in GAN models. As a reminder, GAN models
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5. CONCLUSION
Generative adversarial networks have proven to be very

effective in generating realistic scenes and objects in com-
puter vision. This article investigates their use in the field of
aircraft trajectory generation and abnormal or non-compliant
trajectory detection. Preliminary experiments show that the
generated trajectories follow realistic patterns. This con-
firms that GAN are promising alternatives to model-based
trajectory simulators. The resulting generated trajectories
are based on past historical data and therefore account
for external factors that are often difficult to embed in
physical models. Further experiments were also provided
with GAN to detect non-compliant or atypical trajectories. A
comparison with a technique based on functional principal
component analysis also confirms that reported anomalies
are relevant. To the best of our knowledge, this work is
the first attempt to generate aircraft trajectories with such
generative machine learning tools. There remains, therefore,
much more to investigate in this domain. Further work
should include the analysis of tailored network architectures
and learning, or extensions to Wasserstein GAN [22] that
can learn data from multimodal distributions.
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