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Abstract. The reliability of a hydrological model (HydM)  highly depends on how 
well the model parameters are estimated through the history matching (HisM) pro-
cess. Direct HisM (DHisM) that calibrate input parameters by iteratively executing 
a model is widely applied in water resource estimation. The computational time of 
DHisM is prohibitive, as a single run on the model may take several hours. In prac-
tice calibration accuracy is compromised to arrive at a solution. Therefore, it is de-
sirable to develop a proxy model that can replace hydrological model in the HisM 
process. In this study, we propose a two stage HisM, wherein  we first  develop a 
proxy model for HydM using artificial neural network  techniques. Next we apply, 
ant colony optimisation (ACOR) and robust parameter estimation (ROPE) methods 
for calibrating the parameter of HydM.  This methodology is illustrated for the Dan-
dalups catchment of Western Australia to  calibrate five global parameters of Land 
Use Change Incorporated Catchment (LUCICAT) by matching  33 annual daily 
streamflow peaks. The results reveal that the replacing the LUCICAT by proxy 
model reduces the  computational time by more than 90% with similar accuracy to 
DHisM and show higher consistency (via standard deviation of RMSE) and reduc-
tion of parameter uncertainty compared to DHisM. 

Keywords: history matching, proxy models, history matching methods. 

1. Introduction 

Hydrological model (HydroM) is an important tool for water resource estimation 
and management. This model comprises of mathematical equations that describes 
complex natural physical process of a catchment. Inputs of hydrological model are 
climatic data and catchment characteristic. Catchment characteristics need to be cal-
ibrated to match historical response, such as streamflow, salinity, groundwater 
level. The process of adjusting input parameters of a catchment to reduce the dis-
crepancy between model prediction and historical data is known as history matching 
(HisM). 
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HisM is a challenging task as hydrological model is often nonlinear and compu-
tational complex. For the past four decades, many researchers have conducted stud-
ies to automate HisM for challenging problems[6][23]. HisM methods typically 
work on an initial set of input parameters, and this set is recursively updated to 
minimise an objective function describing differences between the observed data 
and model response. In this process, a hydrological model is run several hundred 
and thousand times to obtain an optimal set of input parameters. According to Tjia’s 
study [20], for a HisM approach, such as ant colony algorithm and robust parameter 
estimation, the computational time for HisM of a hydrological model take a few 
hours to a few days. For more complex hydrological model, for instance when phys-
ical processes are represented by grid cells, a hydrological model becomes compu-
tationally expensive [13]. Hence, the implementation of HisM using a HydroM di-
rectly, which is named as direct HisM approach, could be computationally 
challenging. In this study, we propose two stage HisM by first developing a proxy 
model for a HydM, then using this proxy model to find a set of optimal input pa-
rameter of  HydroM.   

A very well-known modelling method, namely artificial neural network (ANN) 
based on resilient backpropagation with one, two and three layers are used to de-
velop proxy models in this paper. ANN has been widely applied in many fields, 
such as science, engineering [2][21] and medical science [24]. 

We apply two HisM methods of ant colony optimisation for continuous domain 
problem (ACOR) and robust parameter estimation (ROPE). Both of these methods 
have been successful in solving the HisM problems in various fields of computer 
modelling. ACOR which is inspired by foraging behavior of real ants has been used 
for HisM in water resource management [1][19] and engineering application 
[10][16]. ROPE based on geometrical position of a data in data set has been used in 
rain runoff modelling [12][17]. 

This paper is organised as follows. Section 2 describes material and methods 
used in this paper including the study area, the hydrology model (LUCICAT), de-
scription of ANN model and HisM methods (ACOR and ROPE) and simulation set-
tings. Section 3 provides results and discussions. Finally, conclusions and recom-
mendations for further research are presented in Section 4.  

   

2. Material and Methods 

2.1. Study Area 

Land Use Change Incorporated Catchment (LUCICAT) hydrological model is de-
veloped for the Dandalups catchment, Western Australia. The Dandalups is an im-
portant area as the two reservoirs within the catchment, namely North and South 
Dandalup supply Perth’s annual water consumption. The location of the Dandalups, 
surface water bodies and gauging stations are depicted in Figure 1.The area of the 
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catchment is about 700 km2. The catchment has elevation ranging from 10 AHD 
(Australian Height Datum) and 500 AHD, with an average slope between 1.2% and 
16.2%. The catchment has a Mediterranean climate characterised with a hot and dry 
summer season. The average annual precipitation is about 1,100 mm. The Danda-
lups has historical rainfall and streamflow data from 1 January 1960 to 14 Novem-
ber 1992 (33 years). HisM in this study is based on Node 14 (Figure 1) since this 
node is the most influential node for the catchment. 

 

Fig. 1. The Dandalups (Owen, 2014) 

2.2. LUCICAT Hydrological Model 

LUCICAT hydrological model [3] is a distributed conceptual hydrological model 
used to predict streamflow and salinity due to the land and climate changes. The 
model has been used for many applications of catchment modelling in Western Aus-
tralia [11]. In the LUCICAT model, a catchment is divided into several sub-catch-
ments, known as Response Units (RUs) (Figure 2). Each RU has five interconnected 
stores, namely the upper store (dry and wet stores), subsurface store and groundwa-
ter store. These stores are responsible for generating the streamflow and transport-
ing the salt. In the upper store, surface runoff (Qr1) and interflow (Qi) are generated. 
The remaining water in upper store percolate to the subsurface store and groundwa-
ter store. When the groundwater level reaches the stream bed, groundwater store 
creates the streamzone store and generates baseflow to the stream (Qb). The stream-
zone store produces additional surface runoff (Qr2). 
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Fig. 2. LUCICAT building model 

According to the sensitivity analysis test performed by the Department of Water, 
Western Australia, LUCICAT has five global sensitive parameters that significantly 
influence the model response [5]. Table 1 lists the parameters, their role and preset 
uncertainty ranges. 

Table 1. Five global input parameters of LUCICAT model 

Parameter Role Units Range 
ia Interflow generation - 1.8-3.1 
Kuv Vertical conductivity of top soil Mm/d 15.3-27.2 
b Dry water soil moisture exponent - 0.156-0.56 
Kll Baseflow generation Mm/d 400-1000 
c Wet water soil moisture exponent - 0.156-0.56 

2.3. Artificial Neural Network (ANN) 

ANN method is inspired by the successful parallel working neurons in the brain. In 
ANN, artificial neurons are structured into several layers, which are input, hidden 
and output layers.  Neurons in each layer were connected with sypnases. Figure 3a 
depicts ANN for the simplest ANN and ANN with one hidden layer. An ANN 
model is represented by the following relationship: 

 𝑜𝑜(𝒙𝒙) = 𝑔𝑔(𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙) (1) 

and 𝑔𝑔(. ) is the activation function with characteristic as a bounded non-decreasing 
and differentiable function. The synaptic weights are iteratively updated to mini-
mise the discrepancy between the predicted output and the actual training response 
using learning algorithm, such as backpropagation and resilient backpropagation 
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(Rprop). This process is known as training the model. Since in backpropagation, the 
weights lie in the layer far from the output layer, they receive slower learning (Mil-
ler, 1994), we use Rprop as learning algorithm [7][4]. 
 

2.4. History matching methods 

Ant Colony Optimization based on Continuous Domain (ACOR) 

ACOR was firstly introduced by Socha and Dorigo [18] to handle continuous opti-
misation problems. The idea of ACOR lies on the construction of a solution archive, 
X with dimension of k rows (number of solutions) by p columns (number of input 
parameters). This solution archive is depicted in Figure 3b. Every cell of the archive 
has 𝑖𝑖𝑡𝑡ℎ unknown input parameter of 𝑗𝑗𝑡𝑡ℎ model solution denoted as 𝑥𝑥𝑖𝑖𝑖𝑖 . For each 
solution xi, the objective function h(xi) weight 𝑤𝑤𝑖𝑖  are computed. The weights are 
calculated according to the following formula: 

 𝑤𝑤𝑖𝑖 = 1
𝑞𝑞𝑞𝑞√2𝜋𝜋

exp (−(𝑖𝑖−1)2

2𝑞𝑞2𝑞𝑞2
) (2) 

where q is the parameter control for selecting model in the solution archive. A mix-
ture of Gaussian kernels is used to construct new members based on the information 
of the solution archive. For input parameter 𝑗𝑗, 𝐺𝐺𝑖𝑖(x), comprises weighted sum of k 
one-dimensional Gaussian functions (𝑔𝑔𝑖𝑖𝑖𝑖(𝑥𝑥)) expressed as follows:  

 𝐺𝐺𝑖𝑖(𝒙𝒙) = ∑ 𝑤𝑤𝑖𝑖
1

𝜎𝜎𝑖𝑖𝑖𝑖√2𝜋𝜋
exp(

�𝑥𝑥−µ𝑖𝑖𝑖𝑖�
2

2�𝜎𝜎𝑖𝑖𝑖𝑖�
2

𝑞𝑞
𝑖𝑖=1 ) (3) 

where 𝑗𝑗 ∈ {1, … , 𝑝𝑝}.𝐺𝐺𝑖𝑖(x) has parameters a mean vector μj and a vector of standard 
deviations σj.  Each element of μj is defined by the corresponding value in the solu-
tion archive, 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 for 𝑖𝑖 = 1, … , 𝑘𝑘. Each component of σj  is calculated by: 

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜉𝜉 ∑
|𝑥𝑥𝑒𝑒𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖|

𝑞𝑞−1
𝑞𝑞
𝑒𝑒=1  (4) 

where 𝜉𝜉 is pheromone evaporation that controls how fast the algorithm forgets the 
worse solutions. Xnew with matrix size of 𝑚𝑚 × 𝑝𝑝 are constructed by taking samples 
from mixture of Gaussian kernels. Xnew is combined with X and ranked. The 𝑚𝑚 
worst solutions are removed from the table to keep the size of archive the same and 
assign these solutions as X. 
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(a) 
 

(b) 
Fig. 3. Example of ANN (a) and an ACOR solution archive (b) 

Robust Parameter Estimation (ROPE) 

ROPE was firstly proposed by Bardossy and Singh [2]. ROPE is geometrical ap-
proach based on data depth. Data depth is a measure of the degree of centrality of a 
point with respect to a multivariate data set. Many variants of data depth, in this 
study we focus on halfspace depth. Halfspace depth of points of a point 𝑧𝑧 ∈ 𝑅𝑅𝑝𝑝 
with respect to a p-dimensional data set is defined as the minimum number of data 
points lying on a closed halfspace plan with boundary of the plane through 𝑧𝑧.  

 𝐷𝐷(𝑧𝑧,𝑿𝑿) = 𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 # (𝑖𝑖:𝑚𝑚𝑇𝑇𝑥𝑥𝑖𝑖 ≥ 𝑚𝑚𝑇𝑇𝑧𝑧) (5) 

where 𝑿𝑿 = {𝒙𝒙𝒊𝒊 = (𝑥𝑥𝑖𝑖1, … . , 𝑥𝑥𝑖𝑖𝑝𝑝). 𝒖𝒖 ranges over all vector in 𝑅𝑅𝑝𝑝, �|𝒖𝒖|� = 1.  

ROPE initially generates a set of 𝑚𝑚 input parameters and calculates the correspond-
ing objective function. 𝑝𝑝 percent of this data set is identified as a set of good per-
forming model parameters. Then, the algorithm searches a set of robust parameters 
within a good performing model parameter set by using the concept of halfspace 
depth, to generate 𝑚𝑚 new input parameters. 

2.5. Simulation Settings 
Historical Response: This is 33 annual daily streamflow peaks for the period be-
tween 1960 and 1992. These peaks were considered the most influential in the 
choice of model parameters. 

Proxy Model:  ANN Rprop [8] with one, two and three hidden layers were 
trained using data set of size of 50, 100 and 200 generated using Latin Hypercube 
Design (LHD). The average performance ANN Rprop for each size was evaluated 

Input layer hidden layer output layer 
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by using testing data sets, a size of 100 and the best average performance ANN 
model was selected for HisM. 

History matching: LHD was used to design initial parameter settings for HisM 
algorithms. LHD with S-optimality criterion of size of 50 was used for ACOR, while 
we used maximin criterion of size of 1000 for ROPE as LHD with S-optimality 
criterion is computationally extensive when the size of design is large as for ROPE. 
LHDs are generated via DoW R package [9]. ACOR and ROPE were executed to 
minimise the objective function defined as:  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑖𝑖
ℎ −𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑖𝑖

𝑠𝑠 �
2

33
𝑖𝑖=1

33
 (6) 

where 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑖𝑖
ℎ  and 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑖𝑖

𝑆𝑆  are the historical streamflow and the proxy model response 
for 𝑗𝑗𝑡𝑡ℎ, 𝑗𝑗 ∈ {1, … ,33}.  HisM process was repeated until a stopping criterion was 
achieved.  For ACOR stopping criteria was a difference of less than 0.005 between 
the best RMSE of four consecutive iterations. For ROPE, HisM process was termi-
nated if the mean RMSE of two consecutive iterations was less than 0.005. The 
tuning parameters of HisM methods were adopted from Tjia’s study [20]. For 
ACOR, k=m=50, ξ=0.5 and q=0.05 and ROPE, the initial settings (n) and new gen-
eration of solutions (m) were set each 1000 and the new solutions were selected 
from the best 10% (p) solutions of previous iterations. The performances of HisM 
using both algorithms were evaluated in terms of accuracy (mean RMSE), con-
sistency (standard deviation of RMSE), computational time and reduction of initial 
parameter uncertainty for six experiments. 
 
2.6 Simulation System 
All coding routines of ACOR and ROPE were written in R statistical software. For 
DHisM, LUCICAT model was called and executed in R environment when algo-
rithms updated the input parameter and calculated RMSE. The simulation was per-
formed using a PC with an Intel ® Core ™ i5-2500 CPU at 3.3 GHz, 8 Gb of RAM. 

3. Result and Discussion 

3.1. Performance of Proxy Models 

The performances of ANN models for one, two and three hidden layers from various 
training data size are illustrated in Table 2. 
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Table 2. The best performances of ANN model from three training data size 

Training data Number of hidden layers p-value 
 one two three  
Size of 50 h1=70 h1=10, h2=80 h1=10, 2=50, h3=70  
Mean RMSE 0.207 0.199 0.197 0.311 
Stdev 0.019 0.015 0.015 0.531 
Comp.time (s) 24.0 50.7 89.0 0.000 
Size of 100 h1=50 h1=10, h2=50 h1=10, 2=50, h3=70  
Mean RMSE 0.144 0.117a 0.116a 0.001 
Stdev 0.000 0.007 0.006 0.064 
Comp.time (s) 59.5 115.8 148.7 0.000 
Size of 200 h1=60 h1=10, h2=50 h1=10, 2=10, h3=100  
Mean RMSE 0.101 0.079a 0.078a 0.042 
Stdev 0.004a 0.005a 0.001 0.031 
Comp.time (s) 388.9 435.7 1,224.7 0.000 

Note: h1, h2, h3 are number of neurons in the first, second and third hidden layers respec-
tively. Models with the same subscript represent pairs with equal means RMSE at 5% level 
of significance based on Tukey’s multiple comparison, while variance is based on F-test for 
pairwise comparison with Bonferroni correction. 
 
Table 2 shows that all ANN models of training data size of 50 have similar average 
performances (p-value=0.311). By contrast, when the training data size increases 
(100 and 200), there are significant difference in mean RMSE across number of 
layers (p-value=0.001 and p-value=0.042). Tukey’s multiple comparison demon-
strates ANN from training data size of 100 and 200 have comparable performances 
for two and three hidden layers and outperform ANN model with one hidden layer. 
It is also observed that there is similar consistency in standard deviation of RMSE 
for all number of hidden layers from training data size of 50 and 100. Unlike these 
results, ANN (based on training data size of 200) with three hidden layers is more 
consistent in RMSE than the models with one or two hidden layers. Comparing 
ANN performances from different size of data training within the same number of 
hidden layer, it is clearly seen the performances of ANN improves when the size of 
data used for model training increases. However, the computational time increases 
(up to 1000 fold) when the size of training data increases, and ANN structures are 
more complex (one to three hidden layers). The gain is accuracy is not consistent 
with the increase in computational time. 

3.2. History Matching Results 

In order to keep the results pragmatic, we only present HisM results using ANN 
model developed by training data size of 50. Our results show that HisM perfor-
mances of using ANN model trained by data size of 50 (mean RMSE and standard 
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deviation RMSE) are similar to those provided by ANN models of training data size 
of 100 and 200. The comparison of HisM results between DHisM using LUCICAT 
model and two stage HisM, with proxy model developed using ANN as explained 
above are listed in Table 3. These results are obtained by running six repeated ex-
periments for which each experiment uses 400 model runs. According to t-test anal-
ysis for comparing mean RMSE, the performances of both HisM methods with 
DHisM, and both HisM methods with two stage HisM approach (ANN with one, 
two and three hidden layers) are comparable (all p-values t-test>0.05). In term of 
consistency (standard deviation of RMSE), F-test analysis shows that ACOR with 
ANN three hidden layers are significantly more consistent than ACOR in DHisM 
approach (p-value F-test = 0.001).       In ROPE, higher consistency in RMSE is 
achieved when the algorithm coupled with ANN two (p-value F-test = 0.002) and 
three hidden layers (p-value F-test = 0.002). 

Table 3. Performances of ACOR and ROPE using direct and Two stage approaches 

ACOR with LUCICAT ANN with n hidden layers 
  n=1 n=2 n=3 
Mean RMSE 3.665 3.671 3.670 3.658 
Stdev 0.012 0.017 0.008 0.002 
p-value t-test  0.471 0.426 0.273 
p-value F-test  0.534 0.371 0.001 
ROPE with LUCICAT ANN with n hidden layers 
  n=1 n=2 n=3 
Mean RMSE 3.675 3.698 3.672 3.671 
Stdev 0.012 0.028 0.002 0.003 
p-value t-test  0.139 0.529 0.389 
p-value F-test  0.058 0.002 0.002 

 
Further results in Table 4 show that indirect HisM reduces significantly average 

computational time for DHisM by more than 90% for both ACOR and ROPE. This 
concludes that indirect HisM provides very high efficiency in time for HisM. This 
procedure may become more advantageous when the hydrological model is more 
complex (using each grid to represent physical hydrological process for instance). 

Table 4. Average computational time (s) using LUCICAT and ANN models 

 LUCICAT ANN with n hidden layers 
  n=1 n=2 n=3 
ACOR     
Data acquisition  2,484 2,484 2,484 
Model development  24.0 115.8 148.7 
HisM process 33,001 0.5 0.6 1.2 
Total 33,001 2,508.5 2,600.4 2,633.9 
% reduction  92.4 92.1 92.0 
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ROPE     
Data acquisition  2,484 2,484 2,484 
Model development  24.0 115.8 148.7 
HisM process 295,074 94.2 146.6 162.2 
Total 295,074 2,602.2 2,746.4 2,794.9 
% reduction  99.1 99.1 99.1 

 
  Another important criterion in evaluating the performances of models and methods 
are the reduction of initial input parameter uncertainty. Figure 4 illustrates 95% CI 
of obtained input parameter uncertainty in both direct and two stage HisM (using 
ANN model developed from 50 training data size). Most of input parameters result 
from indirect HisM show significant reduction from the initial range of input pa-
rameters (Table 1) and within the 95% CI of results of direct HisM. However, both 
algorithms with current settings are observed to have difficulties in reducing input 
parameter uncertainties produced by the error surface of ANN model with one hid-
den layer.  
 

 

 

Fig. 4. Reduction of input parameter uncertainty between direct HisM and indirect 
HisM approaches with ACOR (left) and ROPE (right). 
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The input parameters based on two stage HisM methods results in a range of stream-
flow between 22.5 and 22.9 million m3/year in comparison to the estimate of  22.6 
and 22.9 million m3/year for DHisM, requiring 90% less computational time. The 
estimates obtained are of similar order.  

4. Conclusion  
This paper discussed the implementation of  two stage HisM using proxy models. 
The purpose of HisM is to estimate five sensitive input parameters of The Danda-
lups by matching the historical 33 annual daily peaks of streamflow. ANN based on 
Rprop algorithm were selected for  developing proxy model for LUCICAT model 
as input in the process of  HisM. HisM was then performed using ACOR and ROPE 
HisM methods.  

The performances of ANN with one, two and three hidden layers improved on 
average in terms of RMSE and consistency (standard deviation) as training data size 
increases. ANN from training data size of 50 have comparable performances across 
number of hidden layers. These findings are different from the results of larger train-
ing data size (100 and 200), where ANN with two and three hidden layers perform 
better than one hidden layer. For ANN, there was tendency of having similar varia-
tion in RMSE across number hidden layers when the models come from smaller 
training data size.. In spite of better performance, ANN models trained by larger 
training data set required longer computational time. 

Two stage HisM results have comparable performances with DHisM methods in 
terms of mean RMSE. In terms of consistency, lower variation in RMSE values 
(standard deviation) occur when ACOR and ROPE, coupled with ANN with two 
and three hidden layers in comparison to the HisM results with the LUCICAT 
model. Besides, the ranges provided by indirect HisM are much lower than those 
provided by direct HisM, with one exception for indirect HisM using ANN with 
one hidden layer. Furthermore, the application of  two stage HisM reduces compu-
tational time used in direct HisM by more than 90%. This study shows the success-
ful implementation of HisM using proxy models for the LUCICAT. We had similar 
experience in implementing two stage HisM for other catchments.   
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