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Abstract—By employing the concept of ”’Reversible Switching
Surfaces” (RSS), we demonstrate that it is possible to stabilize
unstable periodic orbits of a push-off based dynamic walker. The
concept is implemented by a simple event-based control which
kinematically controls the foot during the swing phase to adjust
the heel-strike. The feedback controller is designed based on
the theory of Virtual Holonomic Constraints (VHC). Simulation
results demonstrate, there exists a broad range of VHC which
satisfies stable dynamic walking.

Index Terms—dynamic walking, stability, reversible switching
surfaces, virtual holonomic constraints

I. INTRODUCTION

Due to human locomotion complexity, bipedal robots have
not precisely presented human walking behavior. For instance,
the robots based on ”Zero Moment Point” (ZMP) are stable,
but not sufficiently efficient [1], [2]. On the other hand, limit
cycle walkers show efficient and human-like behavior; though,
they do not have enough stability and robustness [3]-[6].

In order to solve the stability problem, researchers have
suggested various solutions such as adding springs [7] and
dampers [8], using upper body [9] or employing leg retraction
method [10].

Safa proposed the theory of local slopes in 2016 [11]. He
showed that it is possible to improve the stability of a passive
dynamic walker by placing the robot on a terrain that is
a combination of ramps and stairs. Further development of
this theory resulted in the concept of Reversible Switching
Surfaces (RSS) which has been used to design an efficient
controller to stabilize the unstable periodic motions of a
passive dynamic walker. This concept is defined as follows:
(1) The system’s switching surface replaces by a new one if
an external disturbance is induced. (ii) The new switching
surface is reshaped back into its old style, together with

the disturbance rejection. (iii) The stabilization procedure is
performed with as small energy consumption as possible [12].

In our previous study, we have shown the possibility of
stability enhancement of a dynamic walker traversing a sloped
surface [12]. This improvement was performed by a feedback
controller, which kinematically controls the robot’s flat feet
during the swing phase. A “Virtual Holonomic Constraint”
(VHC) [13] is designed for the feedback law. VHC has been
widely used for several control problems including Furuta
pendulum [14], pendubot [15], camless combustion engines
[16], bicycles [17], and bipeds [18].

In this paper, we use the concepts of RSS and VHC to
stabilize unstable limit cycles of a push-off based dynamic
walker. Although this robot can walk on the level ground
without any feedback control, the stability is not entirely
guaranteed. Here, we reexamine RSS to show its effectiveness
on the stability improvement of dynamic walking. In this
regard, it has been shown that our curved feet dynamic biped
can stably walk with longer step sizes at higher speeds.

The rest of the paper is organized as follows. Section II
describes the bipedal walking model. Section III presents the
simulation outputs, and Section IV concludes the paper.

II. THE BIPEDAL WALKING MODEL

Fig. 1 shows the bipedal walking model. The model consists
of a point mass at the hip (shown by M), two infinitesimal
point masses at the ankles (shown by m), massless legs and
curved feet. The bouncing, slipping, double supporting, and
foot scuffing are neglected. All joints are frictionless, and the
impacts are assumed to be perfect plastic. Also, the foot length
is assumed to be large enough to avoid the rotation around the
heel or toe during the stance phase.
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Fig. 1. Parameters and variables of the biped

A. Parameters and variables

The model parameters contain the leg length, [, the radius
of feet, r, and the distance between the center of circular feet
and the ankle, d.

To study the general motion of the biped, four generalized
coordinates are used. ¢; is the angle between the stance foot
and the vertical line to the horizon. ¢» describes the relative
angle made by the stance foot and the stance leg. ¢3 indicates
the relative angle between the legs, and g4 denotes the angle
between the swing foot and the swing leg.

B. The mathematical model

General equations of motion for passive dynamic walkers
is described as follows:
t = F(z), ¢85
5. {x (2) = ¢

x~ €S )

zt =G(z7),
Equation 1 consists of three parts:
1) Vector field F: Describes the system’s dynamics between
two impacts.
2) Switching surface S: Defines the impact moment.
3) Switching rule G: Relates the states before the impact
to states just after that.
Assuming m/M — 0, the equations of motion are derived
using Lagrangian mechanics as follows:
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These equations are made dimensionless by scaling time as

t'=t\/g/l.

The switching surface is:
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Now, by using the angular momentum balancing, the states
of system switch into their new values according to the
following switching rules:
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Superscripts ”+” and ”—" show the states just after and
before the impact, respectively. P, and P, are the components
of the push-off impulse.

All formulations could be replaced by a Poincaré map that
relates the states just after the heel-strike to the states just after
the next one:
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where X; demonstrates the states of the system at the
beginning of the ¢th step. When the period-one limit cycle
walking exists, the map is given by:

X* = P(X") ®)

where X* is the system’s fixed point. The Jacobian of
Poincaré map at the system’s fixed points should be calculated
to evaluate the stability. If all the eigenvalues of this Jacobian
matrix are within the unit circle in the complex plane, the fixed
points are stable; otherwise, the robot’s fall is inevitable.

C. Controller design

The concept of VHC is implimented to control the foot
during the swing phase kinematically. In this regard, an event-
based feedback controller adjusts the heel-strike according to
the following constraint:

qa remains unchanged if g3 > ¢
u=K(g—q) if 3<¢ 9)
q2 remains unchanged

where ¢, is a reference value, preferred to be equal to ¢3;
representing the absolute value of g3 at the moment of heel
strike when the configuration of biped satisfies g2 = g4 = 0.
Also, ¢ is an arbitrary value defining controller intervention
during the swing phase, and K is a constant gain which must
be determined.

When the disturbance is included, g3 will be diverted
from its nominal value, so q4 and then the switching surface
changes. Now if an appropriate value of K is chosen, the
switching surface will reshape back to its initial state together
by eliminating the external disturbance. Note since we do
not follow any systematic approach in this study, & must be
numerically found.

III. SIMULATION RESULTS

Numerical techniques are employed to show how RSS can
be used to improve the stability of bipedal dynamic walking.

A. Uncontrolled dynamic walking

For a set of specified parameters, P = 0.01 and 6 = p =
0.2, a stable walking cycle is presented in Fig. 2. The figure
shows the angles of the robot when it permanently walks on
the level ground; where the fixed point is:
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Fig. 2. An example of limit cycle walking for a set of parameters

Fig. 3 shows the values of ¢35 versus push-off; while § =
p = 0.2 . This figure demonstrates the stable and unstable
limit cycles of the system. According to the figure, the biped
presents stable period-one limit cycle walking for P < 0.2 .
By increasing P, the period-doubling route to chaos occurs.
The red line in the figure depicts the unstable limit cycles,
which will be stabilized by using RSS.
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Fig. 3. Stable and unstable limit cycles

B. Controlled dynamic walking

Fig. 4 shows possible values of K, which can be used to
stabilize unstable limit cycles. According to Fig. 4, for each
value of P < 0.361, a closed interval of K is fined, which
guarantees the stability of the motion. The largest absolute
eigenvalue of the Jacobian matrix is also detected by the
color bar beside the figure. Fig. 4 reveals that the range of
stable motion has been promoted by 80%. Also, because of
the massless feet, the efficiency of the gait for each value of P
is unvaried, while the stability could be adjusted by changing
K. Moreover, it means that the same dynamic walkers with
the same step length and step velocity could have different
stability condition.
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Fig. 4. The unstable region stabilized by RSS.

For three different values of K, the bifurcation diagrams
are plotted. Fig. 5 and Fig. 6 show the step length and step
velocity versus push-off, respectively. Results show that by
increasing K, the robot can stabily take the longer steps at
higher speeds. In other words, it would be possible to shift the
bifurcation point somewhere forward by regulating the value
of the controller’s constant, i.e., K.
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Fig. 5. Step-length versus push-off for three different values of K

0.05 L L s s L L
o 0.05 0.1 0.15 02 0.25 03 0.35

Push — of f

Fig. 6. Velocity versus push-oft for three different values of K

IV. CONCLUSIONS AND FUTURE WORKS

In this study, the concept of RSS is examined for the level-
ground dynamic walking. It has been shown that this concept
can successfully extend the stability of a push-off based dy-
namic walker. It is also demonstrated that the similar walking
trajectories could have entirely different stable condition, while
the gait’s efficiency is kept unvaried.

In future studies, we plan to model the push-off actuation
in detail to take a step towards a real dynamic biped. Fur-
thermore, since the presented biped merely walks based on
its natural dynamics, it would be desired to design walking
trajectories in advance. In this regard, some theories like foot
placement could be helpful.
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