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Abstract—Good-Die-in-Bad-Neighborhood (GDBN) is a tech-
nique employed to identify chips that pass initial tests but
may have defects. Previous research used neural networks and
expanded observation windows but ignored the impact of isolated
dice. This paper improves wafer pattern information through
denoising and creates a lightweight model. It also reduces training
time by annotating multiple dice simultaneously. Experiments
on real-world datasets show the model effectively captures more
Test Escapes, reducing Defective Parts Per Million (DPPM) and
improving return merchandise authorization gains.

I. INTRODUCTION

Minimizing customer returns for reliability-driven IC prod-
ucts is crucial. While increasing fault coverage in tests
is important, practical limitations mean 100% coverage is
impossible. To address this, engineers identify and discard
suspicious parts using methods like GDBN (good-die-in-bad-
neighborhood) screening to prevent customer returns.

Instead of using a single predefined metric like bad neighbor
count to represent a DUI’s suspiciousness, some GDBN meth-
ods [1] [2] [3] [4] applied machine-learning (ML) techniques
to learn a more complexed suspiciousness model with multiple
input features based on silicon data set with actual pass/fail
result as the label of each sample. Among those ML-based
GDBN methods, [1] used bad neighbor counts in distance-
based regions as input features and applied linear regression
to model suspiciousness. [2] further used the bad neighbor
count for each fail bin and each distance region to the DUI,
the DUI’s shortest distance to a wafer edge, and the probability
of having a bad die at each location across different wafers as
the input features while applying SVM regression for training.

Rather than using various bad neighbor counts as input
features, [3] directly encoded each die location as a pixel
representing its testing result, using the image formed by each
pixel in the 7×7 observation window as the input features, and
then trained the suspiciousness model with an MLP (multi-
layer perceptron). Image-based encoding allows the model
to learn graphical patterns of bad dice and determine the
suspiciousness of a DUI by analyzing pass/fail distribution,
which is more effective. With another image-based encoding,
[4] further increased the observation window to the whole
wafer, added the information of the wafer-level defect pattern
into the input image encoding, and then utilized MobileNet [5]
as the model for determining suspiciousness. A broader view

of the complete wafer, along with an identified defect pattern,
can help the model outperform [3].

In this paper, following the same input features as [4],
we propose a defect-pattern-prominent GDBN method using
Metaformer variant as its model. Our method contains the
following three major differences to [4]. Based on [4], the
wafer defect pattern is an effective feature for GDBN screen-
ing. To enhance this further, we use a denoising scheme to
highlight major defect patterns on a wafer. This will improve
the model’s ability to identify common defect patterns. Sec-
ond, Metaformer [6] has been proven more effective than
MobileNet [5] on various vision tasks, and on top of this
advanced model structure, we further develop a variant of it
with direct-mapping block connection to better fit this GDBN
screening problem. Thirdly, we develop a training scheme that
can simultaneously label multiple DUIs for training such that
the training efficiency and effectiveness can both be improved.

This paper utilizes an open dataset [7] released by TSMC
in 2015. This dataset contains 172,950 labeled and 638,507
unlabeled wafer products. Experiments on this dataset showed
that our GDBN method outperforms previous approaches,
improving performance by 29.6%.

II. PROPOSED METHODOLOGY

A. Overview

Fig. 1 depicts the overall flow of our proposed methodology.
With a labeled wafer map containing the test results of each
die, and the defect-pattern type to which the wafer belongs, we
apply a series of data preprocessing steps. Firstly, the data is
padded into a 64×64 image. The second step is data denoising
(detailed later in Section II-B), which removes bad dice that
do not belong to any defective cluster. In the third step, we
annotate multiple dice as DUIs. Any dice annotated as DUI
will be considered good dice regardless of its testing result.
This strategy enables our model (detailed later in Section II-
C) to learn to detect test escapes from good dice in bad
neighborhoods (detailed later in Section II-D). The final step
is data encoding as presented in [4]. The encoded data shown
in the upper right of Fig. 1 has eleven channels. The first
three channels are based on die-level information, showing
if the die is an out-of-wafer die, a good die, or a DUI.
The remaining eight channels are derived from wafer-level
information, representing eight different types of wafer defect
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Fig. 1. The overall flow of the proposed methodology

types. Based on the defect pattern of the labeled data, we mark
all of the dice inside the wafer in the corresponding channel.
Only one out of these eight channels will be marked (assigned
true); all of the other seven channels will be completely
unmarked (assigned false).

Next, we split the encoded data into training and testing sets
at an 8:2 ratio while maintaining the same proportion of data
belonging to each type of wafer-level defect pattern, following
the concept of stratified split. After training the model, we
input the testing data to obtain the suspiciousness level (SL)
of each DUI and set a threshold to make a judgment. If the
suspiciousness level of the DUI is greater than or equal to the
threshold, the DUI is considered a test escape and is removed;
otherwise, it is retained. If the threshold is set lower, we
can capture more test escapes and lower DPPM, indicating
higher-quality products. However, this also increases the risk
of mistakenly identifying dice as test escapes, leading to larger
losses. This tradeoff will be discussed further in Section IV.

B. Denoise

Fig. 2. Real example of before and after denoising

Based on the fact that defects tend to cluster together and
form specific patterns, [4] has demonstrated that incorporating
features with the whole wafer’s test results and wafer defect
pattern can effectively improve the capacity of GDBN. When
analyzing defects on a wafer, it is crucial to understand that
not all defects belong to a specific cluster. Isolated defects
not only fail to contribute to the detection of latent defects,
our primary objective, but also confound the model’s attention
from major clusters, thereby diminishing the method’s overall
effectiveness. To mitigate this issue, it is imperative to develop
a methodology for identifying and eliminating these isolated
defects (called noise).

To identify noise, We employ connected component labeling
(CCL), a technique for detecting and labeling groups of
connected pixels in binary images, where pixels are classified
as either foreground (typically represented as 1) or background
(typically represented as 0). The term “connectivity” refers
to the relationship between adjacent foreground pixels. Pixels
are considered connected if any of the eight neighboring
pixels (including diagonals) within a 3×3 window is also a
foreground pixel.

Typically, clusters of connected pixels indicate the same
group. CCL assigns a distinctive label to each connected
component in the binary image, ensuring that pixels with
identical labeling belong to the same connected component.
In our case, bad dice are marked as foreground, and the other
are marked as background. After labeling dice, we calculate
the number of dice in each component, referred to as the
component size. If the component size is smaller than a certain
threshold, we consider it as noise and remove it. In our
proposed preprocessing method, we use 2 as the threshold
for detecting noise.

Fig. 2 displays two wafer maps side by side. Green on
the wafer map represents good dice within the wafer, while
red represents bad dice. The gray area represents dice that
are out of the wafer. The left figure shows the wafer map
before denoising, while the right one shows the wafer map
after denoising. Bad dice with a component size less than 2 in
the left wafer map are considered noise and have been removed
during processing. This ensures that the model can focus on
the defect pattern without being affected by any external noise.
In this example, the defect pattern type is “scratch,” indicating
that the defect tend to form elongated scratch patterns, which
become more apparent after denoising. This technique helps
the model to focus on the bad dice within the pattern and
improve its ability.

C. Model Architecture

In recent years, Vision Transformer (ViT) has emerged as a
promising deep learning model for vision tasks. MetaFormer
has demonstrated that the success of ViT can be mainly
attributed to its unique architecture. Based on this idea, we
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propose the Convformer block and use it as the basic building
block to construct our model. The model architecture are
presented at the bottom of Fig. 1.

The ConvFormer block shown in the bottom left corner
of Fig. 1 contains three modules. The first module is a
1×1 convolution layer that controls the number of feature
maps. The second module is a 3×3 convolution layer, which
functions as a token mixer to mix information between tokens.
The third module is the channel MLP module. The last two
modules adopt residual connection operation and apply group
normalization [8] before themselves. Group normalization is
an alternative to batch normalization. It divides input channels
into groups and normalizes each group independently, reduc-
ing internal covariate shifts within the network and enhancing
the model’s stability and performance.

As illustrated at the bottom of Fig. 1, our model comprises
eight blocks followed by two 1×1 convolution layers. This
architecture allows us to mark the SL for multiple DUIs
simultaneously at their original positions in the output image.
We can then obtain these SLs by simply checking the values
at the corresponding positions.

D. Training Strategy

In previous methods, DUI annotation was carried out on a
single die. Each annotation would generate specific annotated
data. Choosing a single die as DUI would lead to rapid data
expansion. As the data dimensions increase and the amount
of data grows, the training data would expand considerably,
leading to excessively long training times. To address this
issue, we have modified the training strategy by selecting
multiple dice to be annotated as DUI at a time. This generates
training data that effectively mitigates the problem of data
expansion, thereby reducing the time required for training.

Increasing the number of dice selected for DUI annotation
can reduce training time but may decrease visible information,
affecting the model’s ability to detect test escapes. It is
crucial to find a balance between training time and model
performance. Our approach performs best when 30 dice are
annotated as DUIs simultaneously, allowing effective test
escape detection while maintaining acceptable training time.

III. METRIC AND SETUP FOR EVALUATION

A. Evaluation Metric

For all subsequent experiments, we train the suspiciousness
models using a common training set of wafers and evaluate
their performance on a fixed test set. During evaluation, each
die on a testing wafer takes turns to be the DUI to form an
individual testing sample, where the die on its turn is annotated
as the only DUI, and its test result is encoded as pass in the
input-feature regardless of its actual result. The suspiciousness
model is used to calculate the suspiciousness level of each
testing sample. Any DUI with a suspiciousness level exceeding
a given threshold will be discarded. Such setup on testing
samples is to create the scenarios where an originally captured
bad die as the DUI is somehow not detected by the current
manufacturing tests and see whether the suspiciousness model

can successfully identify this assumed test escape based on
the test result of the other dice on the wafer. An effective
model should identify as many test escapes as possible while
minimizing the discard of original good cases to reduce yield
loss.

In this paper, we adopt Equation 1 proposed in [3] to
estimate the expectation of the number of actual test escapes
covered by a GDBN method, denoted as CTE (covered test
escapes), based on its captured assumed test escapes, denoted
as NN (net negative), and the overall defect coverage of the
applied manufacturing tests, denoted as DC.

CTE =
(1−DC)

DC
×NN (1)

Then the profit of applying a GDBN method, denoted as
Gain, can be calculated by Equation 2, where RMA represents
how many times of a single die’s selling price equals the
penalty of receiving a customer return and Loss represents the
total number of good dice discarded by the GDBN method. As
shown in Equation 2, the Gain defined here is the penalty to be
paid minus the payment to be received if those test escapes are
shipped to a customer, in terms of the times of a die’s selling
price. In other words, To maximize Gain, a GDBN method
needs to ensure that the ratio of discarded good dice to covered
test escapes is lower than the RMA of the targeted product,
which can vary widely based on the product’s application.

Gain = RMA× CTE − Loss

= RMA× (1−DC)

DC
×NN − Loss (2)

In our later experiments, we use the Gain in Equation 2
as the metric to evaluate the effectiveness of GDBN methods.
The values for DC and RMA are set to 99.9% and 500 by
default. For more detailed explanations of the above equations,
please refer to [3] or [4].

B. Overview of Evaluation Wafer Sets

In later experiments, all ML-based suspiciousness models
use the same open wafer set called WM-811K [7] released
by TSMC in 2015 for training and testing. The wafer set
comprises 965 products totaling 811,457 wafers. Of these,
346 products are manually labeled for wafer defect patterns,
with only 7.5% of the labeled wafers containing a meaningful
defect pattern. Then, we selected 11 products, each containing
a minimum of 500 wafers with image sizes smaller than
64times64 and meaningful defect-pattern labels. This dataset
comprises 12,902 wafers categorized into 8 distinct defect-
pattern types. A summary of these wafer sets can be found
in Table I. For our study, 80% of these labeled wafers have
been allocated for training, with the remaining 20% reserved
for testing.

IV. EXPERIMENTS RESULTS

All experiments in this section are based on the testing set,
which includes 2,581 labeled wafers with a meaningful defect
pattern from the 11 products.
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TABLE I
STATISTICS OF WAFER SET

Defect # of Ratio to # of
Yield

Pattern Wafers Total Wafers Dice
Center 2,706 21.0% 1,559,195 75.1%
Donut 141 1.1% 134,548 75.9%

Edge Local 2,288 17.7% 1,983,378 83.2%
Edge Ring 5,584 43.3% 10,396,877 85.4%

Local 1,411 10.9% 1,105,363 83.2%
Near-full 67 0.5% 48,356 13.5%
Scratch 383 3.0% 312,034 87.4%
Random 330 2.6% 315,318 49.8%

Total 12,902 100% 15,855,069 83.0%

A. Setting Different Suspiciousness-level Thresholds

The result of applying our GDBN method to the testing
set with different thresholds on the predicted suspiciousness
level for determining whether to discard a die is shown in
Table II. Table II first lists the total number of test escapes TE
in this wafer set, which is estimated by Equation 1 with NN
substituted by the total number of bad dice in this wafer set.
Then Table II lists the numbers of bad dice (NN ) and good
dice (Loss) that have an outputted suspiciousness level larger
than a given threshold and will be discarded. Then, based on
the NN , the corresponding covered test escapes (CTE) can be
obtained with Equation 1. Also, by dividing Loss by the total
number of dice, the corresponding yield loss can be obtained.
Next, the corresponding Gain can be calculated by Equation 2.
In addition, DPPM can be calculated by dividing the remaining
test escapes (TE−CTE) with the total number of dice. Last,
the probability of hitting a bad die, NN/(NN+Loss), is also
listed in Table II. Note that the baseline in Table II represents
the result if no GDBN method is applied, meaning that no
good dice will be discarded.

As shown in Table II, when the suspiciousness-level thresh-
old is higher, the corresponding ratio of NN versus Loss
becomes higher, meaning that the probability of capturing an
assumed escape is also higher. When the suspiciousness-level
threshold becomes lower, its NN and CTE can still increase
but the increase of Loss becomes more dramatic, and so is
the decrease of the NN hit rate. This result demonstrates that
a higher suspiciousness-level outputted by our suspiciousness
model can indeed reflect a higher probability of a DUI being
a test escape. Meanwhile, when moving to the next smaller
suspiciousness-level threshold, the Gain can increase only
when the new added Loss versus the new added CTE is
smaller than RMA to 1. The peak of the Gain in Table II
occurs when the threshold is set to 0.7, where the CTE is
300, and the DPPM improvement is 114 (from original 205
to 91) while paying 0.31% of the yield as the cost.

Note that by setting a smaller step between adjacent thresh-
olds in Table II, a Gain versus yield loss curve can be drawn.
In later experiments, we will use such curves to compare the
effectiveness of different GDBN methods.

B. Comparison against Previous Works

In the subsection, we compare our GDBN method with the
conventional BNR GDBN and three other ML-based GDBN
methods [1] [3] [4]. The conventional BNR GDBN uses
simply the BNR (bad neighbor ratio) within the 3×3 window
to reflect the suspiciousness level of a DUI. [1] uses bad
neighbor counts of different regions within an observation
window as input features and applies linear regression to
train the suspiciousness model. [3] uses an 7×7 image as
the input features to encode each die’s pass/fail information
within the observation window and applies a MLP to train the
suspiciousness model. [4] uses a full-wafer image as the input
features to encode each die’s pass/fail information and the
wafer-level defect pattern for each targeted wafer and applies
MobileNet to train the suspiciousness model.

Fig. 3 plots the Gain-versus-yield-loss curve of each GDBN
method in this comparison. As shown in Fig. 3, our curve
is above any of the other curves with a significant margin,
meaning that the Gain achieved by our GDBN method is
always significantly higher than that of any other GDBN
method when everyone gives up the same percentage of yield.
This result also demonstrates that the suspiciousness level
outputted by our suspiciousness model can better correlate
the probability of a DUI being bad even though its test result
somehow shows passed so that it can result in a higher NN
hit rate, a larger CTE, and a lower Loss-versus-NN rate,
which eventually lead to a higher Gain.

Fig. 3. Gain-versus-yield-loss curves for GDBN methods

In addition, the two suspiciousness models using a full-
wafer image and the targeted wafer’s defect pattern as input
features, ours and [4], can consistently outperform the other
models in Fig. 3, which demonstrates that a wafer-view defect
pattern is a critical and effective information for identify a
potential test escape. This result also reflects that using a
local observation window, like conventional BNR GDBN, [1]
and [3], is not enough to spot a potential test escape effectively.
Furthermore, the conventional BNR GDBN method here per-
forms worse than any of the listed ML-based suspiciousness
models, showing the effectiveness of directly correlating the
suspiciousness model to the pass/fail result of a DUI through
supervised learning.

C. Defect-Pattern-Prominent Preprocessing

Table III lists the maximum Gain with and without applying
our defect-pattern-prominent preprocessing technique to filter
out scattering bad dice for the training wafers. As shown
in Table III, the maximum Gain will drop from 140,813 to
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TABLE II
DETAILED RESULT OF APPLYING OUR SUSPICIOUSNESS MODEL WITH DIFFERENT SUSPICIOUSNESS-LEVEL THRESHOLDS

Suspiciousness
TE

Net Covered
Loss

Yield ∆ = new added #s to a higher SL Threshold
Gain DPPMlevel (SL) Negative TE Loss

∆NN ∆CTE ∆Loss
NN ∆Loss

∆CTEThreshold (NN) (CTE) (YL) Hit Rate
no GDBN

538

0 0 0 0 0 0 0 0 0 0 205
SL>0.9 268,311 269 1,479 0.05% 268,311 269 1,479 99.5% 5.5× 132,810 103
SL>0.8 284,790 285 4,615 0.15% 16,479 16 3,136 84.0% 196.0× 137,923 97
SL>0.7 299,319 300 9,768 0.31% 14,529 15 5,153 73.8% 343.5× 140,041 91
SL>0.6 314,820 315 18,697 0.59% 15,501 15 8,929 63.5% 595.3× 138,871 86

107,528. This 33,285 difference on the maximum Gain here
shows the impact of applying our defect-pattern-prominent
technique. This result also demonstrates that the detection of a
potential test escape by our suspiciousness model really relies
on the identification of a wafer’s defect patterns and hence
highlighting the defect patterns with a preprocessing technique
can effectively help the training and guide suspiciousness
model to perceive this concept.

TABLE III
IMPACT OF DEFECT-PATTERN-PROMINENT PREPROCESS

Method No Preprocess With Preprocess
Max. Gain 107,528 140,122

D. Multiple-DUI Training

When generating each training sample, multiple (m) dice
are randomly selected simultaneously as the DUIs. As can
be imagined, when m is larger, more information is excluded
for determining the suspiciousness level of a DUI and hence
the prediction problem becomes more complicated. However,
when inferencing the suspiciousness model on a testing wafer,
only one single die is selected as the DUI so that the
model can have complete information to make a judgment.
In other words, we set a more challenging training goal for
the suspiciousness model than its actual application.

TABLE IV
TRAINING WITH (m)-DUI LABELING

# of
Max. Gain Epochs

Avg. Training Total Training
Masked Dice Time per Epoch Time

1 136,906 17 7,249 sec 34.2 hr
5 137,747 30 1,416 sec 11.8 hr

10 139,582 24 714 sec 4.8 hr
30 140,122 52 243 sec 3.5 hr
50 134,061 22 168 sec 1.0 hr

Table IV lists the maximum Gain, total training time, total
number of epochs, and average training time per epoch for
each number of m used for training. As shown in Table IV, the
maximum Gain increases slightly along with the increase of m
until m reaches 30. This result first shows that setting a higher
training goal with a larger m does make the model smarter.
Meanwhile, m cannot be set too large, otherwise the given
information will not be enough for the model to summarize

the rule behind. In addition, when m is larger, the number
of training samples created from a training wafer becomes
less, meaning the training time per epoch can become shorter,
which is another benefit of using a larger m. However, the
speedup here is not linearly proportional to the number of m
because the number of epochs to convergence may vary from
case to case. The convergence condition is set to the fifth
consecutive epoch with no improvement in the loss function.

V. CONCLUSION

In this paper, we introduce a new preprocessing method that
enhances the wafer-level information in the encoded data. Ad-
ditionally, we simultaneously annotate multiple dice as DUIs
for training. This significantly reduces data expansion issues
and decreases the training time required. Experiment results
show that our method outperforms other GDBN methods.
It captures and removes more TEs to reduce DPPM more
effectively and achieve better performance in Gain.
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