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Abstract. Adaptation to the level of knowledge of each student re-
mains one of the key challenges of e-learning and education in general.
E-learning systems provide opportunity for systematic data collection
about learning activities offering valuable insights into the students’
knowledge. In order to achieve the personalised learning, this study in-
troduces a Knowledge Design and Delivery Model (KDDM) for intelli-
gent tutoring systems. This model uses a hybrid approach that combines
traditional overlay student models with fuzzy logic and multi-criteria
decision-making methods. Unlike popular machine learning approaches,
these methods do not require existing datasets and they allow direct
teacher involvement in knowledge delivery. The KDDM associates stu-
dent stereotypes with Bloom’s revised taxonomy levels, providing a ref-
erence point for the cybernetic model. KDDM has been successfully im-
plemented and examined in a two-year experiment which confirmed its
effectiveness on 370 participants from two universities in two countries.

Keywords: Personalised learning- Student modeling- Cybernetic model-
Multi-critera decision- Intelligent tutoring system

1 Introduction

Traditional e-learning systems simplify delivery and display of static content, but
in general do not provide the opportunity for adaptive learning. A special type
of systems used not only for the delivery of teaching content, but also for the
delivery of knowledge are called the intelligent tutoring systems (ITS). Intelligent
tutoring systems are a generation of computer systems aimed to support and
improve learning and teaching process in certain domain knowledge, taking into
account the individuality of a student as it is done in a traditional one-to-one
instruction. The goal of I'TS is to provide a learning experience for each student
that is similar to the standard of learning that learner would receive in one-to-one
instruction from a human teacher.

Considering students learning capabilities, intelligent tutoring systems take
into account the knowledge about what to teach, the way to teach, as well as
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the relevant information about what student has been taught. In this manner,
there are three main components of the ITS conceptual model, namely the (i)
domain knowledge, (ii) the teacher, and (iii) the student(s). The most complete
discussion is the one initiated and proposed by Shute and Psotka [9] in order
to determine the meaning of the sign I in the intelligent tutoring system slo-
gan. Conclusion of the debate highlights two determinants of intelligence: (i)
diagnostics of the students’ knowledge and (ii) real time help in getting rid of
misconceptions and ignorance of concepts of the domain knowledge.

In this paper, the Knowledge Design and Delivery model (KDDM), a novel
approach for the Intelligent Tutoring Systems (ITS), has been introduced. The
model, utilized for transferring propositions tailored to the student’s level of
knowledge. Additionally, the cybernetic-based system that effectively imple-
mented this model is showcased. The major contributions of our research are
the following (i) cybernetic knowledge design and delivery model for adaptive
learning and (ii) a novel hybrid student model based on multi-criteria decision
methods. The paper is substantially divided into 7 sections including Introduc-
tion. Section 2 includes and analyzes similar and related research; section 3
describes the structure of the cybernetic model of KDDM. In the fourth section,
we describe how KDDM is modeling students. Furthermore, section 5 introduces
KDDM prototype implementation inside the CMTutor system while section 6
includes experiments and results. Finally, the last section combines conclusion
and future work.

2 Related work

In this section, we analyzed papers that are connected to this research area. We
listed 22 systems developed in more than last two decades that share common
ground with the approaches which CM Tutor use. The level of research was, in
descriptive view, based on structural attributes of the KDDM according to: (i)
domain knowledge of the system; (ii) student modeling in the system; (iii) adap-
tive knowledge acquisition. We conducted a systematic overview of literature
based on recommendations appropriate to research within program engineering
[22]. As basis of research, we used scientific databases! to locate relevant pub-
lications as well as an array of keywords as following: (i) Intelligent Tutoring
System, (ii) Student modeling, (iii) Adaptive learning, (iv) Adaptive learning
with learning analytics. Besides that, we set the research questions as following:
(i) How we model a student? and (ii) On what basis the system adapts?.

After detailed analysis and processing of the field, the scientific publications
which are focused on more narrow fields which pertain to our research and mostly
the ones that are connected to student modeling and student adaptive learning
were taken into consideration. The result of our analysis and processing is shown
in Table 1. Although not shown in the table, it is important to emphasize that
some of these systems use other approaches in system modeling, mostly machine
learning and constraint-based approach.

! Digital libraries ACM and IEEE, Scopus, SpringerLink, Elsevier i Google Scholar.
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In the last ten years, many researchers have combined different methods of
student modeling and ways of adaptive knowledge acquisition to construct a
hybrid student model that represents student attributes. In this manner, the
student model can show different individual characteristics and preferences of
every student [29]. The authors [40] have encompassed the publications related to
the application of artificial intelligence on student modeling during the five year
period and concluded that there are eight different student modeling approaches,
which are: (i) Bayesian Knowledge Tracing, (ii) Fuzzy logic (FL), (iii) Overlay
(OL), (iv) Differential Model, (v) Perturbation Model (PT), (vi) Constraint-
Based Model, (vii) Machine Learning, (viii) Stereotype Model (ST)

Table 1. Review of comparable systems/approaches of student modeling

and adaptive tutoring with CMTutor

System/approach name Year Student modeling Adaptive

OL |ST |PT |FL

1 |INSPIRE [10] 2001 |X X X

2 |Intelligent Learning System [13] 2002 X

3 |Why2-Atlas [12] 2002 [X X

4 |F-CBR-DHTC [16] 2003 X

5 |TADV [14] 2003 X X

6 |Multitutor [15] 2003

7 |InterMediActor [17] 2004 |X X X

8 | Vectors in Physics and Mathematics [19]||2005 X

9 |MBTI [20] 2006 X

10 [ADAPTAPIan [21] 2007 X

11 |[ADOPTA [23] 2009 X

12 |CoLaB Tutor [25] 2010 |X X

13 |AcWare Tutor [27] 2012 X X X

14 |ELaC [28] 2013 X [X X X

15 |BioWorld [31] 2014 X

16 |Java Sensei [34] 2015 |X X

17 |OSCAR-CITS [41] 2017 X X

18 |CaFAE [43] 2018 X

19 [SLA [44] 2019 X X

20 |POLYGLOT [45] 2020 |X X X

21 |Quiz Time! [46] 2020 X X X

22 |PARSAT [47] 2022 X X
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The system presented in this paper uses a hybrid model of students which
combines overlay and stereotype with fuzzy logic, and also falls into the category
of adaptive learning system. The authors [30] [32] [39] [42] consider that it is
evident that I'TS represents a powerful educational tool with a strong foundation
and a bright future. On the one hand, it means that the field is well explored.
Conversely, a great number of questions still remain unanswered [37]. We want
to emphasize that, a decade ago, intelligent systems, despite certain limitations,
have shown results comparable to those of a human (one-on-one) tutor in terms
of teaching STEM topics [26].

3 Cybernetic model

Design and delivery of teaching is prerequisite for acquiring the knowledge and
testing the students’ knowledge. Theoretical framework of KDDM is determined
by the basic functionalities of the same model and it is based on instructional de-
sign, student modeling and adaption to the current level of student’s knowledge.
Instructional design is a very complex process which includes set of methods,
techniques and tools for designing learning content. We will pay special attention
to development of a reliable component for instructional design. To achieve this,
we will use conceptual maps [7] as one of the main tools for delivering knowl-
edge. Evaluation of students’ knowledge is the foundation for the realization of
the idea of student modeling and adapting the knowledge delivery in accordance
with the current level of student’s knowledge. This achieves the basic premise
of intelligent behavior of our system. The adaptation is achieved in the environ-
ment of the cybernetic model [8] in which a student is guided, according to a
defined reference model, through the process of learning, teaching and testing
the knowledge. The current level of the student’s knowledge is presented by a
manageable input size and observed by the output size of the this process [6].
Elements of the cybernetic model are described in the following subsections.

3.1 The process of KDDM

The process of KDDM is related to the learning, teaching and testing of the stu-
dents’ knowledge which is conducted as part of the intelligent tutoring system
based on the designed and delivered educational content over the defined do-
main knowledge ontology. To execute the process of determining the level of the
students’ knowledge the most important question is how to assess it. To achieve
that, it is necessary to link the question templates (according to the objective
type questions model) with the expected outcomes that questions must achieve.
With regard to the definition of student knowledge level, trace attributes are
used. This allows the system to determine and adapt to the level of students’
knowledge based on the propositions or even concepts from domain knowledge.
The adaptation in this system is done with respect to the reference value.
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3.2 The reference value in KDDM

The reference value of the KDDM has two structural determinants, the first
one is related to the syntactic and semantic structure of the concepts and the
relation of the domain knowledge over the ontology and the second is associated
with attributes for describing the student’s stereotype. The idea of the KDDM is
basically oriented towards fulfilling the fundamental objective of the educational
process - to determine the current level of knowledge with defined reference
model over the domain knowledge. We want to discern which concepts of the
domain knowledge the student has learned (knows the propositions) and which
concepts the student has not learned (does not know the propositions). However,
the measure of the learned domain knowledge does not follow a plain binary logic,
which justifies the introduction of a fuzzy logic. In order to determine the level
of student knowledge, we grouped users with similar knowledge level. In this
manner, we are able to define a set of all stereotypes that are directly associated
with different levels of Bloom’s revised taxonomy of cognitive goals. For this, we
define the stereotype and a list of all trace attributes as the reference value on
which the process and the control implement the process of teaching and testing.

3.3 The control in KDDM

The control in the original cybernetic model includes the measurement, control
and operation of the executive device [6]. Measurement from KDDM is now
transformed into student modeling, while the control is an adaption to the cur-
rent level of the student’s knowledge with the help of the question generation
for the given domain knowledge. Trace attributes that are considered by this
model are the following: (i) the time spent on the test, (ii) learned propositions,
(iii) propositions that student has not learned, (iv) hints used during the test
and (v) test results. Evaluation is conducted according to the adapted protocol
with a mathematical model based on the principles of multi-criteria approach
Analytic Hierarchy Process (AHP) [11] as well as its fuzzy variant Fuzzy AHP
(FAHP) [18]. Implementation and definition of student model includes: (i) col-
lecting and editing data from the track records of learning and testing students,
(ii) evaluation of the attributes from the point of view of their relative connec-
tion, which is written in the matrix form with triangular numbers, (iii) applying
a FAHP method to determine the attribute weights and (iv) the result of the
FAHP method calculation which is a single column weighting attribute matrix.

The student’s knowledge diagnostics was achieved through the multi-criteria
TOPSIS method [4] and the modified Bloom’s taxonomy of cognitive domain
knowledge. In a mathematical view, mapping current trace attributes to the
relevant student stereotype is realized by the TOPSIS method. The element
of the stereotype vector with maximum value indicates the achieved level of
student’s knowledge.
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4 Student model

Student modeling is a fundamental part of this model because it encompasses
the most important processes expressed with learning, teaching, testing and
evaluating of the student’s knowledge. Student modeling is, by its nature, a
process composed of two phases: (i) student model shaping and (ii) diagnostics
of the student knowledge. Student model is described by an array of data -
we call them trace attributes trace, while diagnostics of the student knowledge
is a process led by these attributes. In the idea of this model we implement
hybrid modeling overlay model with the mathematical formalisms FAHP and
TOPSIS method of multi-criteria decision making during student stereotype
determination. With regard to what was already written, we base this part of
the theoretical frame on two approaches of student modeling. One is connected to
VanLehn classification [5], and the other with literature overview and Chrysafiadi
and Virvou classification [29]. The former approach is traditionally accepted in
referent literature, and the second is based on other modeling method - fuzzy
modeling of the students as well as the ontological model.

In literature, we have noticed numerous approaches to student modeling, and
the reason why we opted for the combination of FAHP and TOPSIS methods
is because the knowledge of students cannot be expressed by traditional logic.
Hence, the reason we needed fuzzy logic. We consider that the combination of
these methods is the best choice for student modeling because we included mul-
tiple domain knowledge experts (three in our case) in the process of attribute
evaluation. Based on mathematical calculations by FAHP method set the dif-
ficulty of every attribute was set. Furthermore, TOPSIS method helps to set
student stereotype based on weight value of the trace attributes. The approach
we use for development and setting of the process of monitoring student stereo-
type is not based on the assumption that all members of a certain group of
students behave in the same way. Indeed, it is important to emphasize that in
this regard we do not neglect the individual differences of the students. Within
our approach, two students with the same stereotype can have different paths
during learning, teaching and testing of their knowledge. This is done to display
an integral image of the application of the modified Bloom taxonomy of student
knowledge for a cognitive area in KDDM. The taxonomy was derived according
to the categories of student’s knowledge as shown in Table 2.

5 Prototype system and model implementation

Conceptual maps are used as the knowledge representation for testing and learn-
ing. Conceptual maps are introduced from the point of view of the e-learning
paradigm and implementation in the environment and the space of the e-learning
system. From the aspect of information and communication technology (ICT), it
is obvious that concept mapping is a suitable technique for representing knowl-
edge in intelligent tutoring systems. However, the Moodle, in its original dis-
tribution, cannot provide knowledge representation of the domain knowledge
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Table 2. Relationship of stereotypes with question templates and knowledge levels

Question template (T) Expected outcomes (i) Stereotype (S)

Template 1 (¢1) Knowledge (1) Stereotype_Z (s1)
Template 2 (t2) Understanding (i2) Stereotype_R (s2)
Template 3 (t3) Understanding (i2) Stereotype_R. (s2)
Template 4 (t4) Understanding (i2) Stereotype_R (s2)
Template 5 (t5) Analyzing (i3) Stereotype_A (s3)
Template 6 (t6) Evaluating (i4) Stereotype_V (s4)
Template 7 (t7) Creating (is) Stereotype_S (ss5)

based on the concepts and relationships. A prototype of the Content Modeling
Tutor (CM Tutor) software [33] was developed, implemented and installed as an
integral part of the KDDM architecture. CM Tutor is set up as an activity in
Moodle and can be used in the same manner as all other Moodle activities (e.g.
lessons, quizzes, forum and chat). It can also be run as a standalone application,
but for testing purposes it is integrated as an activity in Moodle system. The
CM Tutor consists of four components described in figure 1 which implements
following functionalities (i) Interaction module - textual and graphical interface
for the delivery of teaching content; (ii) Testing module - knowledge testing is
done after the generation of a series of questions (by the model of objective type
questions); (iii) Teaching module - learning and teaching using interaction mod-
ules according to the concepts that the student did not learn at the test phase
and (iv) Stereotype module - determining student’s stereotypes in accordance
with the current level of student’s knowledge and the reference model.

Learning management system

{3
CrapTol m

Fig. 1. Structural components of the CM Tutor system.

CM Tutor

Determining the level of knowledge of the domain knowledge concepts is
carried out by the objective type questions [2][3]. Objective type questions are
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non-calibrated knowledge tests and an instrument that determines the student’s
knowledge which is the reference value of the cybernetic model. Diversity of
objective question types allows the measurement of knowledge at all levels of
the Bloom’s knowledge taxonomy for cognitive domain [1]. The revised Bloom’s
taxonomy for the cognitive domain has been opted for this research [24].

6 Experiments and results

The ultimate goal of the experiments was to resolve the performance and quality
of the presented system as well as the participants satisfaction during learning,
teaching and testing of knowledge, but also to provide comparative analysis of
CM Tutor and other applied e-learning platforms. The experiments were carried
out in two periods with a gap of one year.

6.1 First experiment period

The purpose of the first experiment period was to obtain qualitative indicators
of CMTutor compared to CoLaB Tutor [25], AcWare Tutor [27] and Moodle.
Common for all four platforms was that the domain knowledge was defined over
the ontology of concepts and relations between them. In addition to the CM
Tutor platform, the remaining three platforms were available and well known as
the examples of good practice in previous research in this area. This experiment
period was carried out in three time periods lasting two weeks each (six weeks in
total for online learning). In each period, students used one e-learning system and
one area of knowledge in the learning and teaching area, while in the remaining
9 weeks, traditional classes were conducted in the classroom. In general, at the
level of the entire educational period, we organized and conducted the teaching
process according to the sub-model of the mirrored classroom of the rotating
model of hybrid learning.

A total of 370 students from two countries (Bosnia and Herzegovina and
Croatia) participated in these three cycles on the 4 mentioned platforms. The
sample in the research is students from the University of Mostar and the Univer-
sity of Split. The students from Mostar are students from the Faculty of Science
and Education, from undergraduate and graduate studies at the teacher’s course.
The students from Split are students of the Faculty of Science and the Faculty of
Philosophy (specifically students of the fourth and fifth year of teacher studies).
They studied from three topics, (i) ”Computer as a system”, (ii) ” Environment
and space of e-learning and e-learning systems” and (iii) ”Introductory teaching
of programming”. The results of the experiment were analyzed in two categories,
performance on test and user experience. In terms of performance, the best of
the four mentioned platforms was CMTutor with 22 students with a rating of
5 (highest grade), and in terms of satisfaction (user experience), the best was
Moodle (which was expected considering that students have been using that
platform for years), followed by CMTutor.
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6.2 Second experiment period

The purpose of the second experiment period was to determine the effect of learn-
ing, teaching and testing of the knowledge on CM Tutor with initial and final
testing. We conducted the experiment with one group of students over a period of
two weeks. The instruments for carrying out the research are objective-type tasks
(remembering tasks, completion tasks, alternative tasks, multiple choice tasks,
correction tasks, arrangement tasks, connection tasks and essay-type tasks). We
introduced the students to the content of the teaching unit ”Environment and
space of e-learning and e-learning systems”. The research was conducted on a
sample of 38 students, 28 of whom took both the initial and final test. All stu-
dents were from the University of Mostar (Faculty of Science and Education),
specifically the graduate study of Computer science and Computer science with
combinations (Mathematics, Geography, Chemistry).

100
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Fig. 2. Comparison of students’ performance on initial and final test

The initial test was carried out because the experiment involved students with
different skills and backgrounds. It was necessary to identify the initial state of
their understanding of the domain knowledge in order to quantify the student
knowledge change. A comparison of the results from the initial test and the final
test, after learning through CMTutor, is shown in Figure 3 (blue bar is initial
test). ANOVA has confirmed that there is no statistically significant difference
between the control and experimental group, mean values concerning pre-test
results (F = 0.842,p — value = 0.474). The large effect size for CMTutor was
d = 1.791 so we can say that the resulting effect sizes are statistically significant.

7 Conclusions and future work

This paper presented the fuzzy-based cybernetic model for designing and deliv-
ering the knowledge in an intelligent tutoring system. CMTutor demonstrated
superiority in student performance and user satisfaction compared to compared
learning systems. The results of empirical evaluation presented in this paper
have shown that the observed intelligent tutoring systems based on ontological
domain knowledge representation are effective when compared with traditional
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learning and teaching process and could be used in addition to traditional meth-
ods. Finally, it is shown that this modeling approach adapts to the student’s
level of knowledge. However, there are certain limitations and opportunities for
improvement. Based on the insights from the satisfaction survey, we concluded
that it is necessary to improve the user experience for the production version of
CMTutor. The ultimate goal is to enable automatic conceptual maps creation
from text which has been shown to be possible [35][36]. Also, we plan to create
a deep learning model that will detect at-risk students in the early stages of
learning and implement data augmentation techniques, since it has been shown
that it is possible to improve such models [38]. These features would greatly
facilitate the use of this system for teachers and students.
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