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Abstract. Logistic regression as implemented in PLINK is a powerful
and commonly used framework for assessing gene-gene (GxG) interac-
tions. However, fitting regression models for each pair of markers in a
genome-wide dataset is a computationally intensive task. Performing bil-
lions of tests with PLINK takes days if not weeks, for which reason pre-
filtering techniques and fast epistasis screenings are applied to reduce
the computational burden.
Here, we demonstrate that employing a combination of a Xilinx Ultra-
Scale KU115 FPGA with an Nvidia Tesla P100 GPU leads to runtimes
of only minutes for logistic regression GxG tests on a genome-wide scale.
In particular, a dataset of 53,000 samples genotyped at 130,000 SNPs
was analyzed in 8 minutes, resulting in a speedup of more than 1,000
when compared to PLINK v1.9 using 32 threads on a server-grade com-
puting platform. Furthermore, on-the-fly calculation of test statistics,
p-values and LD-scores in double-precision make commonly used pre-
filtering strategies obsolete.

Keywords: genome-wide association study (GWAS) · genome-wide in-
teraction study (GWIS) · gene-gene (GxG) interaction · linkage dise-
quilibrium (LD) · BOOST · hardware accelerator · hybrid computing ·
heterogeneous architecture

1 Introduction

Gene-gene (GxG) interactions (epistasis) are believed to be a significant source
of unexplained genetic variation causing complex chronic diseases. Several stud-
ies provided evidence for statistical GxG interaction between the top disease-
associated single nucleotide polymorphisms (SNPs) of complex chronic diseases,
including ankylosing spondylitis [21], Behçet’s disease [15], type 2 diabetes [14],
and psoriasis [6]. Particularly, in psoriasis a significant interaction (p = 6.95 ×
10−6) as measured by logistic regression has been detected between the genes
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ERAP1 (rs27524 ) and HLA-C (rs10484554 ). The biological consequence of this
interaction is that the ERAP1 SNP only has an effect in individuals carrying at
least one copy of the risk allele at the HLA-C SNP.

In general, detection of GxG interactions poses a great challenge for genome-
wide association studies (GWAS) due to the computational burden of testing
billions of pairs of SNPs (as a result of the number of tests being quadratic in
the number of SNPs). Traditional logistic regression analysis is still the gold-
standard to detect statistical GxG interactions in case/control studies, but too
slow in practice to screen for GxG interactions on a genome-wide scale. Thus,
many approximate methods for epistasis screening have been proposed applying
a variety of heuristic and filtering techniques to conduct genome-wide interaction
studies (GWIS) in a reasonable amount of time. Well-established methods in-
clude the Kirkwood Superposition Approximation (KSA) of the Kullback-Leibler
divergence implemented in BOOST [23] as well as the joint effects test introduced
by Ueki et al. [22]. Another exhaustive interaction method, called GWIS [7], em-
ploys a permutation-based approach to calibrate test statistics. Similarly, MB-
MDR [3] uses permutations to adjust the p-value of the significance test. How-
ever, it is able to reduce the dimensionality of any problem into one dimension
categorizing into high-risk, low-risk and no evidence groups before calculating
a chi-squared test statistic. Other tools defining different test statistics include
BiForce [8], iLOCi [18] and EDCF [27]. The latter uses a clustering approach in
order to reduce the computational burden. Recently, entropy-based measures for
GxG interaction detection gained increasing attention. A well-written overview
can be found in [5].

However, no convincing GxG loci have been identified exclusively from GWIS
using these approaches. Many of the methods derive an upper bound on the
test statistic in order to prune the search space and conduct follow-up model-
fitting analysis using logistic regression on a pre-filtered subset of pairs [24].
Furthermore, the computational load for preliminary epistasis screenings is not
negligible. Accordingly, several tools emerged to speedup this process employing
hardware accelerators, such as GPUs in GBOOST [28] or SHEsisEpi [9]. Another
way to reduce the computational burden is to reduce the number of SNPs in
advance by pre-filtering for linkage disequilibrium (LD), although it can be shown
that SNPs supposed to be in LD may also reveal an interaction effect [2,10].

An attempt to reduce the computational load for logistic regression tests is
made in [17] by using GLIDE [11]. To our knowledge, GLIDE is the fastest cur-
rently available GPU implementation of the logistic regression GxG interaction
test. More recently, CARAT-GxG [16] emerged. It also offers linear regression
including covariate analysis on GPUs, but provides a poor performance when
compared to GLIDE (12 days for a dataset containing 500,000 SNPs and not
more than 1,000 samples using 32 Nvidia Tesla M2070 GPUs).

In this paper, we show that we are able to perform an exhaustive genome-wide
logistic regression analysis for SNP-SNP interactions on datasets consisting of
hundreds of thousands of SNPs and tens of thousands of samples in minutes, thus
eliminating the needs for epistasis screening or LD-filtering as a preprocessing
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step. If required, LD-filtering can directly be applied as a postprocessing step,
thanks to on-the-fly calculation of r2. Furthermore, we perform our calculations
in double-precision floating point format in order to overcome precision problems
that may occur during floating point accumulations.

We run our benchmark against PLINK v1.9 using 32 threads on a computing
system with two Intel Xeon E5-2667v4 eight-core CPUs. We already gain a 10-11
times speedup by sacrificing the support for sample covariates (re-enabling it in
our method is still under development) and adapting the logistic regression test
to be used with contingency tables. This reduces the computational complexity
from O(NT ) to O(N + T ) (with N indicating the number of samples and T
the number of iterations required for a single test). By harnessing a combination
of only two hardware accelerators, namely a Xilinx Kintex UltraScale KU115
FPGA and an Nvidia Tesla P100 GPU, we gain another 100 times speedup
resulting in a total of >1,000 times speedup compared to multi-threaded PLINK
on a server-grade platform. Exemplary, for analyzing a dataset consisting of 130k
SNPs and 53k samples our method requires only 8 minutes while PLINK running
with 32 threads almost requires 6 days. Finally, it turns out that our method is
even more than 300 times faster than GLIDE, which harnesses 12 Nvidia GTX
580 GPUs.

2 Pairwise Epistasis Testing

2.1 Logistic Regression Test

In this article we address the efficient implementation of a genotype-based sta-
tistical test for binary traits. Let Y be a random variable correlated with the
trait. Correspondingly, for the trait being a disease, we define the two possible
outcomes of Y as Y = 1 if the sample is a case affected by the disease, and
Y = 0 if the samples is a control unaffected by the disease. Furthermore, for a
pairwise test, we define XA and XB as random variables correlated with the ob-
servation of genotypes at SNPs A and B, respectively. The possible outcomes of
XA/B are gA/B ∈ {0, 1, 2} representing the observed genotype (0 = homozygous
reference, 1 = heterozygous, 2 = homozygous variant). PLINK [4,20] uses the
following multiplicative logistic regression affection model with β3 indicating the
interaction effect of SNPs A and B.

ln
P (Y = 1|XA = gA, XB = gB)

P (Y = 0|XA = gA, XB = gB)
= β0 + β1gA + β2gB + β3gAgB (1)

PLINK employs Newton’s method to iteratively obtain ML estimates of the
model parameters. It firstly generates a covariate matrix C with entries Cij
whereby i indicates a sample of the input dataset and j ∈ 0, 1, 2, 3 indicates a
column for each βj . The matrix is defined as follows:

Ci0 = 1, Ci1 = giA, Ci2 = giB and Ci3 = giAgiB (2)
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In detail, for a variable number of iterations t = 0, . . . , T − 1, fitting the

vector β is performed in a stepwise manner. β(0) is initialized with β
(0)
j = 0 ∀j

for the first iteration t = 0.

1. For each sample i, compute intermediate variables

p
(t)
i = p̄

(t)
i − yi and v

(t)
i = p̄

(t)
i

(
1− p̄(t)i

)
(3)

where

p̄
(t)
i =

1 + exp

−∑
j

β
(t)
j Cij

−1

. (4)

2. Compute gradient

∇(t) =
{
∇(t)
j

}3

j=0
=
∑
i

Cijp
(t)
i . (5)

3. Compute Hessian matrix

H(t) =
{
h
(t)
jk

}3

j,k=0
=

{
0 if k > j∑
i

CijCikv
(t)
i if k ≤ j . (6)

4. Compute ∆β(t) =
{
∆β

(t)
j

}3

j=0
by efficiently solving the linear system

H(t)∆β(t) = ∇(t) (7)

using the Cholesky decomposition of H(t).

5. Update model parameters

β(t+1) ← β(t) −∆β(t). (8)

If
∑
j ∆β

(t)
j approaches zero, i.e. there is no more significant change, the

process stops with β(t+1) as the current result. Otherwise, the next iteration is
started with step 1. However, if the change does not converge to zero, the process
stops after a fixed number of iterations. PLINK uses at maximum 16 iterations
and a close-to-zero threshold of 0.0001. Additional tests for convergence failure
are implemented but omitted here for the sake of brevity.

The result of the logistic regression test in PLINK is composed of three
components, namely the test statistic, its approximate p-value and the odds-
ratio. The test statistic χ2 is calculated as

χ2 =
β3
ε2
. (9)

ε is the standard error for the gAgB-term in (1). It can directly be determined
by solving the linear system H(t)e = (0, 0, 0, 1) and defining ε2 = e3.
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cases SNP A
(Y = 1) 0 1 2

S
N

P
B

0 ncase
00 ncase

01 ncase
02

1 ncase
10 ncase

11 ncase
12

2 ncase
20 ncase

21 ncase
22

controls SNP A
(Y = 0) 0 1 2

S
N

P
B

0 nctrl
00 nctrl

01 nctrl
02

1 nctrl
10 nctrl

11 nctrl
12

2 nctrl
20 nctrl

21 nctrl
22

Fig. 1. Contingency tables for cases and controls. nij reflect the number of occurrences
for the corresponding genotype combination in a given pair of SNPs.

According to PLINK, the test statistic is assumed to follow a chi-squared
distribution χ2

1 with one degree of freedom, which implies that the approximate
p-value can directly be determined from its cumulative distribution function.
Finally, the odds-ratio is defined as eβ3 .

Obviously, steps 1 to 3 in each iteration have linear complexity inN , i.e.O(N)
whereby N is the number of samples. Let T be the number of iterations, then
O(NT ) is the total complexity for a single test. In the next Sects. 2.2 and 2.3, we
show how to do a linear precomputing step to generate a contingency table and
how to apply the contingency table in the logistic regression test, which results
in a constant computation complexity for each iteration.

2.2 Contingency Tables

For any SNP pair (A,B) a contingency table represents the number of samples
in a dataset that carry a specific genotype information. In particular, an entry
nij represents the number of samples that carry the information gA = i at SNP
A and gB = j at SNP B. Thus, a contingency table for pairwise genotypic
tests contains 3 × 3 entries. Since we are focusing on binary traits, we require
a contingency table for each state, w.l.o.g. one for the case and control group,
respectively, and denote their entries by ncaseij and nctrlij (see Fig. 1).

For a given SNP pair generating the contingency tables is clearly linear in the
number of samples. In the next section (Sect. 2.3) we show how to incorporate
contingency tables into logistic regression.

2.3 Logistic Regression with Contingency Tables

The information in the contingency tables for case and control group can be
used to simplify steps 1 to 3 in Sect. 2.1. Steps 4 and 5 as well as the calculation
of the test statistic, the odds-ratio and the p-value remain the same.

1. From a given contingency table we compute the following intermediate vari-
ables.

p
(t)
ij =

(
1 + exp

(
−
(
β
(t)
0 + iβ

(t)
1 + jβ

(t)
2 + ijβ

(t)
3

)))−1

(10)
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2. The gradient ∇(t) from (5) can now be computed as
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3. The Hessian matrix H(t) from (6) evaluates to
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where each sum is evaluated over all indexes i and j.

Obviously, the complexity of each iteration step is now constant, i.e. O(1).
As in Sect. 2.1, let N be the total number of samples and T the number of
iterations. We recall the complexity of the method used by PLINK with O(NT ).
Our proposed method improves this complexity to O(N +T ) which can directly
be observed in a significant increase in computation speed (see Sect. 4).

2.4 Linkage Disequilibrium

Our ultimate aim is the exhaustive testing of all SNP pairs on a genome-wide
scale without pre-filtering with regard to linkage disequilibrium (LD). However,
to be able to apply posthoc LD filtering we compute the r2-score on-the-fly. r2

is a measure of similarity between two SNPs. It is defined as

r2 =
D2

pA(1− pA)pB(1− pB)
with D = pAB − pApB . (15)

D is the distance between the observed allele frequency pAB at loci A and B and
the expected allele frequency pApB assuming statistical independence. Thus, r2

is a normalized measure for D which can be used for comparison of different
SNP pairs. The allele frequencies pA and pB can directly be determined as

pA =
2n00 + 2n10 + 2n20 + n01 + n11 + n21

2N
(16)

pB =
2n00 + 2n01 + 2n02 + n10 + n11 + n12

2N
(17)
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whereby nij = ncaseij + nctrlij for all i, j. Unfortunately, the determination of the
allele frequency pAB from genotypic data is not straightforward. This is due to
the unknown phase when two heterozygous genotypes face each other in a SNP
pair. Basically, it can be defined as

pAB =
2n00 + n01 + n10 + x

2N
(18)

with x meeting x ≤ n11. x has to satisfy the following equation whose solution
is omitted here for simplicity:

(f00 + x)(f11 + x)(n11 − x) = (f01 + n11 − x)(f10 + n11 − x)x (19)

where fij is the number of allele combinations ij we know for sure, e.g. f00 =
2n00 + n01 + n10 and f11 = 2n22 + n21 + n12.

PLINK does not compute the r2-score jointly with the logistic regression test.
However, one can create a table of r2 scores explicitly for all pairs of a given
range (--r2 switch), or compute the r2-score for a single pair (--ld switch).
This process is in linear complexity for each pair of SNPs to determine the
respective allele frequencies. In comparison, we are using the information of
the precomputed contingency table which allows us to calculate the r2-score in
constant time.

3 Implementation

3.1 Heterogeneous FPGA-GPU Computing Architecture

Our implementation targets a heterogeneous FPGA-GPU computing architec-
ture. We improved our architecture proposed in [26] by adding high-end off-
the-shelf components, namely a server-grade mainboard hosting two Intel Xeon
E5-2667v4 8-core CPUs @ 3.2 GHz and 256 GB of RAM, an NVIDIA Tesla P100
GPU, and an Alpha Data ADM-PCIE-8K5 FPGA accelerator card.

The GPU accelerator is equipped with 16 GB of graphics memory and is con-
nected via PCI Express Gen3 x16. The FPGA accelerator hosts a recent Xilinx
Kintex UltraScale KU115 FPGA with two attached 8 GB SODIMM memory
modules. It is connected via PCI Express Gen3 x8 allowing high-speed commu-
nication with the host and the GPU. The system runs a Ubuntu 17.10 Linux OS
(Kernel version 4.13).

Due to driver restrictions, it is currently not possible to perform direct peer
transfers, i.e. moving data from an FPGA accelerator to a GPU or vice-versa.
Therefore, both devices are placed in slots that are served by the same CPU to
reduce transmission overhead as described in [13].

According to the PCIe specifications, the net transmission rate between
FPGA and GPU is about 7.3 GB/s. This absolutely fits our application demands,
such that the transmission interface does not become a bottleneck.
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3.2 Task Distribution

Similar to our method for testing third-order SNP interactions based on informa-
tion gain [26], we split the application into three subtasks. Firstly, the creation
of pairwise contingency tables (see Sect. 2.2) is done by the FPGA module.
Secondly, all computations required for the logistic regression test based on the
contingency tables are performed by the GPU. And thirdly, the host collects and
filters the results created by the GPU.

As before, data transmission between the modules is performed by DMA
transfers via PCI Express, and since there is no direct connection between the
FPGA and the GPU module, the transmission of the contingency tables is redi-
rected via the host memory.

The input dataset is assumed to be in binary PLINK format, i.e. three files
in .bed, .bim, .fam format. The output is in plain text format containing for
each result the information on the respective SNP pair (name and ID), χ2 test
statistic, odds-ratio, approximate p-value and r2-score.

Contingency table creation on the FPGA. The FPGA pipeline for con-
tingency table generation is based on our previous work for pairwise [12,25] and
third-order interactions [26]. Thus, we omit details here and only remark the
differences.

Shortly summarized, the pipeline consists of a chain of 480 process elements
(PEs) divided into two subchains of 240 PEs each. After a short initialization
phase, the chain produces 480 contingency tables in parallel while the genotype
data of one SNP is streamed through the pipeline at a speed of 266 MHz and
8 genotypes/cycle. This sums up to a peak performance of about 40.8 million
contingency tables per second for a dataset containing about 50,000 samples, as
used in our performance evaluation in Sect. 4.

In previous publications, we used a sparse contingency table representation
lacking support for unknown genotypes. The disadvantage of such a design is,
that datasets containing unknown genotypes could not be supported because the
assumption that the sum of all entries stays the same over all tables is disproved
in the presence of unknowns. In order to remove this limitation, we now transfer
complete tables from the FPGA to the GPU. Unfortunately, this increases the
transmission rate significantly. Therefore, we encode each table entry into two
bytes, i.e. 18 B per table. For each pair of corresponding case and control tables
4 B for the pair ID is added, which accumulates to 40 B per table pair. Hence, the
peak transmission rate for the example above is about 816 MB/s, compared to
245 MB/s required for the sparse representation. However, the peak transmission
rate of the architecture is 7.3 GB/s according to PCIe Gen3 specifications which
theoretically allows us to process datasets down to 5,200 samples without the
transmission link becoming the bottleneck.

Processing contingency tables on the GPU. The GPU stores the buffers
from the FPGA containing contingency tables in graphics memory. We used
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a transmission buffer size of 256 MB which may hold up to 6.7 million table
pairs. The computation process follows a simple parallelization scheme over GPU
threads. By setting the block size to the maximum supported block size and the
grid size to evenly distribute the contingency tables over the blocks, each thread
processes exactly one contingency table pair, and only one kernel call per buffer
is required.

Logistic regression and LD computation have been implemented as described
in Sects. 2.3 and 2.4. However, in contrast to PLINK, we use the double precision
floating point format in all our computations. The output is written into a result
buffer. We provide one result buffer for each table transmission buffer, which is
transferred to the host as soon as processing a table buffer has finished.

By evenly distributing the contingency tables over the blocks, we most likely
introduce an unequal load resulting from a varying number of Newton iterations
per thread. However, the average number of iterations per block remains virtually
constant.

Transmission buffer management and result collection on the host. We
used a similar transmission buffer management as presented in [26], but intro-
duced some improvements. In order to reduce transmission overhead, we used
different adapted buffer sizes for contingency table transmission between FPGA
and GPU, and result transmission from GPU to host. We used a transmission
buffer size of 256 MB for contingency tables leading to 230.4 MB for results (re-
serving space for one result per contingency table pair). As before, the buffers
are page-locked to ensure a fast transmission without delay, and the number of
buffers allocated for each connection is equal (eight per default).

Multiple threads on the host system perform the collection of results by fil-
tering by a given significance threshold and finally providing them sorted with
regard to the test statistic. For this purpose, the min-max fine heap data struc-
ture [1,13] is employed. Each thread keeps its own instance of a min-max heap
to avoid lock conditions and inserts a result only if the test statistic exceeds the
threshold. Then, the output file is composed by iteratively extracting the single
best result over all heaps until the heaps are drained or the number of requested
results is reached, whichever occurs first.

The complete workflow on our heterogeneous FPGA-GPU-based architecture
is illustrated in Fig. 2.

4 Performance Evaluation

For performance evaluation we prepared six datasets based on in-house cohorts.
Dataset “A” and “B” contain 14,513 and 19,085 cases of autoimmune diseases,
respectively, and share a common collection of 34,213 healthy controls. Modified
instances of sets “A” and “B” were generated by applying an LD filter with
r2-threshold of 0.2, resulting in sets “A LD” and “B LD”, respectively. Fur-
thermore, we reduced the latter two datasets to only comprise SNPs located on
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FPGA
create contingency

GPU
logistic regression
LD (r2)

Host
result filtering

n-best list

genotype data

contingency
results

(min-max heap)

tables

(SNPs) (p-value, odds-ratio,
r2-score)

tables

Output:

Fig. 2. Workflow on our heterogeneous system. 1. Genotypic data is sent to the FPGA.
2. For each pair of SNPs the FPGA creates contingency tables. 3. The contingency
tables are sent to the GPU employing a memory buffer on the host. 4. The GPU
calculates the logistic regression and LD. 5. Results (p-value, odds-ratio and LD-score)
are transferred back to host. 6. Result are filtered using a min-max heap on host.

chromosomes 5 and 6. The resulting sets have been denoted by “A LD chr5,6”
and “B LD chr5,6”. An overview of these datasets can be found in Tab. 1.

Our target system was the architecture described in Sect. 3.1. We compiled
our implementation with GCC 5.4.1 and CUDA 9.0. The FPGA code was written
in VHDL and compiled with Xilinx Vivado 2017.3. For comparison, we used the
to date most recent 64-bit PLINK v1.9 built published on Jan 9th, 2018. We
ran PLINK on all six datasets in two ways. Firstly, we computed the standard
logistic regression tests with flags --epistasis --epi1 5e-8 which filters the
results by a genome-wide significance threshold of 5 · 10−8 according to the
approximate p-value. Secondly, we applied a faster epistasis screening test with
the BOOST [23] method (included in PLINK) with the same threshold flag,
but replacing --epistasis with --fast-epistasis boost. Both runs used all
available 32 threads (--threads) on our 2x Intel Xeon E5-2667v4 system.

We ran our implementation from a hybrid built, i.e. using both accelerators
(Xilinx Kintex UltraScale KU115 FPGA and Nvidia Tesla P100 GPU) and a
CPU-only built using all 32 threads. In contrast to PLINK, our implementations
perform all calculations in double-precision floating point format, while PLINK
only uses single-precision. Furthermore, we calculated the r2-score in order to
test for linkage disequilibrium on all SNP pairs, which PLINK does not.

We verified the correctness of our implementation by comparing our results
with the PLINK results. At first, we encountered a lot of differences in the score
and also in the order. Thus, we modified the source code of PLINK to let it do the
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calculations in double-precision as well. This modification increased the runtime
of PLINK by a factor of about 5.7, but the results were almost exactly equal
now, showing that the inconsistencies were caused by the different precisions. We
believe the remaining small inconsistencies were due to numerical problems in
PLINK when accumulating small floating-point values over all samples in steps
2 and 3 of computing the logistic regression test (see (5) and (6) in Sect. 2.1).

The wall-clock runtimes were measured with the GNU time command and
without additional system load. The results are listed in Tab. 2. The measures
demonstrate that by applying our method that reduces runtime complexity by
using contingency tables, we can gain a 10-11 times speedup. With an additional
application of the combination of two hardware accelerators, namely FPGA and
GPU, we gain an additional speedup of about 100, resulting in a total com-
putation speed that it is more than 1,000 times faster than that of PLINK on
a server-grade high-end platform. The performance is underlined by the addi-
tional burden on our implementation, which is a higher calculation precision and
the additional on-the-fly r2-score computation, which is not performed by the
PLINK software. Furthermore, our full logistic regression test is still almost 7
times faster than the quick but imprecise pre-scanning method BOOST [23].

However, Tab. 2 also shows, that small datasets, that have a very short
runtime on our hybrid system, do not gain a high speedup. The reason is a
large overhead for file reading, buffer preparation, device initialization and file
output. In particular, these processes take about 10 seconds for the two smallest
datasets in our ensemble, which implies a total pipeline run of less than two
seconds for the real task. Since this processes cannot be simplified for a single
task, we implemented a scheduling system that allows exclusive access to the
accelerator pipeline for parallel tasks, but pre- and post-processing can be run
concurrently.

We exemplary compared our computational speed to GLIDE [11]. For this
purpose, we extrapolated GLIDE’s presented interaction speed to the number of
samples used in our evaluation datasets. Combined with the number of interac-
tion tests required for our data, we calculated the runtime of GLIDE for dataset
“A” as 44.7 hours and for dataset “B” as 48.9 hours. This leads to a speedup of
361 and 364 respectively.

Table 1. Overview of datasets.

Dataset # samples # SNPs Comment

A LD chr5,6 48,726 5,725 Disease A, LD0.2-filtered, only chromosomes 5,6
B LD chr5,6 53,298 5,725 Disease B, LD0.2-filtered, only chromosomes 5,6
A LD 48,726 37,358 Disease A, LD0.2-filtered
B LD 53,298 37,358 Disease B, LD0.2-filtered
A 48,726 130,052 Disease A, complete
B 53,298 130,052 Disease B, complete



12 L. Wienbrandt et al.

Table 2. Wall-clock runtimes and speedup of the hybrid FPGA-GPU logistic regression
test compared to PLINK [19] logistic regression (--epistasis) and PLINK BOOST
(--fast-epistasis boost) and our CPU-only implementation, all using 32 threads
on two Intel Xeon E5-2667v4 processors. Our CPU-only and hybrid implementations
additionally calculate the r2-score (LD) and do all computations in double-precision
format (vs. single-precision without r2 in PLINK).

Dataset
PLINK Hybrid Speedup

log.reg. BOOST CPU-only FPGA-GPU CPU-only Hybrid

A LD chr5,6 15 m 48 s 7 s 1 m 32 s 11 s 10.30 86.18
B LD chr5,6 16 m 48 s 8 s 1 m 39 s 12 s 10.18 84.00
A LD 11 h 09 m 38 s 4 m 05 s 57 m 51 s 50 s 11.58 803.56
B LD 11 h 49 m 32 s 4 m 34 s 1 h 02 m 45 s 53 s 11.31 803.25
A 5 d 14 h 06 m 49 m 34 s 11 h 40 m 12 s 7 m 25 s 11.49 1,084.85
B 5 d 18 h 18 m 54 m 34 s 12 h 39 m 05 s 8 m 03 s 10.93 1,030.81

5 Conclusions and Future Work

In this paper, we presented two ways of improving performance of PLINK’s
logistic regression epistasis test [4,20]. Firstly, we reduced the computational
complexity from O(NT ) to O(N+T ) for a single test by introducing contingency
tables (see Sect. 2). This already led to a speedup of a factor of more than 10 for
all our example datasets, although we were even calculating in double-precision
format.

The second improvement was made by applying a two-step hardware ac-
celeration pipeline (see Sect. 3). By generating contingency tables on a Kintex
UltraScale KU115 FPGA and computing the logistic regression based on the
tables on an Nvidia Tesla P100 GPU, we gained a total speedup of more than
1,000 when compared to the original PLINK v1.9 software run with 32 threads
on a server-grade two processor (Intel Xeon E5-2667v4) system.

Furthermore, we demonstrated that by employing contingency tables, the
LD-score r2 can be computed on-the-fly. In combination, this provides a powerful
tool for epistasis analysis on large datasets, making LD-filtering deprecated as a
pre-processing step.

Consequently, we are able to calculate a full logistic regression test in double-
precision format on all pairs of hundreds of thousands of SNPs with tens of
thousands of samples in a few minutes and allow to filter the results by score
and/or by LD in the post-processing stage.

Currently, our method does not support the use of a covariate matrix as ad-
ditional user input. However, we are currently working on a solution based on
weighted contingency tables in order to be able to incorporate covariate infor-
mation.

In order to make the system available for the scientific community, we are
currently working on a much more powerful successor by enhancing it with three
additional Xilinx UltraScale FPGAs and Nvidia Tesla P100 GPUs. Furthermore,
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we aim to develop a web interface to allow scientists to perform genome-wide
epistasis tests on our system.
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