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Abstract. Detection of relationship between two time series is so important in environmental and
hydrological studies. Several parametric and non-parametric approaches can be applied to detect
relationships. These techniques are usually sensitive to stationarity assumption. In this research, a new
copula- based method is introduced to detect the relationship between two cylostationary time series with
fractional Brownian motion (fBm) errors. The numerical studies verify the performance of the introduced

approach.

Keywords: Time Series; Fractional Brownian Motion, Cyclostationary, Copula, Regression.

1. Introduction

The ways of modeling dependency between two time series has always been one of the main
focuses in practice. The choice of the better model depends on the dependency structure of
obligators and is crucial part of the modeling. The applied methods in previous studies include
Pearson’s correlation coefficient [1-6], Spearman’s correlation coefficient [7-10], Kendall’s
correlation coefficient [11-14], Sen’s slope [15-17], cross-correlation function [18-20] and
copula [21-26]. When we face with the relationship of two stationary time series, cross-
correlation function and copula are suggested. Cross-correlation function, as same as Pearson’s
correlation, is somewhat sensitive to abnormality of datasets and existence of outliers. In other

words, for abnormal populations or when we face with outliers, cross-correlation function may



not work well. An efficient way to model dependency is to use new modeling mechanism of
Copula Theory which helps understand the correlation beyond linearity. In contrast, Copula is a
function which transfers the multivariate distribution function to its marginal distribution
function by quantiles. It is a great tool for modeling dependency where correlation follows the
random distribution. Copula technique is most efficient for stationary time series and may not
work well for non-stationary time series such as cyclostationary time series. To solve this issue,
in this research, we introduce a copula-based regression technique. The ability of the proposed
approach to detect relationship between two cyclostationary time series with fBm errors is
studied. For this purpose, numerous datasets from two cyclostationary time series with fBm
errors are produced and analyzed.

2. Methodology

2.1. Copula

Copula was first introduced by Sklar [27] as a statistical mechanism to transfer the joint
distribution into its marginals and copula as a model to show the dependency between the

marginals.

Copulas are functions link marginal distributions to the multivariate distributions which have
well-defined properties [28]. Assume X and Y are two continuous random variables with a joint

distribution function
H(x,y) =Pr(X <x,Y <),
and marginals
F(x) =Pr(X <x),
and
G(y) = Pr(Y <y).

According to Sklar’s theorem [27], there is a copula for all x and y in [—oo, ] satisfies the

following equation:

H(x,y) = C(F(x),G(y)).



The theorem indicates that copula is joint distribution function, and joint distribution function
can be also presented as copula given its marginal distributions. Thus, Schweizer [29] discussed
that joint distribution modeling can be reduced to copula modeling. Since copula represents the
variables’ dependence, it’s also named dependence function.

One of the main advantages of copulas is allowing to identify tail dependence across the multiple
distributions. There are several Copulas that can be selected. The choice of most appropriate
Copula has been an important issue. In practice, independent and perfectly correlated variables
are naturally inapplicable for copulas. Due to its familiarity, Gaussian Copula [30] was the most
famous one among others, however it failed to capture asymmetry, non-linearity and heavy tail
dependency.

Therefore, alternative copulas have been used to model joint dependences. Several papers have
been implied Copula families in modeling joint default dependencies in hydrology. Gumbel
copula [31] is able to capture right tail dependence which is a particularly explored aspect of
default dependency. Clayton copula [32] is defined to have left tail dependence. Student’s t
copula [33] captures symmetric tail dependence with equally right and left tail dependence while
Gaussian and Frank copulas [34] are defined as symmetric dependence without any tail

dependence.
2.2. Cyclostationary Time Series

Stationarity is an important condition in classical time series analysis. But because of
existence of cyclic rhythm in many practical situations such as hydrology and climatology, the
stationarity assumption is not satisfied. As a suitable alternative, cyclostationary (CS) time series

[35-36] are employed to describe the cyclic rhythms of rhythmic processes.
A time series X, is CS with cycle T (CS-T), if T is the minimum natural number so that
m(t) = EX,) =m(t+7T),
and
R(s,6):= Cov(Xs, X,) = E[(Xs = m(s) X, —m(D)] = CovXssr , Xear),

for all integers s and t.



The cyclic correlation can be detected by employing the coherent statistics [36]. These statistics

were defined by

2
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where

n
dy(1) = n~1/2 thei“—lﬂ ,A € [0,2m),

t=1

denotes the discrete Fourier transform (DFT) of X;,...,X,, M refers to the the smoothness

parameter, and
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Since the spectral domain of CS-T time series is supported on the lines

2n(j—1
E&)=xi—£%—zj=1wwﬁ

therefore, we expect the coherent statistics plot of a CS process emphasis these lines.

Because of cyclic rhythms in CS processes, using usual copula regression to compute the
relationship of two CS-T time series is somewhat wrong. To solve this issue, in this research, a

new approach is employed to evaluate relationship of two CS-T time series.
2.3. Fractional Brownian Motion
A fractional Brownian motion (fBm) with Hurst index H € (0,1), is defined by
Bu() = f (t - $)""2dB(s),
r (H +5)

where B and T" are a Brownian motion process and gamma function [37-38], respectively. The

auto-covariance function of the processes By (t) and By (s) are given by



y(s,t) = Cov(By(s), By (1)) = %(ItIZH + [s|?H = |t — s|7).

2.4. Copula for Cyclostationary Time Series

As previously discussed, the copula technique is most efficient for stationary time series and may
not work well for non-stationary time series such as cyclostationary time series. To solve this
issue, in this research, we introduce a copula-based regression technique.

Assume X; and Y; are two CS-T time series. Let {x;, ..., x,} and {y, ..., y,,} (n = mT,m € N)

are a path of X; and Y;, respectively. The outline as our procedure as following:
(i) Split {x1, ., xn}, V1, 0¥} and {Gey, y1), oo, (i, ¥)} into T partitions {x@, ..., x™},
{y®, ..,yD, }and {(x,y)D, ..., (x,y) T}, where

x® = {x;, Xiyr) o, Xigem-vyr i = 1, .., T,

y(i) = {yi: Yi+t) "'lyi+(m—1)T}'i =1..T,
and

(x,y)® = {(xi'yi): (X4 YiaT)s oo (xi+(m—1)T'yi+(m—1)T)}:i =1..,T.

(ii) Let F;, G; and H; as the distribution function of the members of x®, y®, and (x,y)®,
respectively. Define the copula of x® and y® by

¢ =C(F,G)i=1,..,T,
and estimate the copula of x® and y® by
C,=C(F,G),i=1,..,T.
(iii) Apply copula regression to find the regression equation of y® based on x®,
$i =bo; + boixj,i =1,..,T,j=1i+T,i+(m-1DT.
(iv) Combine the regression equations to next uses such as prediction or goodness of fit tests.

Remark 1: If X, and Y; are respectively CS — T, and CS — T, time series, let T = lem( Ty, T,),

where Icm refers to smallest common multiple of T; and T,.



3. Simulation

In this section, the ability of the proposed method to detect relationship between two CS time
series is studied. For this purpose, numerous datasets from two CS time series X, and Y; are

produced and analyzed.
The simulation procedure is as following:

Step 1: For fixed n € {120, 240,480,1200}, H € {0.25,0.75} and T € {1, 2, 3,4}, separate paths
of size n from two CS-T time series X, and Y; are produced. Numerous CS time series with

different parameters are considered.

Step 2: The simulated dataset are split into T partitions {x@, ...,x(™} and {y®, ...,y™}. Then

the copula of x® and y® is estimated by
C,=C(F,G),i=1,..,T.

In this study, we apply five different copula families, namely Gaussian, Student’s t copula and
three Archimedean copulas; Clayton, Gumbel and Frank. We capture symmetric dependence
without tail dependence with Gaussian and Frank copulas, symmetric dependence with upper
and lower tail dependence with t copula, left (lower) tail dependence with Clayton copula, right
(upper) tail dependence with Gumbel copula.

3.1. Gaussian Copula

Gaussian (normal) copula, as the name implies, assumes joint distribution follows bivariate
standard normal distribution. Gaussian copula is the most commonly applied copula in practice

due to its convenient properties. The bivariate Gaussian copula is presented by:
C(a,b) = My (@~ (a), ®~1(b); 6),

where M,, is the joint bivariate cumulative standard normal distribution with 8 € [—1,1], as the
correlation of the bivariate normal distribution and @1 is the inverse of a univariate standard

normal distribution.

3.2.t Copula



The bivariate Student’s t copula is represented by:

C(a,b) = To,(t;* (@), t;* (D)),

where Ty ,, is the standardized bivariate Student’s t distribution with covariance 8 € [—-1,1] and
v degree of freedom. t;1(u,) indicates the inverse of Student’s t cumulative distribution
function. The main advantage of Student’s t copula over Gaussian copula is assuming a non-zero

tail dependence even if correlation is zero.

3.3. Clayton copula

To estimate the lower tail dependency, the Clayton copula, is mostly suggested. The bivariate
Clayton copula is represented by:

-1/6
C(a,b) = (max(a‘g +b7% -1, 0)) 1 :

where 8 (8 = —1,0 # 0) is the copula. The parameter 6 is related to Kendall’s tau rank

correlation 7 as following:

3.4. Gumbel copula

To capture weak lower tail dependence and strong upper tail dependence, the Gumbel copula is
developed. The bivariate Gumbel copula is given by:

C(a,b) = exp( —((— loga)? + (— logb)e)%),

where 68 > 1 is the copula parameter. The Gumbel copula represents just independent and
positive dependence.

The parameter 6 is related to Kendall’s tau rank correlation t as following:
t=1-06"1

3.5. Frank copula

The bivariate Frank copula is given by:



__1 (exp(=0a)—1)(exp(-=6b)-1)
C(a,b) = elog(l + e ()1 ),

where 6 # 0 is the copula parameter. Unlike the Gumbel and Clayton copulas, Frank copula
allows both negative and positive dependence in data. The parameter 6 is related to Kendall’s tau

rank correlation 7 as following:

4[D1(6)—1]

T=1+ 0 ,

where

D()—kf Y gt k=12
M =0k ) expe) — 170 T
0

Step 3: For each copula, the regression analysis is applied to estimate the equation of y® based

onx®,
5}] = bO,i + bo_ixj,i = 1, ...,T,j = l,l + T,l + (m— 1)T

Step 4: For each copula, the estimated copula regression equations are used to estimate T
partitions {y®, ...,y@}by {3®, ..., 9™},

Step 5: Different goodness of fit measures including Correlation coefficient (r), Willmott’s Index
(W1) and Nash-Sutcliffe coefficient (NS) are computed by

21 1(yl )7)(5;1 3:/)
e A

S (i = 9)?
Yy =yl + 19 —yD¥

Wi =

and

2?=1(3’i - }A’i)z
~ =\2°
Z?=1(yi - y)

NS =1-



Step 6: Steps 1 to 5 are repeated 1000 times.

Step 7: For each parameter setting, the means of r, W1 and NS of all 1000 runs and five copulas

are computed.

We consider first order periodic autoregressive with fBm error (PARFBM(1)) time series.

Assume the process

and

where

Xt = ¢(O)X¢—1 + By,

Yt = O(Xt + Wt'

) =

(W ~1IDN(0,1),

2

14+¢cos 2nt/T)

Tables 1 and 2 summarize the computed values of goodness of fit indices, for different

parameter settings and H = 0.25 and H = 0.75, respectively. The results show that the values of

goodness of fit indices are close to one. In other words, proposed method is robust to detect

relationship between two cyclostationary time series. For the future studies comparative analysis

exploring various methods and applications, e.g., [35-74] is proposed to better investigate and

validate the method and application.

Table 1: Testing performance of the Periodic Copula Model to detect relationship between two PARFBM(1) time series (H =
0.25), in terms of the Correlation Coefficient (r), Nash-Sutcliff (NSE) and Willmott Index (WI)

N
Copula ¢ a 120 240 480 1200
r 741 NS r 741 NS r 741 NS T Wi NS
0.3 /0.3 [0.980 | 0.992 | 0.989 | 0.978 | 0.991 | 0.988 | 0.978 | 0.983 | 0.990 | 0.998 | 0.995 | 0.980
Gaussian 0.3 0.7 [0.977 | 0.989 | 0.998 | 0.985 | 0.992 | 0.992 | 0.970 | 0.978 | 0.998 | 0.983 | 0.997 | 0.997
0.7 | 0.3 | 0.994 | 0.985 | 0.999 | 0.981 | 0.990 | 0.973 | 0.996 | 0.977 | 0.996 | 0.989 | 0.994 | 0.990
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0.3

0.3

0.977

0.979

0.977

0.995

0.996

0.993

0.978

0.975

0.997

0.987

0.982

0.999

0.3

0.7

0.983

0.999

0.975

0.995

0.984

0.992

0.993

0.971

0.974

0.998

0.970

0.972

0.7

0.3

0.989

0.972

0.988

0.970

0.976

0.999

0.993

0.972

0.982

0.996

0.981

0.986

0.7

0.7

0.983

0.999

0.977

0.993

0.973

0.975

0.972

0.971

0.990

0.998

0.979

0.985

0.3

0.3

0.970

0.982

0.984

0.974

0.974

0.973

0.975

0.974

0.974

0.977

0.981

0.993

0.3

0.7

0.992

0.974

0.974

0.971

0.994

0.982

0.986

0.981

0.996

0.976

0.986

0.984




0.7

0.3

0.996

0.973

0.977

0.972

0.974

0.991

0.999

0.981

0.988

0.973

0.998

0.973

0.7

0.7

0.981

0.981

0.984

0.995

0.990

0.991

0.973

0.979

0.976

0.983

0.978

0.979

Frank

0.3

0.3

0.983

0.997

0.989

0.987

0.999

0.985

0.984

0.972

0.989

0.999

0.980

0.984

0.3

0.7

0.975

0.976

0.974

0.979

0.995

0.981

0.980

0.979

0.991

0.972

0.970

0.997

0.7

0.3

0.982

1.000

0.995

0.972

0.999

0.978

0.974

0.999

0.974

0.986

0.974

0.992

0.7

0.7

0.998

0.973

0.973

0.973

0.994

0.993

0.992

0.993

0.982

0.987

0.991

0.976

0.3

0.3

0.997

0.971

0.972

0.972

0.976

0.992

0.988

0.981

0.971

0.994

0.995

0.986

0.3

0.7

0.998

0.985

0.970

0.982

0.998

0.971

0.998

0.978

0.985

0.976

0.993

0.999

0.7

0.3

0.979

0.984

0.991

0.990

0.975

0.999

0.970

0.977

0.999

0.973

0.983

0.986

0.7

0.7

0.983

0.995

0.993

0.973

0.989

0.994

0.999

1.000

0.971

0.986

0.979

0.993

0.3

0.3

0.994

0.988

0.978

0.984

0.978

0.982

0.996

0.978

0.971

0.997

0.975

0.992

0.3

0.7

0.991

0.990

0.984

0.989

0.976

0.987

0.972

0.973

0.994

0.976

0.985

0.994

0.7

0.3

0.994

0.977

0.996

1.000

0.978

0.995

0.976

0.996

0.976

0.983

0.995

0.990

0.7

0.7

0.980

0.978

0.971

0.989

0.979

0.991

0.980

0.988

0.993

0.972

0.987

0.986

0.3

0.3

0.981

0.971

0.988

0.979

0.990

0.981

0.990

0.987

0.972

0.994

0.982

0.996

0.3

0.7

0.988

0.987

0.973

0.976

0.980

0.992

0.976

0.990

0.985

0.976

0.992

0.978

0.7

0.3

0.975

0.979

0.970

0.997

0.975

0.994

0.978

0.990

0.977

0.994

0.971

0.999

0.7

0.7

0.986

0.985

0.990

0.994

0.979

0.984

0.976

0.998

0.987

0.990

0.996

0.983

Table 2: Testing performance of the Periodic Copula Model to detect relationship between two PARFBM(1) time series (H =
0.25), in terms of the Correlation Coefficient (r), Nash-Sutcliff (NSE) and Willmott Index (WI)

Copula

120

240

480

1200

wi

NS

wi

NS

wi

NS

wi

NS

Gaussian

0.3

0.3

0.990

0.996

0.981

0.982

1.000

0.980

0.986

0.998

0.989

0.977

0.992

0.994

0.3

0.7

0.975

0.978

0.981

0.997

0.992

0.990

0.971

0.981

0.996

0.990

0.971

0.978

0.7

0.3

0.990

0.997

0.984

0.995

0.997

0.973

0.974

0.999

0.992

0.983

0.985

0.974

0.7

0.7

0.995

0.999

0.983

0.996

0.994

0.974

0.998

0.986

0.972

0.977

0.971

0.996

0.3

0.3

0.985

0.985

0.997

0.992

0.979

0.992

0.999

0.978

0.985

0.999

0.971

0.980

0.3

0.7

0.971

0.999

0.988

0.995

0.996

0.983

0.993

0.975

0.991

0.970

0.988

0.983

0.7

0.3

0.999

0.971

0.983

0.979

0.993

0.994

0.984

0.988

0.972

0.976

0.983

0.991

0.7

0.7

0.994

0.985

0.993

0.971

0.979

0.976

0.971

0.985

0.989

0.996

0.994

0.987

0.3

0.3

0.992

0.993

0.992

0.971

1.000

0.991

0.995

0.985

0.994

0.988

0.982

0.994

0.3

0.7

0.996

0.997

0.977

0.981

0.991

0.975

0.991

0.980

0.987

0.995

1.000

0.982

0.7

0.3

0.998

0.976

0.980

0.974

0.974

0.982

0.984

0.979

0.996

0.993

0.971

0.975

0.7

0.7

0.988

0.985

0.983

0.976

0.993

0.993

0.985

0.985

0.995

0.989

0.994

0.978

0.3

0.3

0.995

0.996

0.990

0.991

0.989

0.996

0.999

0.990

0.978

0.993

0.987

0.980

0.3

0.7

1.000

0.988

0.990

0.993

0.970

0.972

0.993

0.982

0.977

0.999

0.985

0.972

0.7

0.3

0.983

0.980

1.000

0.993

0.977

0.972

0.998

0.978

0.998

0.973

0.970

0.993

0.7

0.7

0.991

0.977

0.985

0.994

0.983

0.973

0.983

0.975

0.990

0.983

0.982

0.990

0.3

0.3

0.990

0.996

0.981

0.974

0.971

0.998

0.992

0.989

0.982

0.972

0.980

0.974

0.3

0.7

0.972

0.987

0.990

0.993

0.996

0.998

0.986

0.972

0.994

0.992

0.978

0.975

0.7

0.3

0.977

0.984

0.997

0.974

0.999

0.996

0.996

0.989

0.986

0.992

0.995

0.980

0.7

0.7

0.973

0.989

0.974

0.981

0.973

0.982

0.992

0.979

0.985

0.994

0.980

0.973

0.3

0.3

0.996

0.975

0.999

0.976

0.995

0.979

0.978

0.985

0.979

0.984

0.999

0.990

0.3

0.7

0.977

0.979

0.995

0.995

0.976

0.981

0.973

0.974

0.983

0.989

0.976

0.979

0.7

0.3

0.996

0.971

0.977

0.983

0.981

0.989

0.972

0.998

0.984

0.980

0.990

0.981

0.7

0.7

0.994

0.990

0.997

0.997

0.992

0.980

0.987

0.978

0.987

0.992

0.986

0.974

0.3

0.3

0.980

0.986

0.992

0.979

0.973

0.998

0.997

0.988

0.975

0.988

0.981

0.992

0.3

0.7

0.978

0.999

0.984

0.990

0.986

0.993

0.978

0.980

0.977

0.972

0.979

0.987




0.7

0.3

0.983

0.986

0.983

0.993

0.986

0.987

0.971

0.992

0.980

0.972

0.985

0.979

0.7

0.7

0.998

0.988

0.991

0.987

0.984

0.977

0.980

0.993

0.997

0.985

0.989

0.985

0.3

0.3

0.980

1.000

0.994

0.990

0.988

0.982

0.980

0.986

0.997

0.996

0.987

0.973

0.3

0.7

0.989

0.978

0.984

0.987

0.979

0.976

0.985

0.995

0.989

0.972

0.974

0.986

0.7

0.3

0.975

0.978

0.982

0.982

0.990

0.993

0.977

0.981

0.972

0.985

0.999

0.993

0.7

0.7

0.985

0.995

0.974

0.986

0.995

0.993

0.972

0.990

0.994

0.996

0.991

1.000

Clayton

0.3

0.3

0.986

0.985

0.998

0.980

0.974

0.978

0.992

0.978

1.000

0.971

0.984

0.975

0.3

0.7

0.986

0.973

0.977

0.984

0.980

0.993

0.986

0.971

0.999

0.979

0.980

0.980

0.7

0.3

0.995

0.979

0.987

0.975

0.977

0.972

0.981

0.994

0.975

0.982

0.977

0.980

0.7

0.7

0.995

0.984

0.974

0.973

0.995

0.975

0.987

0.974

0.987

0.993

0.976

0.978

0.3

0.3

0.987

0.999

0.983

0.991

0.974

0.989

0.979

0.972

0.996

0.994

0.996

0.981

0.3

0.7

0.981

0.980

0.973

0.989

0.975

0.995

0.995

0.976

0.974

0.981

0.980

1.000

0.7

0.3

0.978

1.000

0.977

0.970

0.994

0.993

0.985

0.971

0.975

0.974

0.978

0.989

0.7

0.7

0.992

0.980

0.972

0.973

0.974

0.981

0.973

0.980

0.975

0.994

0.986

0.975

0.3

0.3

0.995

0.987

0.974

0.988

0.989

0.989

0.986

0.976

0.992

0.992

0.991

0.981

0.3

0.7

0.972

0.987

0.999

0.984

0.988

0.991

0.991

0.974

0.987

0.978

0.981

0.977

0.7

0.3

0.997

0.985

0.998

0.987

0.978

0.973

0.979

0.972

0.983

0.994

0.977

0.974

0.7

0.7

0.996

0.989

0.999

0.998

0.980

0.996

0.975

0.970

0.983

0.996

0.976

0.986

0.3

0.3

0.978

0.981

0.987

0.980

0.979

0.988

0.983

0.989

0.974

0.975

0.991

0.992

0.3

0.7

0.994

0.976

0.993

0.970

0.983

0.999

0.980

0.976

0.986

0.975

0.981

0.992

0.7

0.3

0.991

0.999

0.977

0.981

0.979

0.992

0.976

0.971

0.989

0.995

0.978

0.971

0.7

0.7

0.978

0.977

0.981

0.976

0.988

0.989

0.979

0.977

0.979

0.985

0.985

0.988

Gumbel

0.3

0.3

0.981

0.986

0.982

0.973

0.971

0.970

0.982

0.999

0.986

0.994

0.983

0.999

0.3

0.7

0.991

1.000

0.991

0.977

0.980

0.987

0.976

0.996

0.993

0.979

0.990

0.975

0.7

0.3

0.997

0.971

0.975

0.990

0.986

0.994

0.972

0.983

0.996

0.994

0.972

0.994

0.7

0.7

0.987

0.988

0.993

0.977

0.993

0.994

0.997

0.995

0.977

0.977

0.981

0.982

0.3

0.3

0.983

0.982

0.983

0.971

0.985

0.979

0.979

0.985

0.972

0.975

1.000

0.977

0.3

0.7

0.997

0.975

0.970

0.996

0.987

0.976

0.983

0.981

0.982

0.995

0.980

0.973

0.7

0.3

0.985

0.990

0.974

0.999

0.989

0.996

0.999

0.994

0.989

0.985

0.983

0.971

0.7

0.7

0.994

0.995

0.999

0.999

0.993

0.981

0.994

0.985

0.970

0.996

0.990

0.994

0.3

0.3

0.972

0.979

0.985

0.974

1.000

0.974

0.976

0.992

0.995

0.981

0.982

0.986

0.3

0.7

0.975

0.977

0.985

0.971

0.976

0.995

0.992

0.981

0.975

0.976

0.986

0.978

0.7

0.3

0.973

0.994

0.999

0.992

0.991

0.988

0.997

0.988

0.999

0.986

0.980

0.992

0.7

0.7

0.982

0.993

0.982

0.999

0.979

0.976

0.997

0.988

0.996

0.987

0.993

0.991

0.3

0.3

0.974

0.999

0.990

0.982

0.994

0.970

0.998

0.988

0.994

0.976

1.000

0.993

0.3

0.7

0.977

0.986

0.991

0.990

0.997

0.981

0.984

0.997

0.986

0.987

0.972

0.975

0.7

0.3

0.999

0.976

0.986

0.972

0.976

0.986

0.998

0.995

0.991

0.977

0.971

0.979

0.7

0.7

0.973

0.996

0.997

0.977

0.988

0.997

0.994

0.990

0.978

0.988

0.988

0.984

Frank

0.3

0.3

0.990

0.981

0.979

0.998

0.987

0.993

0.973

0.983

0.999

0.976

0.979

0.989

0.3

0.7

0.984

0.989

0.990

0.985

0.990

0.999

0.978

0.987

0.980

0.987

0.972

0.982

0.7

0.3

0.984

0.996

0.971

0.979

0.988

0.998

0.980

0.988

0.982

0.984

0.979

0.991

0.7

0.7

0.992

0.977

0.986

0.992

0.997

0.996

0.991

0.974

0.972

0.987

0.972

0.996

0.3

0.3

0.986

0.992

0.974

0.989

0.973

0.982

0.997

0.976

0.979

0.981

0.978

0.971

0.3

0.7

0.993

0.971

0.982

0.977

0.991

0.981

0.980

0.988

0.983

0.991

0.973

0.987

0.7

0.3

0.973

0.982

0.989

0.985

0.975

0.986

0.983

0.998

0.982

0.976

0.992

0.972

0.7

0.7

0.984

0.974

0.988

0.980

0.978

0.989

0.981

0.983

0.987

0.997

0.997

0.979

0.3

0.3

0.970

0.987

0.970

0.979

0.995

0.992

0.979

0.994

0.988

0.986

0.999

0.997

0.3

0.7

0.976

0.995

0.976

0.999

0.986

0.994

0.980

0.996

0.988

0.984

0.982

0.984

0.7

0.3

0.996

0.992

0.987

0.976

0.979

0.984

0.982

0.990

0.998

0.992

0.993

0.990

0.7

0.7

0.987

0.990

0.975

0.974

0.998

0.978

0.988

0.972

1.000

0.994

0.987

0.973

0.3

0.3

0.997

0.981

0.994

0.993

0.985

0.979

0.986

0.991

0.985

0.996

0.984

0.987

0.3

0.7

0.975

0.987

0.980

0.978

0.971

0.987

0.998

0.990

0.997

0.992

0.985

0.993

0.7

0.3

0.987

0.975

0.973

0.995

0.981

0.973

0.993

0.970

0.978

0.983

0.982

0.995

0.7

0.7

0.984

0.987

0.998

0.999

0.982

0.996

0.983

0.988

0.996

0.992

0.986

0.991




4. Conclusion

The analysis of hydrological and climatological datasets often requires the detection of
relationships between different variables. When we face with the relationship of two time series,
cross-correlation function and copula models are suggested. Cross-correlation function is
somewhat sensitive to abnormality of datasets and existence of outliers. An efficient way to
model dependency is to use new modeling mechanism of Copula Theory which helps understand
the correlation beyond linearity. Copula technique is most efficient for stationary time series and
may not work well for non-stationary time series such as cyclostationary time series. To solve
this issue, in this research, we introduced a copula-based regression technique. The ability of the
proposed approach to detect relationship between two cyclostationary time series with fractional
Brownian motion errors was studied. For this purpose, numerous datasets from two
cyclostationary time series with fractional Brownian motion errors were produced and analyzed.
The results indicated that the values of goodness of fit indices were close to one, and
consequently, the proposed method was robust to detect relationship between two

cyclostationary time series with fractional Brownian motion errors.
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