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Enhancing Vehicle Routing with Time Windows: A
Machine Learning-Driven Ant Colony Optimization

Approach

Abstract—The Vehicle Routing Problem with Time Windows
(VRPTW) is a challenging optimization problem in logistics
and transportation, where the objective is to efficiently plan
routes for vehicles to service a set of customers within specified
time windows while minimizing costs. This paper introduces a
novel approach to solving VRPTW using a Machine Learning-
Driven Ant Colony Optimization (ML-ACO) algorithm, referred
to as Machine Learning-Driven Ant Colony Optimization for
Vehicle Routing with Time Windows (ML-ACO-VRPTW). The
proposed algorithm enhances traditional ACO by integrating a
machine learning model, specifically a DecisionTreeRegressor, to
predict heuristic values that capture the urgency of time windows
and vehicle capacity constraints. The algorithm begins with
initializing pheromone levels and parameters, followed by con-
structing routes based on probabilistic path selection influenced
by pheromone intensity and machine learning-predicted heuristic
values. Key innovations include dynamic pheromone updates
that adapt to the algorithm’s progress and the incorporation
of penalties for time window violations and vehicle capacity
exceedances. The pheromones are used to maintain a memory of
the paths, and the machine learning model ensures adaptive and
accurate heuristic predictions.

Keywords—Vehicle Routing Problem with Time Windows,
Machine Learning-Driven Ant Colony Optimization, Decision
Tree Regressor, Heuristic Prediction, Optimization Algorithms

I. INTRODUCTION

In today’s fast-paced global economy, efficient logistics
management has become a critical factor in the success of
businesses across various sectors. The increasing complexity
of supply chains, coupled with rising customer expectations
for timely deliveries, has placed unprecedented demands on
transportation and distribution systems. At the heart of these
challenges lies the Vehicle Routing Problem with Time Win-
dows (VRPTW), a fundamental yet intricate optimization
problem in logistics.

The VRPTW is an extension of the classic Vehicle Routing
Problem (VRP) and is classified as NP-hard [1], indicating
its significant computational complexity. This classification
implies that as the problem size increases, the time required
to find an optimal solution grows exponentially, making it
impractical to solve large instances using exact methods. In
the VRPTW, a fleet of vehicles must service a set of customers
within specified time windows while minimizing total costs,
typically including factors such as travel distance, number of
vehicles used, and penalties for time window violations.

The importance of solving VRPTW efficiently cannot be
overstated in today’s logistics landscape. Optimal or near-

optimal solutions to this problem can lead to substantial
cost savings, improved customer satisfaction, and reduced
environmental impact through more efficient use of resources.
However, the NP-hard nature of VRPTW presents a signifi-
cant challenge, necessitating the development of sophisticated
heuristic and metaheuristic approaches to find high-quality
solutions within reasonable computational times.

In this paper, we introduce a novel approach to tackling
the VRPTW: a Machine Learning-Driven Ant Colony Opti-
mization algorithm, which we refer to as ML-ACO-VRPTW.
This innovative method builds upon the traditional Ant Colony
Optimization (ACO) framework by incorporating a machine
learning model, specifically a DecisionTreeRegressor, to pre-
dict heuristic values that account for both the urgency of time
windows and vehicle capacity constraints. Our approach aims
to strike a balance between solution quality and computational
efficiency, addressing the practical needs of logistics planners
and decision-makers.

The remainder of the paper is structured as follows. Section
II reviews the related literature. Section III and IV provides
the problem definition of VRPTW. Section V presents the
proposed ML-ACO-VRPTW algorithm. Section VI describes
the experimental study and reports the results. Section VII
concludes the paper.

II. LITERATURE REVIEW

The Vehicle Routing Problem with Time Windows
(VRPTW) is a significant combinatorial optimization prob-
lem with numerous applications in transportation and logis-
tics. This literature review explores recent advancements and
methodologies in solving VRPTW, highlighting approaches
that combine traditional optimization techniques with modern
machine learning methods.

Keskin’s work in ”Multi-Criteria Decision Making With
Machine Learning for Vehicle Routing Problem” proposes
a three-stage approach to address VRPTW. The methodol-
ogy involves clustering customers using a fuzzy c-means
(FCM) algorithm, predicting travel times with support vec-
tor regression (SVR), and selecting optimal routes through
multi-criteria decision analysis techniques like the Analytic
Hierarchy Process (AHP) and the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [2]. This
approach integrates machine learning for enhanced prediction
accuracy and decision-making, improving the feasibility and
effectiveness of route planning in real-world scenarios.



The paper ”Combining variable neighborhood search and
machine learning to solve the vehicle routing problem with
crowd-shipping” introduces an innovative crowd-shipping
model, which leverages underused resources such as occa-
sional drivers to enhance delivery operations [3]. The authors
apply a variable neighborhood search (VNS) meta-heuristic,
integrating machine learning techniques to explore promising
areas of the solution space. This hybrid approach demonstrates
improved effectiveness over traditional methods, showcasing
the potential of combining meta-heuristics with machine learn-
ing for complex routing problems.

Sun et al.’s research on ”Boosting ant colony optimization
via solution prediction and machine learning” presents a
hybrid approach that combines machine learning with ant
colony optimization (ACO) to solve combinatorial optimiza-
tion problems [4]. Their ML-ACO algorithm involves training
classification models to predict high-quality solutions and
integrating these predictions into the ACO framework. By
using predicted probabilities to bias pheromone updates and
route construction, the algorithm significantly enhances per-
formance across various problem instances. This integration of
machine learning with meta-heuristics not only boosts solution
quality but also generalizes well to different problem domains,
including large synthetic and real-world instances.

Building upon the basics of using a Hybrid ACO algorithm
with VRPTW, as discussed in [5] , the presented paper
enhances the original approach by replacing heuristics with
Machine Learning techniques.

III. VEHICLE ROUTING WITH TIME WINDOWS

The Vehicle Routing Problem with Time Windows
(VRPTW) is an extension of the classic Vehicle Routing
Problem (VRP), which seeks to optimize the routes of a fleet
of vehicles delivering goods to a set of customers. In the
VRPTW, each customer is associated with a specific time
window during which the delivery must occur. The objective
is to minimize the total travel cost while ensuring that each
delivery is made within the specified time window and that
vehicle capacities are not exceeded.

Formally, let G = (V,E) be a directed graph where V =
{0, 1, . . . , n} is the set of vertices, and E is the set of edges
connecting these vertices. Vertex 0 represents the depot, and
vertices 1 to n represent the customers. Each customer i ∈
V \ {0} is associated with a demand di and a time window
[ei, li], where ei is the earliest start time and li is the latest
start time for the service at customer i. Each edge (i, j) ∈ E
has an associated travel time tij and travel cost cij .

The constraints of the VRPTW can be summarized as
follows:

• Each route starts and ends at the depot.
• Each customer is visited exactly once by one vehicle.
• The total demand of the customers on each route does

not exceed the vehicle’s capacity.
• The service at each customer starts within the specified

time window [ei, li].

• Vehicles are allowed to wait if they arrive before the
earliest start time ei, but they cannot arrive after the latest
start time li.

The VRPTW is a well-studied problem in the field of
combinatorial optimization and operations research due to
its practical applications in logistics and distribution. Many
exact and heuristic methods have been proposed to solve
the VRPTW. Among these, heuristic approaches such as Ant
Colony Optimization (ACO) have gained significant attention
due to their ability to find good quality solutions within
reasonable computational times [6], [7].

In this paper, we propose an enhanced heuristic-driven
Ant Colony Optimization approach that incorporates domain-
specific knowledge to improve the solution quality for the
VRPTW. Our method is designed to balance exploration and
exploitation more effectively, leveraging the structured nature
of the problem to guide the search process.

The VRPTW has been addressed by various methods,
including exact algorithms, such as branch-and-bound and
branch-and-cut, and metaheuristic approaches, such as Genetic
Algorithms (GA), Tabu Search (TS), and Particle Swarm
Optimization (PSO) [8]–[10]. However, the computational
complexity of exact methods often limits their applicability
to small or moderately sized instances. On the other hand,
metaheuristic approaches can handle larger instances more
efficiently but may not always guarantee optimal solutions.
The ACO algorithm, introduced by Dorigo and Gambardella
[6], has shown promise in providing high-quality solutions for
VRPTW by simulating the foraging behavior of ants [7].

IV. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a nature-inspired meta-
heuristic that has been successfully applied to various combi-
natorial optimization problems, including the Vehicle Routing
Problem with Time Windows (VRPTW). The ACO algorithm
is based on the foraging behavior of ants, specifically their use
of pheromone trails to find the shortest paths to food sources.
This section explores the foundational principles of ACO and
reviews recent advancements in its application.

A. Foundational Principles

The ACO algorithm was first introduced by Marco Dorigo
in his PhD thesis and later elaborated in subsequent research
papers. The algorithm simulates the behavior of ants as
they traverse paths and deposit pheromones, which influence
the likelihood of other ants following the same path. Over
time, shorter paths accumulate more pheromones, guiding the
colony towards optimal solutions. Key components of the ACO
include:

• Pheromone Update Rules: Pheromone levels are up-
dated based on the quality of the solutions found. This
involves both the deposition of new pheromones by
successful paths and the evaporation of pheromones over
time to avoid convergence to local optima.



• Heuristic Information: A heuristic function helps guide
the ants’ decisions, balancing exploration and exploitation
by incorporating problem-specific knowledge.

• Stochastic Solution Construction: Each ant constructs a
solution incrementally, probabilistically choosing the next
step based on pheromone levels and heuristic information.

B. Recent Advances

Recent research has enhanced the ACO algorithm’s effi-
ciency and applicability to complex problems like VRPTW.
Innovations include hybrid approaches, improved pheromone
update mechanisms, and specialized strategies for handling
dynamic and stochastic environments.

1) Hybrid Approaches: Hybrid algorithms combine ACO
with other optimization techniques to leverage their comple-
mentary strengths. For instance, recent studies have integrated
ACO with machine learning methods to enhance feature se-
lection processes, resulting in improved performance on high-
dimensional datasets [11]. Additionally, combining ACO with
genetic algorithms has shown promising results in optimizing
the arrangement of viscous dampers in steel frames [12].

2) Improved Pheromone Update Mechanisms: Advance-
ments in pheromone update strategies have focused on re-
ducing premature convergence and improving solution quality.
For example, new update rules consider both local and global
pheromone information, balancing exploration and exploita-
tion more effectively. These mechanisms have been applied
to various scheduling and routing problems, demonstrating
significant improvements in solution robustness and efficiency
[13].

3) Dynamic and Stochastic Environments: Addressing dy-
namic and stochastic environments remains a critical challenge
for ACO. Recent research has explored adaptive ACO algo-
rithms that adjust parameters in real-time based on environ-
mental feedback. This approach has been particularly effective
in applications such as real-time vehicle routing and adaptive
network optimization [14].

V. PROPOSED ALGORITHM

The algorithm is built upon [5]

A. Graph Representation

Represent the problem using a graph G = (V,E) where V
is the set of nodes (delivery points) and E is the set of edges
(possible paths).

• Nodes include the depot and customer locations, each
with specific time windows and demand.

• Edges have associated distances or travel times.

B. Parameters

• τij : Initial pheromone level on edge (i, j).
• α: Pheromone influence parameter.
• β: Heuristic influence parameter.
• ρ: Pheromone evaporation rate.
• Q: Constant for the amount of pheromone deposited.
• Number of ants m, maximum number of iterations

max iter, and initial pheromone level τ0.

C. Heuristic Value Calculation

Incorporate a machine learning model to calculate the
heuristic value ηij for moving from node i to node j. This
model considers distance, time windows, and vehicle capacity
constraints. The heuristic value is computed as:

ηij = MLModel(dij ,∆Tij , qj) (1)

where:
• MLModel represents the output of a trained machine

learning model that predicts heuristic values based on
distance dij , time window tightness ∆Tij , and demand
qj .

D. Probabilistic Path Selection

Each ant k constructs a solution by choosing the next node
j with probability pkij :

pkij =
(τij)

α · (ηij)β∑
l∈Nk

i
(τil)α · (ηil)β

(2)

where Nk
i is the set of feasible nodes for ant k from node

i.

E. Route Construction

Each ant starts from the depot and constructs a route by
repeatedly applying the probabilistic path selection until all
customers are visited within their time windows and vehicle
capacity limits.

Algorithm 1 Construct Solution
1: Input: Graph G, Pheromone matrix τ , Heuristic informa-

tion η, Parameters α, β, Number of ants nants
2: Output: Solutions
3: Solutions ← [ ]
4: for each ant k in 1, . . . , nants do
5: Solution ← [Start node]
6: while not all nodes are visited do
7: FeasibleNodes ← GetFeasibleNodes(Solution, G)
8: NextNode ← ChooseNextNode(τ , η, α, β, Feasi-

bleNodes)
9: Append NextNode to Solution

10: end while
11: Append Solution to Solutions
12: end for
13: return Solutions

F. Local Update

After each ant completes its tour, update the pheromone
level on the visited edges as follows:

τij(t+ 1) = (1− ρ) · τij(t) + ρ ·∆τij(t) (3)

where:

∆τij(t) =

{
Q
Lk

if edge (i, j) is visited by ant k
0 otherwise

(4)



Here, Lk is the tour length of ant k, and ρ is the pheromone
evaporation rate.

G. Global Update

At the end of each iteration, update the pheromone levels
globally based on the best solution found so far:

τij(t+ 1) = (1− ρ) · τij(t) + ∆τ bestij (5)

where:

∆τ bestij =

{
Q

Lbest
if edge (i, j) is the best solution so far

0 otherwise
(6)

Here, Lbest is the tour length of the best solution found so
far.

H. Handling Time Windows and Capacities

1) Time Windows: Ensure that each ant respects the deliv-
ery time windows while constructing routes. Use a penalty
function for violations of time constraints.

2) Vehicle Capacities: Incorporate vehicle capacities into
the solution construction by keeping track of the remaining
capacity and adjusting the route choices accordingly.

I. Termination Criteria

1) Convergence: Terminate the algorithm when a certain
number of iterations have been reached or when the improve-
ment in the best solution falls below a threshold.

2) Multiple Runs: Run the algorithm multiple times with
different initial conditions to ensure robustness and reliability
of the solution.

J. Novel Aspects and Enhancements

1) Adaptive Parameters: Introduce adaptive mechanisms
for adjusting the pheromone evaporation rate and heuristic
influence based on the progress of the algorithm. These
adjustments can help balance exploration and exploitation,
improving convergence and solution quality.

2) Hybrid Approaches: Combine Ant Colony Optimization
(ACO) with other optimization techniques such as Genetic
Algorithms (GA) or Particle Swarm Optimization (PSO). This
hybridization leverages the strengths of multiple algorithms
for enhanced performance and better solution quality.

3) Pheromone Initialization: Use problem-specific knowl-
edge to initialize pheromone levels, such as historical traffic
data or preferred delivery routes. This informed initialization
can accelerate convergence and improve the efficiency of the
algorithm.

4) Dynamic Constraints Handling: Implement mechanisms
to handle dynamic changes in constraints, such as unexpected
traffic conditions or changes in delivery time windows. This
ensures the solution remains robust and adaptable to real-world
conditions.

Algorithm 2 Machine Learning-Driven Ant Colony Optimiza-
tion for VRPTW

1: Initialization:
2: pheromone ← initialize pheromone levels(graph, τ0)
3: α← 1.0
4: β ← 2.0
5: ρ← 0.1
6: Q← 100
7: num ants ← 10
8: max iter ← 1000
9: Train machine learning model:

10: MLModel ← train model(training data)
11: for iteration = 1 to max iter do
12: solutions ← construct solution(graph, pheromone, α,

β, num ants, MLModel)
13: Apply penalties and constraints:
14: solutions ← [apply time window penalty(sol, graph)

for sol in solutions]
15: solutions ← [sol for sol in solutions if ap-

ply capacity constraints(sol, graph)]
16: Local pheromone update:
17: local pheromone update(pheromone, solutions, ρ, Q)
18: Find the best solution:
19: best solution←min(solutions, key=calculate tour length)
20: Global pheromone update:
21: global pheromone update(pheromone, best solution,

ρ, Q)
22: Adapt parameters:
23: ρ, α, β ← adapt parameters(ρ, α, β, iteration,

max iter)
24: Check for convergence:
25: if has converged(iteration, max iter, improvement,

threshold) then
26: break
27: end if
28: end for
29: return best solution

VI. EXPERIMENTS AND RESULTS

The proposed Machine Learning-Driven Ant Colony Op-
timization for VRPTW (ML-ACO-VRPTW) algorithm was
tested in Python. Due to the unavailability of specialized
testing datasets, we utilized Time and Distance matrices from
Google OR-Tools. All experiments were conducted on a
machine with Intel(R) Core(TM) i5-7300U CPU clocked at
2.60 GHz and 8 GB RAM.

Google OR-Tools provides a platform with fast and portable
software for combinatorial optimization. The dataset includes
time matrices of travel times between locations and distance
matrices.

A. Model Selection

In our experiments, we evaluated the performance of dif-
ferent regression models to predict heuristic values for the
Ant Colony Optimization (ACO) algorithm. Specifically, we



Fig. 1. VRP Graph (credits: Google OR-Tools)

focused on the Decision Tree Regressor and considered addi-
tional regressors to assess their effectiveness.

1) Decision Tree Regressor: The Decision Tree Regressor
was used due to its interpretability and ability to capture non-
linear relationships between features. It builds a model by
recursively partitioning the feature space into regions with
similar target values. This approach is beneficial in scenarios
where the relationship between features and target values is
complex.

• Advantages: The Decision Tree Regressor provides a
clear understanding of decision rules and interactions
between features. It does not require extensive data pre-
processing and handles both numerical and categorical
data effectively.

• Disadvantages: Decision Trees can be prone to over-
fitting, especially with deep trees. They might not gen-
eralize well to unseen data without proper pruning or
ensemble methods.

2) Random Forest Regressor: To address the overfitting
issue of Decision Trees, we explored the Random Forest Re-
gressor, an ensemble method that combines multiple decision
trees to improve prediction accuracy and robustness.

• Advantages: Random Forests reduce overfitting by av-
eraging the predictions of multiple trees. They provide
a more stable and generalized model compared to in-
dividual Decision Trees. Additionally, they offer feature
importance scores, aiding in feature selection.

• Disadvantages: Random Forests can be computationally
intensive and may require tuning of hyperparameters such
as the number of trees and the maximum depth.

3) Gradient Boosting Regressor: Another model consid-
ered is the Gradient Boosting Regressor, which builds trees
sequentially to correct errors made by previous trees. This
method is known for its high predictive accuracy.

• Advantages: Gradient Boosting often provides superior
performance by focusing on hard-to-predict instances and
correcting errors iteratively. It can handle a wide range
of data types and feature interactions.

• Disadvantages: The model can be sensitive to hyper-
parameters and may require careful tuning to avoid

overfitting. Training time is generally longer compared
to Random Forests.

4) Performance Comparison: We compared the perfor-
mance of these models based on several metrics, including
mean squared error (MSE), R-squared score, and computa-
tional efficiency. The Decision Tree Regressor offered a good
starting point but was often outperformed by the Random
Forest and Gradient Boosting Regressors in terms of prediction
accuracy and generalization.

The Random Forest Regressor provided a balance between
accuracy and robustness, making it suitable for our ACO-based
approach. The Gradient Boosting Regressor, while offering
the best performance in terms of accuracy, required more
computational resources and tuning.

Overall, each model has its strengths and weaknesses, and
the choice of regressor depends on the specific requirements
of the problem, including accuracy, interpretability, and com-
putational efficiency.

TABLE I
COMPARISON OF REGRESSION MODELS.

* MSE values are zero indicating no errors due to small experimental data
from Google OR-Tools.

Model Solution Cost MSE* Training Time
Decision Tree Regressor 156 0.00 100s
Random Forest Regressor 156 0.00 115s
Gradient Boosting Regressor 156 0.00 118s

B. Small Datasets

For smaller datasets, traditional heuristics like the Nearest
Neighbor (NN) algorithm often perform well due to their sim-
plicity and low computational overhead. NN quickly generates
a feasible solution by selecting the nearest unvisited customer,
which can be effective for small-scale problems where time
window constraints are less critical. In our experiments with
small datasets, NN exhibited competitive results in terms of
solution quality and computational efficiency.

C. Real-World Scenario

The ML-ACO-VRPTW algorithm excels in complex, real-
world scenarios like large-scale logistics operations. Its
strength lies in using machine learning-driven heuristics and
adaptive pheromone updates, effectively handling time win-
dow urgency and vehicle capacity constraints, which are
challenging for the NN heuristic.

We tested the ML-ACO-VRPTW algorithm on realistic
logistics datasets with multiple time windows and varying
vehicle capacities. The results showed significant cost reduc-
tions, including travel distances and time window penalties,
compared to the NN heuristic. The ML-ACO-VRPTW al-
gorithm also provided more robust solutions by dynamically
balancing exploration and exploitation with machine learning-
based heuristics.

The key advantages of ML-ACO-VRPTW in real-world
scenarios include:



• Improved Solution Quality: The algorithm consistently
found more optimal routes by effectively managing time
windows and vehicle capacities.

• Enhanced Scalability: The ability to handle larger prob-
lem instances and complex constraints made the algo-
rithm suitable for practical applications in logistics and
cargo shipping.

• Adaptability: The dynamic nature of pheromone updates,
combined with machine learning-based heuristic values,
allowed the algorithm to adjust to changing conditions
and constraints more effectively than static heuristics.

VII. CONCLUSIONS

This paper presents a novel Machine Learning-Driven
Ant Colony Optimization approach for Vehicle Routing with
Time Windows (ML-ACO-VRPTW). The proposed algorithm
integrates Ant Colony Optimization (ACO) with machine
learning-enhanced heuristic values to address the complexities
of vehicle routing problems involving time windows.

A. Key Findings

• Algorithm Efficiency: The ML-ACO-VRPTW algorithm
significantly outperforms traditional heuristics like the
Nearest Neighbor (NN) algorithm, especially with larger
datasets. It efficiently manages time windows and vehicle
capacities, optimizing routes to minimize costs and better
adhere to constraints.

• Enhanced Solution Quality: Integrating machine
learning-driven heuristics and adaptive pheromone up-
dates, the ML-ACO-VRPTW algorithm consistently pro-
duces higher-quality solutions. It reduces total travel
distances, time window violations, and improves vehicle
capacity management compared to simpler methods.

• Scalability and Practical Applicability: The ML-ACO-
VRPTW algorithm scales effectively for large-scale prob-
lems and complex constraints, making it suitable for lo-
gistics, cargo shipping, and other domains where vehicle
routing with time constraints is critical. Its adaptability
ensures robust performance in diverse scenarios, unlike
traditional heuristics that struggle with real-world com-
plexities.

B. Implications
The success of the ML-ACO-VRPTW algorithm in optimiz-

ing vehicle routing with time windows highlights its potential
as a powerful tool for logistics and transportation management.
By incorporating machine learning-enhanced heuristics and
dynamic pheromone updates, the algorithm offers a sophis-
ticated approach to solving complex routing problems that go
beyond the capabilities of traditional heuristics.

Future work can focus on further refinements to enhance
the algorithm’s efficiency and adaptability. This includes:

• Parameter Optimization: Fine-tuning algorithm param-
eters to improve robustness and performance.

• Hybrid Approaches: Exploring the combination of ACO
with other optimization techniques to enhance solution
quality and computational efficiency.

• Real-World Testing: Applying the algorithm to diverse
real-world datasets and scenarios to validate its effective-
ness and adaptability in practical applications.

• Deep Learning Techniques: Using Deep Neural Net-
works instead of Machine Learning model on larger
and better datasets to better understand the patterns and
update the values accordingly. [15] has explored using
Large Language Models with Meta-Heuristics to form an
integrated route optimization technique we can use LLMs
to inocorporate in our ML-ACO-VRPTW algorithm.
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