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Abstract 

This paper is devoted towards the Image Segmentation 

with the help of Watershed Algorithm. There are many 

algorithms which are out there but watershed performs way 

better than others and helps in forming the segments in an 

image. The watershed principle, called topological 

watershed, produces correct watershed contours for grey 

scale image. 
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1. Introduction 

In grey scale mathematical morphology, the watershed 

transforms, originally proposed by Digabel and 

Lantu´ejoul and later improved by Beucher and 

Lantu´ejoul, is the method of choice for image 

segmentation. watershed segmentation are techniques 

for creating meaningful clusters of pixels. Both start 

from “seed points” and through algorithmic means 

connect adjacent pixels to that seed. 

 

In the case of watershed segmentation, you start from 

the local maxima of the Euclidean distance map and 

expand under the constraint that you cannot merge 

features (i.e. connect two seeds two each other.). A 

more generic region growing algorithm may have 

different means for selection of seed points (leaf nodes 

on a skeleton, or a fiducial mark in the image) and a 

different means of expanding the region that could 

include statistical information from one or more 

greyscale channels. 

 

Which is better between them depends on two things - 

what you’re trying to segment and how much 

information is contained within your images. If, for 

example, you’re trying to segment cells in a histological 

specimen and you have good sample properties, 

watershed should work reasonably well for you. In 

general, watershed does ok with anything that is convex 

and regularly shaped, as most natural features whose 

shapes are given by surface energy minimization. If you 

have a more complex segmentation problem (neurons 

and plant roots come to mind) you may be better off 

with a region growing algorithm that can manage that 

complexity. The trade-off is that while region growing 

can be more generally applicable, it’s harder to 

implement and easier to get wrong. 

  

 
      Fig 1: An example of a simple image with its watershed 

transform. 

 

It depends on the object or objects you want to 

segment on a given background 

➔ They are not designed for textured objects. 

➔ For one or few objects, region growing would be 

more appropriate, since an initial region within the 

image should be provided. 

➔ For many objects, the previous time consuming, so 

watershed should be more plausible. 

 

1.1 Intuitive Notions for Watershed  
The intuitive idea underlying the watershed notion 

comes from the field of topography: a drop of water 

falling on a relief follows a descending path and 

eventually reaches a minimum. Watershed lines are the 

divide lines of the domains of attraction of drops of 

water. This intuitive approach is not well suited to 

practical implementations, and can yield biased results 

in some cases. An alternative approach is to imagine the 

surface being immersed in a lake, with holes pierced in 

local minima. Water will fill up basins starting at these 

local minima, and, at points where waters coming from 

different basins would meet, dams are built. As a result, 



 

the surface is partitioned into regions or basins 

separated by dams, called watershed lines. 

 

1.2 Meyer’s Watershed Algorithm  
Starting from a greys scale image F and a set M of 

markers with different labels (in our case, these will be 

the minima of F), it expands as much as possible the set 

M, while preserving the number of connected 

components of M: 

1. insert every neighbour x of every marked area in a 

hierarchical queue, with a priority level corresponding to 

the grey level F(x). Note that a point cannot be inserted 

twice in the queue;  

2. extract a point x from the hierarchical queue, at the 

highest priority level, that is, the lowest grey level. If the 

neighbourhood Γ(x) of x contains only points with the 

same label, then x is marked with this label, and its 

neighbours that are not yet marked are put into the 

hierarchical queue; 

Step 2 must be repeated until the hierarchical queue is 

empty. The watershed lines set is the complement of 

the set of labeled points. Let us note that this algorithm 

does neither label nor propagate watershed pixels, 

which “stop” the flooding. Thus, the watershed lines 

produced by Meyer’s algorithm are always thinner than 

lines produced by other watershed algorithms. 

 

Block Diagram of Watershed Based Segmentation  

 

There are mainly three stages as indicated by figure 2 for 

watershed-based image segmentation approach. First 

stage is defined as pre-processing, second stage as 

watershed-based image segmentation and last stage as 

post-processing. Input image is first processed by the 

pre-processing stage, and then given to watershed-

based segmentation stage. The resulting image is post 

processed by the final stage to get a segmented image. 

Pre-processing and post-processing are necessary to 

overcome the problem of over-segmentation in 

watershed-based image segmentation. 

 
Figure 2: Block diagram of watershed-based image 

segmentation 

 

Merging Basins  
The decomposition of an image into regions is the basis 

for merging them. In the metaphorical sense of a 

landscape, catchment basins are merged at their 

watershed locations by flooding them. While some 

regions merge early (with low flooding level), other 

regions are merged later (see Fig: 3). In order to support 

interactive merging, Hahn and Peitgen [2003] 

introduced a merge tree. This tree consists of the 

original catchment basins as leafs and of intermediate 

nodes that represent merging events. A merging event is 

characterized by the nodes that are merged and by the 

flood level that is necessary for merging. As a first step, 

a certain amount of flooding may be applied (“pre-

flooding” which may already be sufficient for 

segmenting the target structure [Hahn and Peitgen, 

2000]). 

 

 
 

              Fig: 3 

 

Region Based Image Segmentation  

• Region based segmentation is a technique for 

determining the region directly. 

• Region growing is a simple region-based image 

segmentation method. It is also classified as a 

pixel-based image segmentation method since 

it involves the selection of initial seed points. 

 

➔ Region growing 

➔ Region Splitting 



 

➔ Region Merging 

➔ Split and Merge 

 

Region growing 

• Region growing is a procedure that groups 

pixels or sub regions into larger regions. 

• The simplest of these approaches is pixel 

aggregation which starts with a set of seed 

points and from these grows regions by 

appending to each seed points those 

neighbouring pixels that have similar 

properties (such as gray level, texture, 

colour, shape). 

• Region growing based techniques are 

better than the edge-based techniques in 

noisy images where edges are difficult to 

detect. 

 

 
    Fig: 4 

  Region Splitting 

• Region growing start from a set of seed 

points. 

• An alternative is to start with the whole 

image as a single region and subdivide the 

regions that do not satisfy a condition of 

homogeneity. 

Region Merging  

• Region Merging is the opposite of Region 

Splitting. 

• Start with small regions (eg.2*2 or 4*4 

regions) and merge the regions that have  

  Fig:5 

• similar characteristics (such as gray level, 

variance). 

• Typically, splitting and merging approaches 

are used iteratively. 

      Split and Merge 

• Splitting and Merging proceed 

simultaneously step by step. 

        

 

5. The pseudo-code of the Algorithm 

1: Input : f , Output : l 

2: v[p] ← 0, l[p] ← 0, New label ← 0, Scan Step2 ← 1, Scan 

Step3 ← 1 // Initialization 

3: Scan from top left to bottom right : step1(p) 

4: while Scan Step2 = 1 do 

5: Scan image from top left to bottom right : step2(p) 

6: if v[p] is not changed then 

7: Scan Step2 ← 0 

8: else 

9: Scan image from bottom right to top left : step2(p) 

10: if v[p] is not changed then 

11: Scan Step2 ← 0 

12: end if 

13: end if 

14: end while 

15: while Scan Step3 = 1 do 

16: Scan image from top left to bottom right : step3(p) 

17: if l[p] is not changed then 

18: Scan Step3 ← 0 

19: else 

20: Scan image from bottom right to top left : step3(p) 

21: if l[p] is not changed then 

22: Scan Step3 ← 0 

23: end if 

24: end if 

25: end while 

26: function step1(p) 

27: if v[p] 6= 1 then 



 

28: for each n of p // n is neighbour pixel of p 

29: if f[n] < f(p) then v[p] ← 1 

30: end if 

31: end if 

32: end function 

 

6. Time Complexity 

    In this paper, we have overviewed and measured the 

expended computational resources of the watershed 

segmentation algorithms. Despite the fact that most of 

them implement the same algorithms with O(n) time 

complexity relative to the number of image elements, 

empirical testing shows a large difference in execution time, 

since it also depends on many other factors, such as 

implementation language, applied software optimizations, 

etc. Furthermore, most libraries showed similar results in 

the peak memory consumption. We identified two libraries 

that showed the best results in our tests. Thus, for the best 

performance of the watershed segmentation, one should try 

different implementations from modern versions of libraries 

and choose the one that consumes the least computing 

resources, despite the fact that most of them contain 

implementations of the same algorithms. With this testing, 

one can already achieve a significant increase in 

performance. 

  

7. Application in Real World  

The watershed transform has been successfully applied 

to a variety of segmentation tasks. Hahn and Peitgen 

[2000] extracted the brain with a single watershed 
transform from MRI data. Its generally using finding 

tumors , veins, lung lobes in CT data, finding targets in 

satellite aerial images, finding peoples in surveillance 

images, summarizing thumb impression and videos 

many more. 
 

8. Conclusion 

As we know Image segmentation means division of an 
image into meaningful structures. It is process of 

extracting and representing information from the 
image to group pixels together with region of similarity 

in other words “to divide an image into parts that have 

a strong correlation with objects or areas of the real 
world contained in the image”. All the objects of the 

original image can be identified in segmented image 

with their boundaries. We have seen that there were 
several algorithms which works same as watershed 

algorithm and there are many variances in 

performance of other types of watershed algorithm 
but topological watershed is far better and efficient 

algorithm than others. These segmentation methods 

differ from their computation complexity and 
segmentation quality.  

Computational complexity is one of the important 

parameters to take into consideration when real time 

image segmentation is required. The best approach 

should be less computational complexity, less input 
parameter dependency, minimum segmentation time 

and provide efficient segmentation output for real 

time applications. 
Watershed based image segmentation algorithms are less 

computational complex and provide very good 

segmentation results. It is possible to implement in the 

hardware using pipelined or parallel architecture for real 

time applications because of the independent mathematical 

computations flow of the algorithms.[3] 
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APPENDIX 

Algorithm 1 The pseudo-code of the algorithm  

1: Input : f , Output : l  
2: v[p] ← 0, l[p] ← 0, New label ← 0, Scan Step2 ← 1, Scan Step 
3 ← 1 // Initialization 3: Scan from top left to bottom right : step1(p)  
4: while Scan Step2 = 1 do  
5: Scan image from top left to bottom right : step2(p)  
6: if v[p] is not changed then  
7: Scan Step2 ← 0  
8: else  
9: Scan image from bottom right to top left : step2(p)  
10: if v[p] is not changed then  
11: Scan Step2 ← 0  
12: end if  
13: end if  
14: end while  
15: while Scan Step3 = 1 do  
16: Scan image from top left to bottom right : step3(p)  
17: if l[p] is not changed then  
18: Scan Step3 ← 0  
19: else  
20: Scan image from bottom right to top left : step3(p)  
21: if l[p] is not changed then  
22: Scan Step3 ← 0  
23: end if  
24: end if  
25: end while  
26: function step1(p)  
27: if v[p] 6= 1 then  
28: for each n of p // n is neighbour pixel of p  
29: if f[n] < f(p) then v[p] ← 1  
30: end if  
31: end if  
32: end function 
33: function step2(p)  
34: if v[p]6= 1 then  
35: min ← VMAX, for each n of p // n is neighbour pixel of p  
36: if f(n) = f(p) and v[n] > 0 and v[n] < min then min ← v[n]  
37: end if  
38: if min 6= VMAX and v[p] 6= (min+1) then v[p] ← min+1  
39: end if  
40: end if  
41: end function  



 

42: function step3(p)  
43: lmin ← LMAX, fmin ← f(p)  
44: if v[p] = 0 then  
45: for each n of p  
46: if f(n) = f(p) and l[n] > 0 and l[n] < lmin then lmin ← l[n]  
47: end if  
48: if lmin = LMAX and l[p] = 0 then lmin ← New label + 1  
49: end if  
50: else if v[p] = 1 then  
51: for each n of p  
52: if f(n) < fmin then fmin ← f[n]  
53: end if  
54: for each n of p  
55: if f(n) = fmin and l[n] > 0 and l[n] < lmin then lmin ← l[n]  
56: end if  
57: else  
58: for each n of p  
59: if f(n) = f(p) and v[n] = v[p] − 1 and l[n] > 0 and l[n] < lmin then  
60: lmin ← l[n]  
61: end if  
62: end if  
63: if lmin 6= LMAX and l(n) 6= lmin then l[p] ← lmin  
64: end if  
65: end function 

 
 

Implementation in python 
 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import ndimage as ndi 

 

from skimage.segmentation import watershed 

from skimage.feature import peak_local_max 

 

 

# Generate an initial image with two overlapping circles 

x, y = np.indices((80, 80)) 

x1, y1, x2, y2 = 28, 28, 44, 52 



 

r1, r2 = 16, 20 

mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2 

mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2 

image = np.logical_or(mask_circle1, mask_circle2) 

 

# Now we want to separate the two objects in image 

# Generate the markers as local maxima of the distance to the background 

distance = ndi.distance_transform_edt(image) 

local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3

)), 

                            labels=image) 

markers = ndi.label(local_maxi)[0] 

labels = watershed(-distance, markers, mask=image) 

 

fig, axes = plt.subplots(ncols=3, figsize=(9, 3), sharex=True, sharey=True) 

ax = axes.ravel() 

 

ax[0].imshow(image, cmap=plt.cm.gray) 

ax[0].set_title('Overlapping objects') 

ax[1].imshow(-distance, cmap=plt.cm.gray) 

ax[1].set_title('Distances') 

ax[2].imshow(labels, cmap=plt.cm.nipy_spectral) 

ax[2].set_title('Separated objects') 

 

for a in ax: 

    a.set_axis_off() 

 

fig.tight_layout() 

plt.show() 


