
EasyChair Preprint
№ 4337

Image Segmentation Morphology

Arun Kumar and Pankaj Kumar Saini

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 10, 2020

IMAGE SEGMENTATION MORPHOLOGY

 Arun Kumar and Pankaj Kumar Saini

 Mit2020116@iiita.ac.in Mit2020117@iiita.ac.in

Indian Institute of Information Technology, Allahabad

Abstract

This paper is devoted towards the Image Segmentation

with the help of Watershed Algorithm. There are many

algorithms which are out there but watershed performs way

better than others and helps in forming the segments in an

image. The watershed principle, called topological

watershed, produces correct watershed contours for grey

scale image.

Keyword: - watershed segmentation; flooding; rain

falling; computational complexity; Region growing; Region

Splitting; Region Merging.

1. Introduction

In grey scale mathematical morphology, the watershed

transforms, originally proposed by Digabel and

Lantu´ejoul and later improved by Beucher and

Lantu´ejoul, is the method of choice for image

segmentation. watershed segmentation are techniques

for creating meaningful clusters of pixels. Both start

from “seed points” and through algorithmic means

connect adjacent pixels to that seed.

In the case of watershed segmentation, you start from

the local maxima of the Euclidean distance map and

expand under the constraint that you cannot merge

features (i.e. connect two seeds two each other.). A

more generic region growing algorithm may have

different means for selection of seed points (leaf nodes

on a skeleton, or a fiducial mark in the image) and a

different means of expanding the region that could

include statistical information from one or more

greyscale channels.

Which is better between them depends on two things -

what you’re trying to segment and how much

information is contained within your images. If, for

example, you’re trying to segment cells in a histological

specimen and you have good sample properties,

watershed should work reasonably well for you. In

general, watershed does ok with anything that is convex

and regularly shaped, as most natural features whose

shapes are given by surface energy minimization. If you

have a more complex segmentation problem (neurons

and plant roots come to mind) you may be better off

with a region growing algorithm that can manage that

complexity. The trade-off is that while region growing

can be more generally applicable, it’s harder to

implement and easier to get wrong.

 Fig 1: An example of a simple image with its watershed

transform.

It depends on the object or objects you want to

segment on a given background

➔ They are not designed for textured objects.

➔ For one or few objects, region growing would be

more appropriate, since an initial region within the

image should be provided.

➔ For many objects, the previous time consuming, so

watershed should be more plausible.

1.1 Intuitive Notions for Watershed
The intuitive idea underlying the watershed notion

comes from the field of topography: a drop of water

falling on a relief follows a descending path and

eventually reaches a minimum. Watershed lines are the

divide lines of the domains of attraction of drops of

water. This intuitive approach is not well suited to

practical implementations, and can yield biased results

in some cases. An alternative approach is to imagine the

surface being immersed in a lake, with holes pierced in

local minima. Water will fill up basins starting at these

local minima, and, at points where waters coming from

different basins would meet, dams are built. As a result,

the surface is partitioned into regions or basins

separated by dams, called watershed lines.

1.2 Meyer’s Watershed Algorithm
Starting from a greys scale image F and a set M of

markers with different labels (in our case, these will be

the minima of F), it expands as much as possible the set

M, while preserving the number of connected

components of M:

1. insert every neighbour x of every marked area in a

hierarchical queue, with a priority level corresponding to

the grey level F(x). Note that a point cannot be inserted

twice in the queue;

2. extract a point x from the hierarchical queue, at the

highest priority level, that is, the lowest grey level. If the

neighbourhood Γ(x) of x contains only points with the

same label, then x is marked with this label, and its

neighbours that are not yet marked are put into the

hierarchical queue;

Step 2 must be repeated until the hierarchical queue is

empty. The watershed lines set is the complement of

the set of labeled points. Let us note that this algorithm

does neither label nor propagate watershed pixels,

which “stop” the flooding. Thus, the watershed lines

produced by Meyer’s algorithm are always thinner than

lines produced by other watershed algorithms.

Block Diagram of Watershed Based Segmentation

There are mainly three stages as indicated by figure 2 for

watershed-based image segmentation approach. First

stage is defined as pre-processing, second stage as

watershed-based image segmentation and last stage as

post-processing. Input image is first processed by the

pre-processing stage, and then given to watershed-

based segmentation stage. The resulting image is post

processed by the final stage to get a segmented image.

Pre-processing and post-processing are necessary to

overcome the problem of over-segmentation in

watershed-based image segmentation.

Figure 2: Block diagram of watershed-based image

segmentation

Merging Basins
The decomposition of an image into regions is the basis

for merging them. In the metaphorical sense of a

landscape, catchment basins are merged at their

watershed locations by flooding them. While some

regions merge early (with low flooding level), other

regions are merged later (see Fig: 3). In order to support

interactive merging, Hahn and Peitgen [2003]

introduced a merge tree. This tree consists of the

original catchment basins as leafs and of intermediate

nodes that represent merging events. A merging event is

characterized by the nodes that are merged and by the

flood level that is necessary for merging. As a first step,

a certain amount of flooding may be applied (“pre-

flooding” which may already be sufficient for

segmenting the target structure [Hahn and Peitgen,

2000]).

 Fig: 3

Region Based Image Segmentation

• Region based segmentation is a technique for

determining the region directly.

• Region growing is a simple region-based image

segmentation method. It is also classified as a

pixel-based image segmentation method since

it involves the selection of initial seed points.

➔ Region growing

➔ Region Splitting

➔ Region Merging

➔ Split and Merge

Region growing

• Region growing is a procedure that groups

pixels or sub regions into larger regions.

• The simplest of these approaches is pixel

aggregation which starts with a set of seed

points and from these grows regions by

appending to each seed points those

neighbouring pixels that have similar

properties (such as gray level, texture,

colour, shape).

• Region growing based techniques are

better than the edge-based techniques in

noisy images where edges are difficult to

detect.

 Fig: 4

 Region Splitting

• Region growing start from a set of seed

points.

• An alternative is to start with the whole

image as a single region and subdivide the

regions that do not satisfy a condition of

homogeneity.

Region Merging

• Region Merging is the opposite of Region

Splitting.

• Start with small regions (eg.2*2 or 4*4

regions) and merge the regions that have

 Fig:5

• similar characteristics (such as gray level,

variance).

• Typically, splitting and merging approaches

are used iteratively.

 Split and Merge

• Splitting and Merging proceed

simultaneously step by step.

5. The pseudo-code of the Algorithm

1: Input : f , Output : l

2: v[p] ← 0, l[p] ← 0, New label ← 0, Scan Step2 ← 1, Scan

Step3 ← 1 // Initialization

3: Scan from top left to bottom right : step1(p)

4: while Scan Step2 = 1 do

5: Scan image from top left to bottom right : step2(p)

6: if v[p] is not changed then

7: Scan Step2 ← 0

8: else

9: Scan image from bottom right to top left : step2(p)

10: if v[p] is not changed then

11: Scan Step2 ← 0

12: end if

13: end if

14: end while

15: while Scan Step3 = 1 do

16: Scan image from top left to bottom right : step3(p)

17: if l[p] is not changed then

18: Scan Step3 ← 0

19: else

20: Scan image from bottom right to top left : step3(p)

21: if l[p] is not changed then

22: Scan Step3 ← 0

23: end if

24: end if

25: end while

26: function step1(p)

27: if v[p] 6= 1 then

28: for each n of p // n is neighbour pixel of p

29: if f[n] < f(p) then v[p] ← 1

30: end if

31: end if

32: end function

6. Time Complexity

 In this paper, we have overviewed and measured the

expended computational resources of the watershed

segmentation algorithms. Despite the fact that most of

them implement the same algorithms with O(n) time

complexity relative to the number of image elements,

empirical testing shows a large difference in execution time,

since it also depends on many other factors, such as

implementation language, applied software optimizations,

etc. Furthermore, most libraries showed similar results in

the peak memory consumption. We identified two libraries

that showed the best results in our tests. Thus, for the best

performance of the watershed segmentation, one should try

different implementations from modern versions of libraries

and choose the one that consumes the least computing

resources, despite the fact that most of them contain

implementations of the same algorithms. With this testing,

one can already achieve a significant increase in

performance.

7. Application in Real World

The watershed transform has been successfully applied

to a variety of segmentation tasks. Hahn and Peitgen

[2000] extracted the brain with a single watershed
transform from MRI data. Its generally using finding

tumors , veins, lung lobes in CT data, finding targets in

satellite aerial images, finding peoples in surveillance

images, summarizing thumb impression and videos

many more.

8. Conclusion

As we know Image segmentation means division of an
image into meaningful structures. It is process of

extracting and representing information from the
image to group pixels together with region of similarity

in other words “to divide an image into parts that have

a strong correlation with objects or areas of the real
world contained in the image”. All the objects of the

original image can be identified in segmented image

with their boundaries. We have seen that there were
several algorithms which works same as watershed

algorithm and there are many variances in

performance of other types of watershed algorithm
but topological watershed is far better and efficient

algorithm than others. These segmentation methods

differ from their computation complexity and
segmentation quality.

Computational complexity is one of the important

parameters to take into consideration when real time

image segmentation is required. The best approach

should be less computational complexity, less input
parameter dependency, minimum segmentation time

and provide efficient segmentation output for real

time applications.
Watershed based image segmentation algorithms are less

computational complex and provide very good

segmentation results. It is possible to implement in the

hardware using pipelined or parallel architecture for real

time applications because of the independent mathematical

computations flow of the algorithms.[3]

9. References

[1]https://scikit-

image.org/docs/dev/auto_examples/segmentation/plo

t_watershed.html#:~:text=The%20watershed%20is%2

0a%20classical,a%20local%20topography%20(elevatio

n).

[2]

https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_img

proc/py_watershed/py_watershed.html.
[3]. Institute of Parallel and Distributed Systems Department

of Parallel Systems Universit¨atsstraße 38 D–70569 Stuttgart
[4] https://youtu.be/mPJTOcEJOhY

[5] https://youtu.be/SifvvNVpMKM

[6] National Research Nuclear University MEPhI,
Kashirskoye sh. 31, 115409 Moscow, Russia;

ilia.safonov@gmail.com

[7] Laurent Najman and Michel Couprie

Laboratoire A2SI, Groupe ESIEE

Cit´e Descartes, BP99

93162 Noisy-le-Grand Cedex France

{l.najman,m.couprie}@esiee.fr

http://www.esiee.fr/˜coupriem/Sdi/

https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html#:~:text=The%20watershed%20is%20a%20classical,a%20local%20topography%20(elevation)
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html#:~:text=The%20watershed%20is%20a%20classical,a%20local%20topography%20(elevation)
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html#:~:text=The%20watershed%20is%20a%20classical,a%20local%20topography%20(elevation)
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html#:~:text=The%20watershed%20is%20a%20classical,a%20local%20topography%20(elevation)
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html#:~:text=The%20watershed%20is%20a%20classical,a%20local%20topography%20(elevation)
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html
https://youtu.be/mPJTOcEJOhY
https://youtu.be/SifvvNVpMKM
mailto:ilia.safonov@gmail.com

APPENDIX

Algorithm 1 The pseudo-code of the algorithm

1: Input : f , Output : l
2: v[p] ← 0, l[p] ← 0, New label ← 0, Scan Step2 ← 1, Scan Step
3 ← 1 // Initialization 3: Scan from top left to bottom right : step1(p)
4: while Scan Step2 = 1 do
5: Scan image from top left to bottom right : step2(p)
6: if v[p] is not changed then
7: Scan Step2 ← 0
8: else
9: Scan image from bottom right to top left : step2(p)
10: if v[p] is not changed then
11: Scan Step2 ← 0
12: end if
13: end if
14: end while
15: while Scan Step3 = 1 do
16: Scan image from top left to bottom right : step3(p)
17: if l[p] is not changed then
18: Scan Step3 ← 0
19: else
20: Scan image from bottom right to top left : step3(p)
21: if l[p] is not changed then
22: Scan Step3 ← 0
23: end if
24: end if
25: end while
26: function step1(p)
27: if v[p] 6= 1 then
28: for each n of p // n is neighbour pixel of p
29: if f[n] < f(p) then v[p] ← 1
30: end if
31: end if
32: end function
33: function step2(p)
34: if v[p]6= 1 then
35: min ← VMAX, for each n of p // n is neighbour pixel of p
36: if f(n) = f(p) and v[n] > 0 and v[n] < min then min ← v[n]
37: end if
38: if min 6= VMAX and v[p] 6= (min+1) then v[p] ← min+1
39: end if
40: end if
41: end function

42: function step3(p)
43: lmin ← LMAX, fmin ← f(p)
44: if v[p] = 0 then
45: for each n of p
46: if f(n) = f(p) and l[n] > 0 and l[n] < lmin then lmin ← l[n]
47: end if
48: if lmin = LMAX and l[p] = 0 then lmin ← New label + 1
49: end if
50: else if v[p] = 1 then
51: for each n of p
52: if f(n) < fmin then fmin ← f[n]
53: end if
54: for each n of p
55: if f(n) = fmin and l[n] > 0 and l[n] < lmin then lmin ← l[n]
56: end if
57: else
58: for each n of p
59: if f(n) = f(p) and v[n] = v[p] − 1 and l[n] > 0 and l[n] < lmin then
60: lmin ← l[n]
61: end if
62: end if
63: if lmin 6= LMAX and l(n) 6= lmin then l[p] ← lmin
64: end if
65: end function

Implementation in python

import numpy as np

import matplotlib.pyplot as plt

from scipy import ndimage as ndi

from skimage.segmentation import watershed

from skimage.feature import peak_local_max

Generate an initial image with two overlapping circles

x, y = np.indices((80, 80))

x1, y1, x2, y2 = 28, 28, 44, 52

r1, r2 = 16, 20

mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2

mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2

image = np.logical_or(mask_circle1, mask_circle2)

Now we want to separate the two objects in image

Generate the markers as local maxima of the distance to the background

distance = ndi.distance_transform_edt(image)

local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3

)),

 labels=image)

markers = ndi.label(local_maxi)[0]

labels = watershed(-distance, markers, mask=image)

fig, axes = plt.subplots(ncols=3, figsize=(9, 3), sharex=True, sharey=True)

ax = axes.ravel()

ax[0].imshow(image, cmap=plt.cm.gray)

ax[0].set_title('Overlapping objects')

ax[1].imshow(-distance, cmap=plt.cm.gray)

ax[1].set_title('Distances')

ax[2].imshow(labels, cmap=plt.cm.nipy_spectral)

ax[2].set_title('Separated objects')

for a in ax:

 a.set_axis_off()

fig.tight_layout()

plt.show()

