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Abstract. Compared to traditional person re-identification, which only
handles the intra-modality discrepancy, the Visible-Infrared Person Re-
identification (VI-ReID) suffers from additional cross-modality discrep-
ancy caused by the cross-domain inherent heterogeneity. However, most
existing VI-ReID methods ignore the corresponding relationships of in-
trinsic property knowledge inside cross-modality. Inspired by the human
brain’s cognitive process of knowledge, in this paper, a novel Knowledge-
driven Enhance Module (KDEM) method is designed to imitate the
cognitive process of the human brain to achieve the effective matching
of cross modalities. Our proposed KDEM aims to discover and inte-
grate the significant semantic pattern from cross-modality representa-
tions into a new knowledge-enhanced modality and further enhance
the matching accuracy of cross modalities. Meanwhile, a diversity loss
is designed to exclude redundant knowledge and preserve the variety
of semantic knowledge in the integrated knowledge-enhanced modality.
Moreover, a consistency loss is designed to preserve the semantic cor-
relation between the integrated knowledge-enhanced modality and the
other two modalities. The evaluation results on two popular benchmark
datasets demonstrated the effectiveness of the proposed KDEM, and it
obtained competitive performance compared to state-of-the-art meth-
ods on the VI-ReID task. The source code of our KDEM is released at
https://github.com/SWU-CS-MediaLab/KDEM.

Keywords: Cross-modality Retrieval · Person Re-identification · Deep
Neural Network

1 Introduction

Person re-identification (Re-ID), which aims at associating the same pedestrian
images across disjoint camera views, has attracted increasing attention from
the computer vision community [22,20,13]. With the high semantic abstraction
capability of deep convolutional neural networks (CNNs) [8], the recent CNNs
based Re-ID methods have obtained encouraging performance in the visible
spectrum images. However, the visible cameras capture the visible spectrum
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images, which cannot provide sufficient discriminate information in the dark
environment. Generally, the surveillance system will automatically be converted
to infrared modal under poor lighting or dark conditions in real-life applications.
Thus, the cross-modal matching task of Visible-Infrared Person Re-identification
(VI-ReID) is proposed to match any one modality data with the corresponding
person’s another modality data [24]. Specifically, in the task of VI-ReID, since
the images are captured by different wavelength ranges of visible and infrared
cameras, as shown in Fig.1, the intra-modality variance involved in single-modality
Re-ID and the cross-modal discrepancies resulting from the natural difference
between the reflectivity of the visible modality and the emissivity of the infrared
modality, both increase the challenge for VI-ReID task. In summary, the most
challenging issue in VI-ReID is how to learn high discriminative features to reduce
the intra-domain and cross-domain discrepancy between the infrared and visible
for effective cross-modality matching.

(a) SYSU-MM01 (b) RegDB

Fig. 1. Difference between the visible modality and infrared modality, and images in
each column are from the same identity. (a) examples from the SYSU-MM01 dataset.
(b) examples from the RegDB dataset.

Common representation space learning and metric learning are usually used
to overcome the cross-modal discrepancy [19,11]. The existing methods based on
common representation space learning mainly focus on how to design a reasonable
deep network architecture for extracting robust and discriminative features shared
by cross modalities, minimizing the semantic gap between different modalities,
and effectively comparing their semantic similarity. The methods based on metric
learning aim to design a reasonable metric or loss function to effectively preserve
the semantic similarity of different modalities during the deep network training
and the loss function optimization. However, an insurmountable gap between
visible and infrared modalities makes preserving the semantic similarity of different
modalities exceedingly tricky.

Generally, most existing VI-ReID methods ignore the corresponding relation-
ships of intrinsic property knowledge inside different modality data. From the
perspective of neuroscience, the human brain’s cognitive process of knowledge
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discovering and matching is firstly to parse the perceived raw multi-modality data.
Then the specific expression pattern inside each modality data will be generated,
and the high-level semantic knowledge will be abstracted for each specific expres-
sion pattern. The matching process will be completed by comparing the significant
or noticeable semantic information in the high-level semantic knowledge. Inspired
by this, in this paper, a novel Knowledge-driven Enhance Module (KDEM) is
proposed, which is designed to imitate the cognitive process of the human brain,
to achieve the effective matching of cross modalities. Specifically, the backbone
deep neural network is first used to extract specific feature representations for
visible and infrared modalities. The modality-specific feature representations of
the visible and infrared modalities are then taken as the inputs of the KDEM.
In the proposed KDEM, the high-level semantic knowledge representations will
be generated by the followed several convolution operations. Meanwhile, the
function of modality influence factors is designed in the KDEM to determine the
high discriminative semantic information in the high-level semantic knowledge
representations. The high discriminative semantic information extracted from
each modality is further integrated as a new modality (knowledge-enhanced
modality) to supervise common representation space learning. Thus, the gen-
erated knowledge-enhanced modality could learn the significant or noticeable
semantic knowledge of both the positive and negative pair-wise samples from
intra-modality and cross-modality, effectively reducing the semantic gap between
the visible and infrared modalities.

Additionally, in the KDEM, a novel diversity loss is designed to make the
generated knowledge-enhanced modality exclude redundant knowledge as much as
possible and preserve the variety of semantic knowledge as much as possible. The
diversity loss is designed by maximizing the standard deviation of the modality
influence factors to enforce the KDEM better accumulate the diverse knowledge
of visible and infrared modalities. Moreover, the consistency loss is designed to
preserve the semantic correlation of the knowledge-enhanced modality similar to
visible and infrared modalities. Benefiting from imitating the cognitive process
of the human brain, the proposed KDEM, the designed diversity loss, and the
proposed consistency loss could effectively discover and integrate a variety of
high distinguish semantic knowledge with the consist of preserving the semantic
correlation among different modalities. The main contributions of this paper are
summarized as follows:

Firstly, a Knowledge-driven Enhance Module (KDEM) is proposed to imitate
the cognitive process of the human brain. It could discover and integrate the
significant semantic pattern from cross-modality data into a new knowledge-
enhanced modality to supervise the learning of robust common representation
space.

Secondly, the designed diversity loss could effectively exclude redundant
knowledge and preserve the variety of semantic knowledge in the integrated
knowledge-enhanced modality. Meanwhile, the consistency loss could also preserve
the semantic correlation between the knowledge-enhanced modality and the visible
and infrared modalities.
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Thirdly, the evaluation results on two popular VI-ReID datasets show the
effectiveness of our proposed KDEM. Meanwhile, compared with the existing
state-of-the-art baseline, our KDEM achieves better gain in terms of Rank-k
accuracy and mAP.

2 Related Work

Given an image of a specific query person in one modality, i.e., a visible image
or an infrared image, VI-ReID is a person re-identification task whose goal is to
retrieve the query image’s counterpart from a gallery set of another modality
[23]. The wavelength difference between visible and infrared lights results in a
semantic gap in the cross-modality [16]. Thus, extracting cross-modal invariant
discriminative knowledge in an advisable way contributes significantly to the
task of VI-ReID. Most of the existing VI-ReID methods can be generally divided
into two categories. The first category focuses on learning the modality-shared
feature representations and aggregating the specific visible and infrared feature
representations for better performance. For example, Wu et al.[19] proposed a
deep zero-padding network learning feature in a common space and constructed
the first large-scale visible-infrared dataset named SYSU-MM01. Ye et al.[24]
proposed a dual-path network and a bi-directional dual-constrained top-ranking
loss. Moreover, this network was introduced to learn modality alignment feature
representations. Park et al.[11] use dense alignment to gain modality-shared
discriminating local features. The secondary category methods mainly compensate
for the lack of each modality’s information, such as GAN-based approaches. Wang
et al.[15] leverage GANs to transfer stylistic properties of infrared images to their
visible counterparts. In essence, the methods mentioned above aim to overcome
the semantic gap and improve the robustness of the model.

3 Proposed Method

3.1 Overview

A dual-path deep neural network is designed for the VI-ReID, which learns the
modality-specific feature representations and optimizes similarity metrics in an
end-to-end manner [23]. The detailed architecture of our proposed method is
shown in Fig.2, which includes a feature extractor f(·), a classifier c(·), and the
knowledge-enhanced modality generator by the designed KDEM. The ResNet-50
[8] is utilized as the backbone for feature extracting, which includes a total of
five stages of ResNet-50. The KDEM is designed to discover high discriminative
semantic patterns from modality-specific feature representations, and integrate
them into a new knowledge-enhanced modality to supervise the network opti-
mization. The KDEM, as shown in Fig.2(b), is plugged after stage-0 of ResNet-50.
Moreover, in order to avoid modeling unknown redundant knowledge and preserve
the variety of semantic knowledge during the knowledge accumulation process,
meanwhile, to preserve the semantic correlation among different modalities, a
diversity loss and a consistency loss are designed and detail is shown in Fig.2(c).
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Fig. 2. (a) Illustration of our method. The visible and infrared modality features are
mixed with KDEM to compose the feature of the knowledge-enhanced modality. The
shared identity loss and WRT loss are enforced to help the model converge. (b) The
concrete structure of KDEM. (c) The consistency loss is targeted at preserving the
semantic correlation of the knowledge-enhanced modality which is similar to visible and
infrared modalities. The circles and triangles represent the characteristic distribution of
visible modality and infrared modality, respectively.

3.2 Feature extractor

The modality-specific features of the data samples are extracted through the
stage-0 of the network, in which the weights are not shared. Moreover, the
modality-shared features of the three modalities are extracted by the remaining
stages of the weights-sharing network. In the architecture, the data samples of
n visible and n infrared of the same identity are combined into n pairs in a
mini-batch and fed into the network. For the sample pair (xv, xi), their modality-
specific features is obtained by the stage-0 of feature extractor: Fv and Fi,

Fv = f0 (xv) ;Fi = f0 (xi) (1)

f0(·) represents the stage-0 of ResNet-50. xv and xi are data samples from
visible and infrared modalities. The Fv and Fi are mixed in KDEM (in section
3.3) for the purpose of obtaining the knowledge-enhanced modality feature Ft.
Then, the feature representations of all the visible, infrared, and the knowledge-
enhanced modality are fed into the following stage of the network. Furthermore,
For each modality, the identity loss Lid and weight regularization triplets (WRT)
loss Lwrt[23] are applied to help the model converge effectively.
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Lid = − 1

n

n∑
i=1

log (p (yi | C(f(xi)))) (2)

where n represents the number of training samples in a mini-batch, f(·)
and c(·) are the feature extractor and a classifier. Given an input image xi

with a label yi, p(yi|C(f(xi))) represents the probability that a sample xi is
correctly classified into labeled class yi. Besides, we employ a WRT loss Lwrt on
three-modality-shared features.
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The tuple (i,j,k) represents the hard sample in each batch size. i̇y, Pi and Ni

denote anchor, positive set and negative set respectively. dpij and dnik represent
the distance between anchor and the positive and negative samples, respectively.

3.3 Knowledge-driven Enhance Module

In this section, we exceedingly elaborate on how the KDEM works. The modality-
specific features Fv and Fi from stage-0 of the network are used as inputs for
the KDEM, and synthesize the feature Fp of knowledge-enhanced modality with
the assistance of modality influence factors. As shown in Fig.2(b), the modality
influence factors are obtained by the following formula:

α = δ

MLP

 ∑
m∈{v,i}

FC ([F avg
m ;Fmax

m ])

 (5)

δ is the binary softmax function. After the Average-pooling and Max-pooling
operations on the Fv and Fi, the features are concatenated for each modality.
[F avg

v ;Fmax
v ] and [F avg

i ;Fmax
i ] are defined for the visible modality and infrared

modality, respectively. The aforementioned two pooling operations are combined
to exclude redundant knowledge. After the following fully connected operations,
these vectors are sent to MLP to calculate their influence factors.

Aforementioned procedures are designed to obtain the modality influence
factors α = (miv,mii), where miv + mii = 1. miv and mii are the modality
influence factors for the visible modality and the infrared modality, respectively.
The feature of the knowledge-enhanced modality is obtained by mixing the visible
and infrared modality-specific features with two modality influence factors. The
feature of knowledge-enhanced modality Ft is formulated by:

Ft = miv · Fv +mii · Fi (6)
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Here Fv and Fi are the modality-specific features from stage-0 of ResNet-50,
which are obtained by Eq.1. The synthesis of Ft can represent the newly generated
knowledge-enhanced modality. By using adaptive modality influence factors, a
suitable knowledge-enhanced modality can be generated, which can help the
model decrease the pressure of the modal-shared feature learning and accumulate
high distinguish semantic knowledge of two completely different modalities. The
knowledge-enhanced modality only exists in the training stage and is deleted in
the test stage.

Additionally, the characteristic of the knowledge-enhanced modality should
be diversified as much as possible so that the network can better accumulate
knowledge from the two modalities. To this end, diversity loss is designed to
enlarge the standard deviation of the two modality influence factors in a mini-
batch. The diversity loss Ldiv is defined as follows:

Ldiv = − [ϕ (miv)
n
i=1 + ϕ (mii)

n
i=1] (7)

n represents the number of training samples in a mini-batch. ϕ means calcu-
lating the standard deviation of the modality influence factors in a mini-batch.
By minimizing Ldiv, the feature of the knowledge-enhanced modality becomes
as diverse as possible, which can be more conducive to the knowledge-enhanced
modality and modal-shared feature learning.

3.4 Consistency loss

Features of the modeled knowledge-enhanced modality should maintain semantic
similarity between visible and infrared modalities to avoid the accumulation
of redundant knowledge. Thus, a consistency loss is designed, as shown in
Fig.2(c). For the features of the same identity, the feature distributional similarity
between the knowledge-enhanced modality and the other two modalities should
be preserved. The consistency loss is represented as follows:

Lcon =
1

n

n∑
i=1

∑
m∈{v,i}

mim · ∥f (Fm)− f (Ft)∥2 (8)

The modality influence factors mim are the weights of the consistency loss
function. ∥:∥2 is a L2-norm which is used to measure the distance of features.
Fm is obtained by Eq.1. Ft is the feature of knowledge-enhanced modality and
obtained in Eq.6. The f(·) is the mapping from stage-1 to stage-4 of the backbone.
The gradients of Lcon for feature Fm and Fp can be directly concluded as follows.

Proof. This subsection proves that Lcon can find the derivative.

∂Lcon

∂Ft
=

∂Lcon

∂f (Fp)
· ∂f (Ft)

∂Ft
(9)

= {−2 ·miv · [f (Fv)− f (Ft)]− 2 ·mii · [f (Fi)− f (Ft)]} · f
′
(Ft)

= {−2 [miv · f (Fv) +mii · f (Fi)− f (Ft)]} · f
′
(Ft)
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∂Lcon

∂Fm
=

∂Lcon

∂f (Fm)
· ∂f (Fm)

∂Fm
(10)

= {2 ·mim · [f (Fm)− f (Ft)]} · f
′
(Fm)

3.5 Overall training

The overall training loss Lall is represented as follows:

Lall = λ1Lid + λ2Lwrt + λ3Ldiv + λ4Lcon (11)

where λ1, λ2 , λ3 and λ4 are the weights of the overall loss function. The
algorithm flow of KDEM are given in Algorithm.1

Algorithm 1 algorithm of KDEM.

Input: Visible sample xv and infrared sample xi with their labels;
Output: The trained feature extractor f(·) and classifier c(·);
Initialization: Initialize the network f(·) in ImageNet-pretrained ResNet-50, initialize
iteration number epoch, learning rate and other hyper-parameters.
for i = 1 to epoch do

·Use stage-0 of ResNet-50 to extract features Fv and Fi for the visible and infrared
modalities;
·Calculate the knowledge-enhanced modality feature Fp by Eq.6;
·Feed forward the batch into the following network
·Calculate the overall loss by Eq.11 .
·Update the network f(·) and classifier c(·) by SGD to descending gradients of
Eq.11.

end
Until model convergence or the fixed epoch;

4 Experiments

4.1 Datasets and Settings

Two available datasets are used to evaluate the performance of our proposed
KDEM: RegDB[4] and SYSU-MM01[19]. The experiments follow the evaluation
protocol as described in Ye et.al[23]. The RegDB dataset is divided into 206
training identities and 206 test identities, and the number of both visible and
infrared images is ten for each identity. SYSU-MM01 is split into 395 identities
and 96 identities. The former of each dataset is used for training, while the latter
is used for testing.

The proposed method is implemented with PyTorch. Furthermore, the initial
learning rate and optimization method are 0.1 and SGD. The λ1, λ2 and λ3 from
Eq.11 are set to be 1 and λ4 is set to be 0.1. The batch size for each modality is
set to be eight on one single TITAN Xp GPU. The training epoch is set to be
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80. The evaluation protocol adopts the Rank-1, 10, 20 accuracy, mean Average
Precision (mAP), and mean Inverse Negative Penalty (mINP).

4.2 Comparison with State-of-the-art Methods

As shown in Table.1 and Table.2, we made an objective comparison of our method
with the state-of-the-art. The Rank-1, 10, 20 accuracy(%) and mean average
precision (mAP)(%), and mean Inverse Negative Penalty (mINP)(%) are reported
in each table.

Table 1. Comparison with the state-of-the-art methods on RegDB dataset.

Method Venue
Visible to Infrared Infrared to Visible

Rank-1 Rank-10 Rank-20 mAP mINp Rank-1 Rank-10 Rank-20 mAP mINp

BDTR[22] IJCAI(2018) 33.56 58.61 67.43 32.76 - 32.92 58.46 68.43 31.96 -

D2RL[17] CVPR(2019) 43.4 66.1 76.3 44.1 - - - - - -

AlignGAN[16] ICCV(2019) 57.9 - - 53.6 - 56.3 - - 53.4 -

Xmodal[9] AAAI(2020) 62.21 83.13 91.72 60.18 - - - - - -

DDAG[24] ECCV(2020) 69.34 86.19 91.49 63.46 49.24 68.06 85.15 90.31 61.80 48.62

Hi-CMD[2] CVPR(2020) 70.93 86.39 - 66.04 - - - - - -

AGW[23] TAPMI(2021) 70.05 86.21 91.55 66.37 50.19 70.04 87.12 91.84 65.90 51.24

FBP-AL[18] TNNLS(2021) 73.98 89.71 93.69 68.24 - 70.05 89.22 93.88 66.61 -

cmAlign[11] ICCV(2021) 74.17 - - 67.64 - 72.43 - - 65.46 -

KDEM(Ours) - 77.33 88.25 91.70 70.32 56.08 76.26 87.62 90.92 67.77 52.38

Performance Analysis on RegDB. The evaluation results on RegDB show
that KDEM achieves the most advanced performance in terms of Rank-1 accuracy,
mAP, and mINP. Although the FBP-AL[18] shows better results in terms of Rank-
10, 20 accuracy, the FBP-AL[18] needs to segment the body structure additionally,
which is not efficient for model training. Compared to cmAlign[11], under the test
mode of Visible to Infrared, the performance of KDEM is improved by 3.16% and
2.68% in terms of Rank-1 and mAP, respectively. As for the test mode of Infrared
to Visible, our KDEM can also increase by 3.83% and 2.31% in performance. The
performance improvement indicates that our model can effectively reduce the
semantic gap in cross modalities by the generated knowledge-enhanced modality.

Table 2. Comparison with the state-of-the-art methods on SYSU-MM01 dataset.

Method Venue
All search Indoor search

Rank-1 Rank-10 Rank-20 mAP mINp Rank-1 Rank-10 Rank-20 mAP mINp

cmGAN[12] IJCAI(2018) 27.0 67.5 80.6 27.8 - 31.6 77.2 89.2 42.2 -

D2RL[17] CVPR(2019) 28.9 70.6 82.4 29.2 - - - - - -

AlignGAN[16] ICCV(2019) 42.40 85.0 93.7 40.7 - 45.9 87.6 94.4 54.3 -

Xmodal[9] AAAI(2020) 49.92 89.79 95.96 50.73 - - - - - -

DDAG[24] ECCV(2020) 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.40 67.98 62.61

Hi-CMD[2] CVPR(2020) 34.94 77.58 - 35.94 - - - - - -

AGW[23] TAPMI(2021) 47.50 84.39 62.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23

FBP-AL[18] TNNLS(2021) 54.14 86.04 93.03 50.20 - - - - - -

cmAlign[11] ICCV(2021) 55.41 - - 54.14 - 58.46 - - 66.33 -

KDEM(Ours) - 58.09 91.19 96.63 55.52 40.69 62.18 94.38 98.64 68.30 64.11
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Performance Analysis on SYSU-MM01. It can be seen from the Table.2
that KDEM achieves a new state-of-the-art performance on SYSU-MM01 in both
all search and indoor search modes. Compared to cmAlign[11] in All search mode,
our KDEM gains 2.68% and 1.38% in Rank-1 and mAP. As for the Indoor search,
the performance of KDEM can also be improved by 3.72% and 1.97% on Rank-1
and mAP. The class activation mapping [14] of our model is shown in Fig.3.
We can notice that our model mainly focuses on cross-modal invariant features,
such as the face, clothing logos, backpacks, and gait, which are significant or
noticeable indicators of one pedestrian’s identity.

Fig. 3. Class Activation Mapping of our model.

4.3 Ablation Study

Ablation experiments are performed on the RegDB dataset to verify the effec-
tiveness of KDEM. As shown in Table.3, superior results have been achieved by
the proposed KDEM, diversity loss, and consistency loss. A remarkable improve-
ment in performance is obtained by KDEM, which shows that the KDEM can
effectively overcome the cross-modal semantic gap by accumulating the high dis-
tinguish knowledge from cross modalities. Moreover, the improvement of the loss
functions is prominent. The diversity loss can help the model accumulate diverse
knowledge and exclude redundant knowledge of visible and infrared modalities.
The consistency loss aims to preserve the distribution and semantic similarity
between the knowledge-enhanced modality and the other two modalities. Both
of Ldiv and Lcon achieved good results.
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Table 3. Ablation Study on RegDB dataset.

Baseline KDEM Ldiv Lcon Rank-1 Rank-10 Rank-20 mAP mINP√
- - - 70.05 86.21 91.55 66.37 50.19√ √

- - 73.69 86.84 91.61 68.36 54.59√ √ √
- 76.41 87.55 91.68 69.40 54.85√ √

-
√

75.29 87.33 91.65 69.08 55.19√ √ √ √
77.33 88.25 91.70 70.32 56.08

5 Conclusion

A Knowledge-driven Enhance Module (KDEM), which imitates the cognitive
process of the human brain, is designed to tackle the difficulties of VI-ReID
task. Extensive experiments are performed on two popular datasets to evaluate
the performance of our KDEM, and KDEM obtained competitive performance
compared to state-of-the-art methods. Meanwhile, ablation studies demonstrate
that the architecture of KDEM can discover significant semantic knowledge
from cross modalities and integrate them into a knowledge-enhanced modality
to robust the supervision of feature representations learning. Moreover, the
diversity loss can effectively improve the variety of semantic knowledge in the
knowledge-enhanced modality, and the consistency loss can also preserve the
semantic correlation between the knowledge-enhanced modality and the other
two modalities.
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