
EasyChair Preprint

№ 780

Deep Q-Learning Based Algorithm for Dynamic

Adaptive Streaming over HTTP

Goay Fuh Yang, Wei-Tsong Lee and Hsin-Wen Wei

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 17, 2019

International Conference on Internet Studies,

April 06-08, 2019, Nagoya, Japan

1

DEEP Q-LEARNING BASED ALGORITHM FOR
DYNAMIC ADAPTIVE STREAMING OVER HTTP

Goay Fuh Yang, Wei-Tsong Lee, Hsin-Wen Wei

Department of Electrical Engineer, Tamkang University, Tamsui, Taiwan
251.R.O.C

Goay621@hotmail.com wtlee@mail.tku.edu.tw hwwei@mail.tku.edu.tw

ABSTRACT

As mobile technology getting more advanced, watching streaming video

becomes an indispensable action in our daily life. How to maintain or provide a good

quality of Experience (QoE) for the video user during bad network condition is an

important and challenging issue. Therefore, we propose a Deep Q-learning based

algorithm to substitute the adaptive bitrate algorithm (ABR). Our algorithm aims to

learn and improve the Quality of Experience (QoE) for the video user in overall

network condition. The result shows that our Deep Q-learning algorithm is able to

learn and select the segment with good quality which gives the user the better (QoE).

Keyword: Deep Q-Learning, Quality of Experience, adaptive bitrate algorithm

1. INTRODUCTION

 According to Cisco VNI Global IP Traffic Forecast 2017-2022[1], the internet

traffic dramatically increased in recent years. This phenomenon is due to mobile

technology getting more advanced and more and more people like to use mobile

phone to watch video. Surfing internet video has become an indispensable action in

daily life. Therefore, to maintain or improve the Quality of Experience of the video

user in bad network condition has become a critical issue to be solved. In this paper,

we propose a Deep Q-Learning algorithm to replace the original Adaptive bitrate

control algorithm of the Dynamic Adaptive Streaming over HTTP, which is called

DASH.

 The Dynamic Adaptive Streaming over HTTP (DASH) [2] is an adaptive bitrate

streaming technique that allows the content provider to deliver the high-quality media

content through HTTP web server to the client. The media content is breaking into

small file segments and part of media content information is contained in each

segment. The Media Presentation file (MPD) will reallocate the segment and play in

DASH player. The client has can choose the different bitrate of the segments to

download. The Adaptive bitrate rule (ABR) is a technique used to adjust the quality of

mailto:Goay621@hotmail.com
mailto:wtlee@mail.tku.edu.tw
mailto:hwwei@mail.tku.edu.tw

2

the media streaming by detecting the network bandwidth and CPU capacity of Dash

client. There are several types of ABR algorithms being carried out to handle some

critical issue like lagging, re-buffer, and etc. There are some defective in those ABR

algorithms, since most of them are model fixed. Model fixed means that they only can

do with a certain limited performance which they designed. For instance, if the ABR

is mainly design to play the video with a good quality, during bad network condition

it will only play with high quality which might cause the rebuffer event occurs that

lead to bad QoE for the video user. Hence we propose a DASH based streaming

system which utilizes Deep Reinforcement learning technique to enhance the adaptive

bitrate control.

 Deep Reinforcement learning (DRL) is a technique that combines reinforcement

learning with feed forward. Reinforcement learning is one type of machine learning

and is a branch of Artificial intelligent. Markov decision process is a fundamental for

DRL, DRL has an Agent that keep trial and error to get experience from the

environment and finally take the action that may gain the largest reward based on the

state of the environment. As the state of the environment getting more complex, the

concept of deep neural network is applied to solve this situation. Hence, we get DRL

that preprocess the state of the environment by backpropagation using neural network

and then pass to Reinforcement learning to finish its job.

2. METHODOLOGY

In this section, we present the DASH-based framework used in our system. The

structure of the DASH-based system is shown in Figure 1. First, the user plays the

Dash player and start to watch video, the Dash player will request the Media

Presentation Description(MPD) and media segment from the DASH server through

HTTP protocol. While the user is watching video, the DRL Adaptation Algorithm is

applied to collect the information like buffer level, available bandwidth, etc. The

information will help the DRL to decide which quality of media segment to download.

The DRL will choose the media segment that gains the largest reward which

eventually provides a good QoE to the user. In our Dash based system, we keep most

of the structure similar to original Dash framework, this give us the advantage of the

original Dash framework provided. For instance, the switching quality performance

can be enhanced by using the pipeline technique. Which means there are no longer

needs to fill up the buffer over the desired level during switching the video quality

compared to other heuristics type system.

3

Figure 1. Structure of the DASH system

In this research, we carry out the concept of Deep Reinforcement Learning to

adjust the video quality. The fundamental of the Deep Reinforcement learning is

Markov Decision Process (MDP). According to the previous studies [3][4], the

adaptive video streaming service can be modeled as MDP. A typical MDP contains

action space 𝐴, state space 𝑆, and reward function 𝑅. The notation 𝐴𝑡 is used to

indicate the action of downloading a particular quality segment of the video, where

𝐴𝑡 ∈ 𝐴. And the reward function is defined as 𝑟(𝑆𝑡, 𝑆𝑡+1, 𝐴𝑡), where 𝑆𝑡 𝑎𝑛𝑑 𝑆𝑡+1

are belong to state space S and are obtained from the system. Policy is a function

denoted as 𝛿: 𝑆 → 𝐴 that helps the agent to decide what action to be taken based on

state. Then, the action-value equation can be defined as

𝑄(𝑆0, 𝐴𝛿) = ∑ 𝑃(𝑆1∈𝑆 𝑆0, 𝐴𝛿 , 𝑆1)[𝑟(𝑆𝑡, 𝐴𝛿 , 𝑆𝑡+1) + 𝛾𝑄(𝑆1, 𝐴𝛿)] (1)

The 𝑆0, 𝑆1 indicate the one step condition transition probability of the state process

𝑆𝑡. The 𝛾 ∈ [0,1) indicates the discount factor that ensures convergence the value

can be set from 0 close to 1. The 𝑃(𝑆0, 𝐴𝛿 , 𝑆1) indicates the probability of the state

from 𝑆0 take the action 𝐴𝛿 based on policy δ and move to state 𝑆1. As shown in

equation (1), the equation can obtain the Q-value of next state. The optimum policy

can be found as

𝛿(𝑉) = arg 𝑚𝑎𝑥𝛿 𝑄(𝑆0, 𝐴𝛿) (2).

Finally, the optimum equation can be obtained by combining equation (1) and (2) as

shown in below.

4

𝛿(𝑉) = 𝑚𝑎𝑥 ∑ 𝑃(

𝑆1∈𝑆

𝑆0, 𝐴𝛿 , 𝑆1)[𝑟(𝑆𝑡, 𝐴𝛿 , 𝑆𝑡+1) + 𝛾𝑄(𝑆1, 𝐴𝛿)]

Based on the MDP model, Watkin and Dayan have introduced Q-learning in

1992 [5]. The main concept of Q-learning is solving the MDP problem by using

reinforcement learning technique. Q-learning explores the optimal reward for each

state-action pair by trial and error. The common policies used in Q-learning are

epsilon-greedy policy and Softmax. The Epsilon-greedy policy is a straightforward

way of selecting action; it either selects random action with epsilon-greedy

probability or selects the action that yields optimal reward with 1-epsilon-greedy

probability. Softmax chooses the action according to the Softmax distribution of

Q-value:

𝑃(𝑞𝑡|𝑠𝑡) =
𝑒(−

𝑄(𝑠𝑡,𝐴𝑡)

𝛽

∑ 𝑒(−
𝑄(𝑆𝑡,𝐴)

𝛽𝑞𝜖𝐴

The parameter 𝛽 indicates the greediness of the algorithm. The Deep Q-learning is

a RL algorithm combine with deep neural network. In our work, we use DRL to

solve the problem. The Schematic diagram of DRL is shown in Figure 2. The agent

obtains the Q-value from the neural network and chooses the appropriate quality

segment to download as an action. Eventually, these actions taken by the agent will

affect the environment and generate new state and reward for the agent.

Figure 2. Schematic diagram of DRL

The states and rewards are the keys for the DRL to improve the QoE for the

video user. Hence how to define the states and rewards is the main concern of our

work. The states of environment need to be meaningful and contain enough

information. Therefore, choosing what information included in the state is important.

Considering that too many or few states will affect the accuracy of the RL Agent, the

Buffer level 𝐵𝑙, current bandwidth 𝐶𝑏, and previous action 𝐴𝑝are included in a state

𝑆𝑡 = (𝐵𝑙, 𝐶𝑏 , 𝐴𝑡), since the buffer level and bandwidth have the most impact on users’

experience. The action 𝐴𝑡 defined in our work is to select adequate quality segment

5

to download and the RL agent will choose the action based on epsilon-greedy strategy.

It will choose the action that gains the most reward if the probability of

1-epsilon-greedy is high or choose the action randomly to explore another possibility

as the learning experience. The definition of the reward function will directly affect

the QoE of the video user. Hence, we define the reward function as the following

equation.

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝐴𝑡 − 𝐴𝑣 − 𝑟𝑏 + 𝑏𝑙 + 𝑏𝑡

Table 1. Reward Function

Symbol Represent Value

𝐴𝑡

𝐴𝑣

𝑟𝑏

𝑏𝑙

𝑏𝑡

Action number

Penalty for action change

Rebuffer event

Buffer level

Buffer threshold

{0,1,2,3}

{0,1,2,3}

{0,1}

{0,1…,24}

{-8,-7…,0}

Table 1 shows the detail of the reward function that we defined in this paper. In

the proposed reward equation, 𝐴𝑡 denotes the action number which is in range from

value 0 to 4. Each value defines different action, where 0 represents the action that

downloads the lowest quality segment for the player, 1 represents the action that

downloads higher quality segment than 0, and so on. That is, action number 3

represents the action that download the highest quality segment. We normalize the

value by divide by the highest action value that an agent can get. Hence the higher

quality of the segment being chosen, the higher the positive reward gained. 𝐴𝑣

denotes the penalty for the difference between previous action and current action

taken by the agent. Hence this can prevent the agent to change the video quality often

and increase the stability. 𝑟𝑏 denotes the rebuffer event. We define the value 1 to

represent the condition that rebuffer event occurred and 0 for the normal condition.

The rebuffer event is estimated by using the buffer level. When the buffer level is

empty or the downloaded segment buffer is unable to fulfill the requirement of player

until the next buffer segment download, then we will consider it as a rebuffer event. If

the rebuffer event occurs, then there should be a negative reward, since rebuffer will

introduce negative experience to users. Moreover, 𝑏𝑙 denotes the buffer level. The

value of buffer level is obtained from the buffer capacity of player, in which the

maximum buffer level is 24 second and minimum is 0s. The higher the buffer level

left the higher the value 𝑏𝑙 get. Hence this will encourage the agent to get more

buffer level to gain more positive reward. Finally, 𝑏𝑡 denotes the threshold for the

buffer level. We set the threshold value as 8 and the value 𝑏𝑡 is defined by current

buffer level minus 8 and we only record the negative value for 𝑏𝑡, that is it will get

6

negative reward for the buffer level lower than 8s. This will help the agent to prevent

the rebuffer event occur.

3. Experiment Result
 In this experiment, we assume that every segment with the same quality has a

constant size. This assumption is commonly used in other relevant research [6]. In a

real system, there are several types of encoding technique and parameter with a

segment of varying size with different qualities. However, this factor should not

significantly affect the performance of the learning algorithm. Table 2 shows the

parameters that used in our work. To demonstrate the performances of the proposed

algorithm we simulate the video playing under the network condition as described

below. The network bandwidth for the client is 10Mbps and we apply a square wave

network interference to it. The peak of the square wave network interference is 5

Mbps and the interval between two peaks is 10 second. First, we conduct the baseline

result under the assumption that every video segment is streamed with highest quality

1080p. In the experiment, the video is 3 minutes long, then playing the video from the

start to the end is considered as one run in the simulation. Figure 3 shows the number

of rebuffer event happened under different runs in the experiment. Figure 3 shows that

there are 13 times of rebuffer event occurred in average of baseline result. The

training phase shows that our DRL algorithm explores the environment and learning

to find the best action to get the best reward. The number of the rebuffer event occurs

in the training phase decrease as the reward increase. During the training phase, we

convergence the epsilon-greedy proportionally and check the mean reward to

determine when should we carry out for testing phase. Figure 4 shows the mean

reward for the training phase in the experiment. In the training phase, the experiment

is about to play 5 runs of the video which is 15min. After the 5th run, the mean reward

does not significantly improve. Hence, the testing phase is set after 5th run by lock the

epsilon-greedy to maximum greediness because we don’t need to explore anymore in

the testing phase. As shown in Figure 3, the number of rebuffer event in testing phase

is varying between 0-2 times; this is because there is some unforeseen interrupt in a

real system that might affect the performances. For instance, the size of each segment

quality is not constant.

Table 2. Adaptation Algorithm Parameters

Algorithm Parameter Value

DRL Maximum buffer size

Discount factor

Policy

Hidden Neurons

Learning rate

24s

0.75

Epsilon-greedy

100

0.5

7

Figure 3. Rebuffer event

Figure 4. Reward for the training phase

4. CONCLUSION AND FUTURE WORK
 We develop a DRL algorithm to improve the QoE of the video user to confront

various network conditions. The number of rebuffer events has been significantly

reduced in our work. In the future, we will enhance the performance of the DRL and

the learning speed of the DRL.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mean Reward

Mean Reward

0

2

4

6

8

10

12

14

Baseline Training Period Testing Period

Rebuffer

1st 2nd 3rd 4th 5th nth

8

5. REFERENCES
[1] Cisco,"Cisco Visual Networking Index: Forecast and Trends, 2017–2022," Cisco

Public Information, 2018.

[2] Dynamic Adaptive Streaming Over HTTP (DASH)—Part 1: Media Presentation

Description and Segment Formats, ISO/IEC Standard 23009-1:2014, May 2014.

[3] R. Bellman, “A Markovian decision process,” Indiana Univ. Math. J.,vol. 6, no. 4,

pp. 679–684, 1957

[4] C. Zhou, C.-W. Lin, and Z. Guo, “mDASH: A Markov decision-based rate

adaptation approach for dynamic HTTP streaming,” IEEE Trans. Multimedia, vol.

18, no. 4, pp. 738–751, Apr. 2016.

[5] M. Claeys et al., “Design of a Q-learning-based client quality selection algorithm

for HTTP adaptive video streaming,” in Proc. Adapt. Learn. Agents Workshop

(ALA), St. Paul, MN, USA, May 2013, pp. 30–37.

[6] Matteo Gadaleta, Federico Chiariotti, Michele Rossi, Andrea Zanella, “D-DASH:

A Deep Q-Learning Framework for DASH Video Streaming,”IEEE Transactions

on Cognitive Communications and Networking

