
EasyChair Preprint
№ 2186

Socket Programming and Its Role in Networking

Pankaj Singh, Mohd Wakil and Pankaj Singh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 18, 2019

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

1Prof. Pankaj Singh

2Prof.Mohd. Wakil

3Pankaj Singh

--

1. 1Prof & Dean (R D Engineering college) p.mnavy@gmail.com

2. 2Prof & Head –CS (R D Engineering college) mohdvakil@gmail.com

3. 3Asst.Prof.-CS (R D Engineering college) pankajsingh59@gmail.com

Abstract

A socket represents a single connection

between exactly two pieces of software. It is

a communications connection point

(endpoint) that you can name and address in

a network. Sockets allow applications to

communicate using standard mechanisms

built into network hardware and operating

systems. A socket also allows the exchange

of information between processes on the

same machine or across a network,

distributes work to the most efficient

machine, and allows access to centralized

data easily. The processes that use a socket

can reside on the same system or on

different systems on different networks.

Sockets are useful for both stand-alone as

well as network applications. Network

standards for TCP/IP Socket are provided by

the application program interfaces (APIs). A

wide range of operating systems support

socket APIs. Socket programming shows

how to use socket APIs to establish

communication links between remote and

local processes. OS/400 sockets support

multiple transport and networking protocols.

Also socket system functions and the socket

network functions are thread safe.

Programmers who use Integrated Language

Environment (ILE) C can use the

information to develop socket applications.

Keywords: Socket, Network Hardware,

Network Applications, Network Standards,

Integrated Language Environment

ARCHITECTURE

In the simplex duplex communication model

the messages in a chat room are directly

delivered to the remote side without the

need for an intermediate node which is

required for message forwarding. This kind

of communication represents one to one

communication.

mailto:p.mnavy@gmail.com
mailto:mohdvakil@gmail.com
mailto:pankajsingh59@gmail.com

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

While in many to many communication

taking place in a chat room , it is the work of

a server which act as a central message

processor and it receives messages from

any one of the on line clients and then

“broadcasts “ them to all the users.

SOCKET PROGRAMMING

Running the server

It is the server program that allows clients to

upload and download files to and from a

specified directory.

The server is started or run as follows:

server directory port

Where:

 "directory" is the location of the files to be

accessed.

 "port" is the TCP port number that clients

will use to locate the server

File server listening on port 10000

After the server has started, it simply spins

in an infinite loop waiting for incoming

connections until you decide to kill it.

Needless to say, the server isn't too terribly

exciting to watch (despite the fact that it is

the most interesting part of the project to

implement).

Sockets are addressed using an IP

address and port Number

When the server starts , it attempts to open

up a socket on the given port .if it prints a

message , it means that socket opens up.The

message has the following format :

% server /home/beazley/myfiles 10000

File server listening on

classes.cs.uchicago.edu port 10000

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

If however the given port is in use and the

server is unable to open it It prints the

following message , which represents an

error and exits :

% server /home/beazley/myfiles 10000

 Unable to bind to port 10000. Sorry!

%

If we get the above message it shows that

the port which we requested is already in use

.In this case we should try to choose another

port number and try again .But while

choosing the port number we should be

careful that the port number is greater than

1024 and should be less than 65535.

Also if we try to kill the server and

immediately start it using the same port

number, it might result in error message.

Sometimes the operating system takes some

time in reclaiming the port numbers that are

no longer in use. If this happens to use, a

different port number should br picked up or

wait a little while.

ACCEPTING A CONNECTION

When the server and client are connected for

the first time , the server should use fork() to

make the client handler run as a different

process. And meanwhile the server goes

back to listen to more client connections .As

an example the main loop of the server will

look roughly as the following:

while(1)

{

 int clientfd = accept(...) // Wait for a

connection

 if (!fork())

 {

 // Child process

 handle_client(clientfd); // Go listen

to the client

 close(clientfd); // Close the

client

 exit(0);

 } else

 {

 // Parent process. Do nothing.

 }

 close(clientfd);

}

We should keep one thing in mind that the

fork() makes a copy of the running server

program and returns two distinct values .

The process that called fork(), returns a non

–zero process id of the child .In the child

,fork() returns zero.

HANDSHAKING

TCP “Three-Way Handshake”

Connection Establishment Procedure

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

The server should send a message to the

client identifying itself after receiving a

connection and forking the client

handler.And all this process should be

completed using a packet called DAT packet

to the client that contains a greeting

message.

The client should reply by sending an ACK.

Following lines illustrate the working of the

process:

CLIENT CONNECTING TO THE

SERVER

Client (receiver) Server (sender)

------------------ -----------------

 connect --->

 fork()

 <--- DAT,block 1, "Hello

 from Your name's fileserver"

 ACK,block 1 --->

 print message

 wait for user wait for packets.

If however the client does not reply with an

ACK , the server should immediately drop

the connection .The server should start

waiting for the incoming packets once the

initial packet is received and acknowledged

by the client ,

PACKETS

Data packets are sent back and forth

between the client and the server for them to

communicate effectively. Following lines

represent the format of the packets.

As we can see in the above lines each packet

starts with a 2 byte opcode. Filenames and

error messages are represented in ascii and

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

terminated with a zero byte (EOS). data is

sent in blocks of 512 bytes or less.

Some kind of check needs to be performed

with opcode , block number , and block size

parameters. If 16 bit integer value are to be

written on a paper, it would be probably

written with the most significant bit on the

left and the least significant bit on the right:

(most significant) 1101111100110101 (least

significant)

The ordering of the bits may be different for

different machines. It depends on the

machine being used.

 For example, the most significant part may

appear first like this:

 byte 1 byte 2

(most significant) [11011111] [00110101]

(least significant)

or, it may appear last like this:

byte 1 byte 2

(least significant) [00110101] [11011111]

(most significant)

As we can see in the above lines , the first

case has the most significant bit in the left

most position this kind of arrangement is

known as “big endian” .And if we look at

the second case where the least significant

bit appears in the left most position is known

as “little endian”.Generally we never worry

about such ordering but while sending data

across the network we should be specific

about constant ordering.And if however we

ignore such practice the data between the

machines are sent with different kind of

ordering schemes.

SENDING AND RECEIVING

FILES

Now when the connection is

successfully established, the waits for

the packets to arrive from the client

.After the packets are received there

opcodes are checked to acknowledge

what to do next.The server must be

able to recognize all five types of

opcodes(RRQ, WRQ, ACK, DAT, and

ERR).

A RRQ packet is sent to the server in

order to retrieve a file. And when the

client needs to upload a file it sends a

WRQ packet .The receive and send

operations work as follows:

The client asks to receive a file from the

server (download)

Client (receiver) Server (sender)

-------------------- -------------------

 RRQ --->

 <--- DAT, block #1

 ACK,block #1 --->

 <--- DAT, block #2

 ACK,block #2 --->

 <--- DAT, block #3

 ACK,block #3 --->

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

 The client asks to send a file to the server

(upload)

If the packet size and the data being sent in

each packet are equal it represents that more

data will follow.And if it is less it means that

packet is final one.If however during

transmission any different type of packet is

received it simply means that either there is

a protocol error or any other error occurred.

The connection should be immediately

terminated if the following conditions hold

true:

• The number of bytes in a block exceeds

the maximum block size (512 bytes).

• The expected block number of a data

packet or ACK is incorrect.

• There is a protocol error (an unexpected

packet type is received).

It is not necessary to assume that all the

packets are valid one at any given time. As

an example suppose server receives a WRQ

packet instead of receiving a DAT packet

then it should report a protocol error and

immediately close the connection. Thus, the

client handling loop might look roughly like

this:

handle_client() {

 ...

 while (1) {

 get_packet()

 switch(opcode) {

 case OP_RRQ:

 if (strlen(filename) == 0)

send_directory();

 else send_file();

 break;

 case OP_WRQ:

 receive_file();

break;

 case OP_DRQ:

 send_directory();

 break;

 case OP_ERR:

Client (sender) Server (receiver)

------------------ -----------------

 WRQ --->

 <--- ACK, block #0

 DAT, block #1 --->

 <--- ACK, block #1

 DAT, block #2 --->

 <--- ACK, block #2

 DAT, block #3 --->

 <--- ACK, block #3

 .

 .

 (etc.)

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

 case OP_DAT:

 case OP_ACK:

 protocol_error()

 exit(0);

 default:

 unknown_opcode_error()

 exit(0)

 }

 } }

In the same way functions to send, receive

and tranmit files directories would be

programmed to recognize certain packets

and report protocol errors in similar manner

SERVER SECURITY

Servers in this real world can be a lot

misused. Precautions should be taken

to prevent a server from crashing

.Following are some measures which

should be taken in order to prevent a

system server from crashing:

o Clients should be authorized to

access only the directory they want

to

access and no other directory outside

that directory. For example a client

should not be able to download the

system password file or upload a file

to a weird location.

o While uploading a file , the

client should not be able to

overwrite any existing file , in

such situation the client should

be sent a message that “file

already exist”.

o File names should not contain

any kind of non – printable

character.

o During any violation of

protocol errors, the connection

should be terminated.

o And we should never expect

that client will behave properly

while working with the server.

SOCKET CONNECTIONS

OPENING A SOCKET ON THE SERVER

 struct sockaddr_in servaddr;

 /* Create a socket */

 int fd = socket(AF_INET,

SOCK_STREAM, 0);

 if (fd < 0) {

 printf("Unable to open socket!\n");

 exit(1);

 }

 /* Bind it to a specific port number

(contained in port) */

 memset(&servaddr, 0, sizeof(servaddr));

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

 servaddr.sin_family = AF_INET;

 servaddr.sin_port = htons(port);

 servaddr.sin_addr.s_addr =

htonl(INADDR_ANY);

 if (bind(fd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {

 printf("unable to bind to port %d\n",

port);

 exit(1);

 } /* Tell the OS to allow no more than 5

pending connections.

 Note : This is different from allowing 5

active client connections */

 listen(fd,5);

OPENING A SOCKET ON THE CLIENT

 int fd;

 struct sockaddr_in servaddr;

 struct hostent *host;

 /* Create the socket */

 fd = socket(AF_INET, SOCK_STREAM,

0);

 if (fd < < 0) {

 printf("Unable to create socket!\n");

 exit(1);

 }

 /* Set its address :

 port = Server port number (e.g.,

10000)

 hostname = Hostname (e.g.,

"classes.cs.uchicago.edu")

 */

 memset(&servaddr,0,sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_port = htons(port);

 /* Look up the hostname try to turn it into

an IP address */

 if ((host = gethostbyname(hostname)) ==

(NULL)) {

 printf("Unknown hostname : %s\n",

hostname);

 exit(1);

 }

 memcpy(&servaddr.sin_addr,host-

>h_addr,host->h_length);

 /* Connect with the server */

 if (connect(sockfd, (struct sockaddr *)

&servaddr, sizeof(servaddr)) < 0) {

 printf("Unable to connect with the

server.\n");

 exit(1);

 }

ACCEPTING A CONNECTION ON

THE SERVER

while(1) { /* Server runs forever */

 /* Accept a client connection */

 struct sockaddr_in clientaddr;

 int len = sizeof(clientaddr);

 int clientfd = accept(fd, (struct sockaddr *)

&clientaddr, &len);

 if (clientfd < 0) {

 if (errno != EINTR) {

 printf("Accept error!\n");

 printf("%s\n",strerror(errno));

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

 exit(1);

 }

 } else {

 /* Fork off the client handling process */

 if (!fork()) {

 /* I am the child */

 close(fd);

 /* Say where the connection came

from */

 printf("[%d] Received a

connection from %s, port %d\n", getpid(),

inet_ntoa(clientaddr.sin_addr),

ntohs(clientaddr.sin_port));

 /* Go off and talk to the client for

awhile */

 handle_client(clientfd);

 /* Done. Close the client connection

and exit. */

 close(clientfd);

 exit(0);

 /* Child process terminated */

 } else {

 /* I am the parent */

 /* Do nothing interesting. Just go

back to the top of this

 loop and keeping listening for more

connections */

 }

 close(clientfd);

 }

}

SIGNALS AND TIMEOUTS

If the server remains idle and is not working

for more than 60 seconds, in this case the

server should terminate its connection.

For such implementation following function

should be written:

void sig_alarm(int signo) {

 /* A timeout occurred. Deal with it */

 ...

}

Next, in server, the operating system needs

be told about signal handler by putting the

following statement somewhere in the code.

signal(SIGALRM,sig_alarm);

And now whenever we want to start the

timer the statement as follows needs to be

executed.

Alarm(60);

If you re-issue the alarm() function, the

timer is reset to whatever new value is

provided

In case if the alarm expires the system will

interrupt the program to immediately sig

alarm function. In this case, the alarm

should be used to terminate idle client

connections.

SOCKET PROGRAMMING AND ITS ROLE IN NETWORKING

USEFULNESS

• Socket programming is based on

client/server programming model. It

is the socket on the server that

enables the client to send request to

the server and receive responses

from the server. It is possible due to

the socket that the client sends

messages to the server and receive

responses from the server to the

client.

• The connection between client and

server is due to the socket

programming. Accepting

connections on a server, Reading and

writing data on a socket, Marshalling

and unmarshalling data.

• Socket act as a user level interface

on the network and it also acts as a

basis for all internet applications.

• Socket programming is very

important topic as port scanning,

host and network fingerprinting,

worms etc will be using sockets to

do most of their job. All the above

mentioned security topics make use

of sockets

• Socket programming in some form

or the other is also used in network

security software such as

vulnerability assessment toolkits,

networking monitoring software etc.

CONCLUSION

In computer networking, one of the most

fundamental technologies is a socket. By the

help of sockets and using standard

mechanisms which are built into network

hardware and operating systems, application

communicate with each other. Socket

technologies are in existence since long as

compared to network software which is

relatively new to web phenomenon. Also,

many software packages, like web browsers,

instant messaging application and peer to

peer file sharing system all rely on sockets.

REFERENCES

A.S. Tanenbaum, “Computer Networks”,

PHI,4th Edition

W.Stallings, “Data and Computer

Communication”, Macmillan Press.

Richard Stevens, UNIX Network

Programming, Volume 1, Second Edition:

Networking APIs: Sockets and XTI,

Prentice Hall, 1998.

Gilligan, R. E., Thomson, S., Bound, J., and

Stevens, W. R. 1999. "Basic Socket

Interface Extensions for IPv6," RFC 2553.

Stevens, W. R., and Thomas, M. 1998.

"Advanced Sockets API for IPv6," RFC

2292.

http://compnetworking.about.com/od/itinfor

mationtechnology/l/aa083100a.htm

http://en.wikipedia.org/wiki/Internet_socket

http://publib.boulder.ibm.com/infocenter/ise

ries/v5r3/topic/rzab6/rzab6soxoverview.htm

http://world.std.com/~swmcd/steven/perl/pm

/socket/socket.html

http://compnetworking.about.com/od/itinformationtechnology/l/aa083100a.htm
http://compnetworking.about.com/od/itinformationtechnology/l/aa083100a.htm
http://en.wikipedia.org/wiki/Internet_socket
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzab6/rzab6soxoverview.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzab6/rzab6soxoverview.htm
http://world.std.com/~swmcd/steven/perl/pm/socket/socket.html
http://world.std.com/~swmcd/steven/perl/pm/socket/socket.html

