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Abstract—It is an important prerequisite for a fruit-picking 

robot to accurately segment and locate the object in fruit 

images. However, image segmentation by manually selected 

features or deep learning-based approaches is a troublesome 

task. It requires a long time and a large number of annotated 

images for the model to be trained. In this study, transfer 

learning is used so that the learned parameters of a pre-trained 

convolutional neural network can be used as the initial settings 

in the new task. Three networks, Mobilenet_v2, 

Resnet_v1_50_beta and Xception_65, are used as backbone 

networks, which were used in the well-known semantic image 

segmentation model—DeepLab. The proposed transfer 

learning-based fruits image segmentation not only alleviates 

the stringent need of a large image dataset, but also saves much 

time for training. Experimental results show that the 

Xception_65 based network has the best performance in terms 

of the segmentation metric of mean intersection over union. A 

high-precision instance fruits segmentation guarantees 

subsequent accurate locations of fruit images for fruit-picking 

robots, which is of great significance for intelligent agriculture. 

Keywords-transfer learning; semantic segmentation; instance 

segmentation; convolutional neural network; fruit image 

segmentation 

I. INTRODUCTION 

It is an important prerequisite for a fruit harvesting robot 
to accurately segment and locate the object in fruit images. 
Traditional image segmentation methods can be categorized 
as those based on the threshold, based on region and based 
on edges. Classic threshold-based methods include Otsu’s 
algorithm [1] et al. Regions based image segmentation 
methods include K-means clustering, graph cut method and 
so on [2–5].  

Early in 2008, Yuan proposed a near infra-red based fruit 
segmentation method for cucumbers in a greenhouse 
environment [6], where the shape difference between the 
background and fruits is used for two dynamic thresholding 
segmentations, alleviating the influence on image quality by 
poor environment and segmenting efficiently the cucumber 
object. However, it is necessary to pre-estimate the ratio P of 
the area of mature fruits over the total image according to the 
distance from the robot to the cucumber plants. This is not 
good for a fully automated harvest. In 2009, Li et al. 
proposed an image segmentation of cucumbers based on 
color and textual features  [7], in which the color is used to 
remove irrelevant objects, then the grey-level co-occurrence 
matrix is used to extract textures, and finally the entropy and 

energy are obtained as two textural features to successfully 
the solve the segmentation problems of fruits and 
background which are similar in color. However, the 
discrimination of the entropy and energy with respect to 
fruits and background is not so high, poorly impacting the 
segmentation accuracy. Wang conducted an improved 
wavelet transform for fruit images to normalize the 
illuminance on the surface of fruits [8], performed the image 
enhancement based on retinex and finally obtained the 
segmentation results by means of K-means clustering. 
Experimental results show that the algorithm’s robustness 
relative to light change in color fruits segmentation, as well 
as a super performance both in segmentation accuracy and 
efficiency. 

The aforementioned algorithms require in common 

manually selected features such as P parameter, entropy, 

energy, grey-level co-occurrence matrix, etc. Theoretically, 

it is difficult to verify the optimal features and even 

enumerate them with experiments. Recent years, deep 

learning (DL) provides a new and effective way for 

automatic feature selection in image segmentation and 

recognition [9]. W. Ding, in his dissertation, performs the 

pepper detection and recognition by using convolutional 

neural networks (CNN) [10], but the thresholding is still 

used in the stage of segmentation, without totally giving up 

the manual classification features. An Indian researcher, R. 

Kexture proposed a deep semantic segmentation 

architecture (MangoNet) to detect and count mangoes in an 

open orchard [11]. The results demonstrate the robustness of 

detection for multiple factors such as scale, occlusion, 

distance and illumination conditions. Recently, S. Chen 

proposed a novel fully convolutional neural network model 

(Nv-Net) for low-resolution infrared image segmentation in 

weak illumination natural environments [12]. Experimental 

results show that the proposed method has the flexibility to 

segment the arbitrary input images on several public 

datasets, such as PASCAL VOC and ADE20K, and 

achieves the best segmentation performance in the low 

illumination environment. 
The key advantage of DL based methods is the automatic 

feature extraction from the raw data and the capability to 
handle computation-intensive tasks. However, it requires a 
long time and a large number of annotated images for the 
model to be trained. For example, in [10], 11,096 image 
patches of size 200×200 are used for training and 1500 
image patches are used for testing. In [11], the size of model 



weights is up to 375 M. The Nv-Net is trained by the 
TensorFlow framework on a single Nvidia GeForce GPU. 
The training requires approximately 79 h to learn a good 
model. Unfortunately, in practice, there is seldom such a 
large number of images included in a training set. The lack 
of annotated images often hinders the training procedure. 
Therefore, in this study, transfer learning is used to eliminate 
the need for a vast number of annotated fruit image datasets 
by transferring the learned features of a pre-trained CNN as 
initial weights and fine-tuning the whole network using our 
new dataset available. By the way, the model being trained 
converges much faster based on a relatively small training 
fruit image dataset. The proposed method achieves state-of-
the-art segmentation results in terms of the mean intersection 
over union (MIoU) without need a very large image dataset. 

The manuscript is organized as follows. In section II, 
some preliminaries are reviewed as fundamentals. Section III 
gives the proposed transfer learning-based fruit image 
segmentation model. Experimental results are given in 
section IV and finally, conclusions are drawn in section V. 

II. PRELIMINARIES 

A. Transfer learning 

Given a learning task in a source domain and a learning 

task in a target domain, transfer learning aims to help 

improve the learning of the target predive function using the 

knowledge in the source domain and the learning task in the 

source domain, when the two tasks are different or the two 

domains are not the same. 

Early in 2010, Pan and Yang published a survey on 

transfer learning [13]. In many machine learning scenarios, 

it is assumed the training set and test set must follow the 

same distribution. However, this is not always true in 

practice. What is more, in many real-world applications, it is 

expensive or impossible to acquire sufficient training data. 

In such cases, transfer learning between task domains would 

be a solution. Pan categorized transfer learning into 

inductive transfer learning, transductive transfer learning 

and unsupervised transfer learning. 

In the inductive transfer learning, the target task is 

different from the source task. Some labelled data in the 

source domain are needed to induce an object predictive 

model into the target domain. In the transductive transfer 

learning, the source and target tasks are the same, while the 

source and target domains are different. No annotated data 

in the target are available while a lot of annotated data in the 

source domain are available. Finally, in the unsupervised 

transfer learning, the target task is merely related to the 

source task. It aims to solve problems such as clustering in 

the target domain. There are no labelled data in both 

domains. 

Transfer learning is feasible. In 2014, Yosinski showed 

how features are transferable in deep neural networks [14]. 

Although the transferability of features decreases as the 

distance between the source task and the target task 

increases, transferring features even from distant tasks can 

be better than using random initial weights. Donahue also 

verified that features extracted from the activation of a deep 

convolutional network trained in a fully supervised manner 

on a large set of object recognition tasks is able to be 

transferred to new general tasks [15].  

B. Convolutional neural networks 

Convolutional neural networks （CNN）have become 

very popular since AlexNet [16] won the ImageNet 

Challenge. Deeper and more complemented CNNs have 

been achieved high accuracy and efficiency in computer 

vision task including semantic image segmentation and 

object recognition. A lot of CNN architectures have been 

emerged, among which the following three networks are 

used in the study and briefed as follows. 

• Resnet. K. He presented a residual learning 
framework to ease the training of deep networks [17]. 
The learning residual functions with reference to the 
layer inputs are formulated. Comprehensive 
experiments show the residual network is easier to 
optimize and can gain accuracy from the 
considerable residual depth.  

• Xception. Xception is a CNN architecture based on 
entirely on depthwise separable convolution layers 
[18]. It has a linear stack of 36 convolutional layers 
for feature extraction. This makes the architecture 
very easy to define and modify. An open source apps 
module using Keras and TensorFlow can be used for 
implementation. 

• Mobilenet. The general trend has been to make 
deeper and more complicated networks in order to 
achieve higher accuracy but often without a high 
efficiency in terms of size and speed. MobileNets are 
built to reduce the computation in the first few layers. 
Howard presented a class of efficient models called 
MobileNets [19]. Two simple global 
hyperparameters that efficiently trade off between 
latency and accuracy. The effectiveness of 
MobileNets is verified across a wide range of 
applications such as object detection, fine-grain 
classification and large-scale geo-localization. 

C. DeepLab 

DeepLab is a series of semantic image segmentation 

networks. In 2015, L. Chen proposed a semantic image 

segmentation with deep convolutional nets and fully 

connected conditional random field [20], aiming to the task 

of pixel-level classification. Afterwards, with VGG-16, 

DeepLabV1 obtained an MIoU of 71.6% in the image 

database PASCAL VOC-2012 [21]. DeepLabV2 [22] is an 

improved version of DeepLabV1 with the backbone 

network of ResNet101 [17], achieving an MIoU of 79.7% in 

PASCAL VOC-2012. To solve the problem of multiscale 

object segmentation, DeepLabV3 [23] uses a cascaded or 

parallel atrous convolution to adjust receptive field. 

DeepLabV3 obtains an MIoU of 85.7% without a dense 

post-processing. 



In 2018, Chen proposed an encoder-decoder structure 

with atrous separable convolution for semantic image 

segmentation on the basic of DeepLabV3, known as 

DeepLabV3+ [24]. Its backbone network is Xception [22]. 

DeepLabV3+ achieves the MIoUs of 89.0% and 82.1% in 

the databases of PASCAL VOC-2012 and Cityscapes, 

respectively. 

III. TRANSFER LEARNING BASED INSTANCE 

SEGMENTATION OF FRUITS IMAGES 

This study uses transfer learning to segment fruit images 

with three kinds of backbone networks in target domain. As 

shown in figure 1, the specific implementation steps are 

described as follows: 

• Acquirement of fruits images containing eggplant, 

luffa, pepper, using camera in a greenhouse 

environment.  

• Pre-processing of the images, such as data 

augmentation and image denoising. 

• Labelling of the image objects using an image 

annotation software, named LabelMe, to label the 

objects. The results annotated are: the background 

is set to zero, and other three kinds of fruits as 1, 2, 

3. 

• Partition of all images into the training set and the 

test set. The annotated images are divided 

accordingly into two parts, in which one part 

corresponding to the training set is used for 

training, and the other part corresponding to the 

test part is used for model evaluation.  

• Load the weights of pre-trained DeepLabV3+ from 

TensorFlow as the initial settings, which are 

transferred to the Training module (as shown in 

figure 1). 

• After 100,000 training steps for the model in target 

domain, the model is frozen and is fed into the 

Testing module, where the networks Mobilenet_v2, 

Xception_65 and Resnet_v1_50_beta are chosen as 

backbone nets. 

• Evaluation of fruit segmentation effect. The 

performance is evaluated using the MIoU and 

training steps per second. Meanwhile, three 

different backbone networks, Mobilenet_v2, 

Xception_65 and Resnet_v1_50_beta, are used for 

comparison of test results and system’s 

performance evaluation on representative test 

images.  

IV. EXPERIMENTS AND ANALYSES 

The fruits images used in the semantic instance 

segmentation experiments were acquired in the vegetable 

production centre in the county of De’an, Jiujiang, China. 

The model runs in a hardware environment of Intel(R) 

Core(TM) i7-8700 CPU@ 3.2GHz，with the memory of 16 

GB and two graphic adapters of GeForce RTX 2080Ti. The 

workstation’s operating system is Ubuntu 16.04. The 

program language and the deep learning symbolic library 

are Python 3.5 and TensorFlow 1.13.1, respectively. The 

image set includes 3716 images with details shown in table 

1. 

 
Figure 1. Transfer learning-based instance segmentation of fruits images 

 

 
Figure 2. Training process of three networks. 

Three representative networks, Mobilenet_v2, 

Xception_65, and Resnet_v1_50_beta, are chosen as the 

backbone nets with the official pre-trained weights as initial 

weights for training in our experiments. The total number of 

training steps is set to be 100,000, the base learning rate is 

set to be 0.0007, ‘Ploy’ is chosen as the strategy of 

adjustment of the learning rate, the weight decay parameters 

are set to be 0.00004 and 0.0001 for Mobilenet_v2, 

Xception_65 and Resnet_v1_50_beta, respectively. The 

atrous rate for atrous spatial pyramid pooling and the ratio 
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of input to output spatial resolution (output stride) are set to 

default values for Mobilenet_v2; they are respectively set to 

be [6, 12, 18] and 16 for Xception_65, Resnet_v1_50_beta. 

For all the three networks, the stride for decoder output is 

set to be 4. The image crop sizes are set to be 513×513 and 

1525×1200 during training and evaluation, respectively. The 

batch size is set to be 4 [24]. 

Table 1. Statistics for image data 

 Pepper Eggplant Luffa 

Training set 714 606 500 

Test set 758 614 524 

In total 1472 1220 1024 

 

Table 2. Segmentation for different backbone nets. 

Network MIoU (%) Steps/second Training time (h) 

Mobilenet_v2 72.3 8.7 3.19 

Xception_65 94.9 2.8 9.92 

Resnet_v1_50_beta 93.9 4.8 5.79 

In DeepLab, different network structure can result in 

different MIoU and different time consumptions. The 

intersect over union (IoU) is defined as 

 where  is the region regarded 

as the object by the proposed algorithm, and  is the 

region of ground truth. The mean intersection over union 

(MIoU) is the average of all IoUs over the test image set and 

reflects the accuracy of the used semantic segmentation 

architectures. Table 2 shows the comparison of 

segmentation results with the three backbone networks used 

in this article, where the MIoU reflects the accuracy of the 

used semantic segmentation structures, and the training 

steps per second can reflect the speed of training process. 

The Training time of three backbone are shown in table 2. 

Thanks to the use of transfer learning, the model can reach a 

high MIoU in only about ten hours of training. It is known 

from table 2 that Xception_65 has the longest training time 

in three networks, but the highest MIoU value. 

The training process visualized in TensorFlow is shown 

in figure 2, in which the blue, red and green represent the 

Mobilenet_v2, Xception_65 and Resnet_v1_50_beta 

networks, respectively. It can be seen that Xception_65 (in 

red) has the least number of training steps per second, 

meaning the most time-consuming, but the total loss 

decreases the fastest, thus the final total loss is the smallest. 

Figure 3 gives an example of segmentation for an image 

containing an eggplant, a pepper and a luffa, tested for all 

the three networks. The image crop size is set to be 513×513; 

the scale to resize images for inference is set to be 1.0. The 

original image is shown in figure 3. The segmentation 

results are shown in figure 4, figure 5, and figure 6 for 

Mobilenet_v2, Resnet_v1_50_beta and Xception_65, 

respectively. In figures 4, 5, and 6, the green, yellow and red 

represent the eggplant, luffa and pepper, respectively. From 

these figures, it can be seen that Mobilenet_v2 and 

Resnet_v1_50_beta mistake a small portion in the middle 

eggplant as background, several pixels at the bottom of the 

luffa are erroneously assigned to pepper by Mobilenet_v2, 

and Resnet_v1_50_beta mistakes the bottom tip of the luffa 

as background. These results also verify the best 

segmentation performance of Xception_65, which not only 

classifies all pixels of the objects correctly, but also assigns 

the pixels of a little eggplant behind a big eggplant correctly, 

which is easily ignored by human. This is in agreement with 

the above conclusion that Xception_65 performs the best in 

terms of MIoU. 

 
Figure 3. Original image to be segmented 

 
Figure 4. Segmentation result with Mobilenet_v2 

 
Figure 5. Seg. result with Resnet_v1_50_beta 

  
Figure 6. Segmentation result with Xception_65 

V. CONCLUSION 

In this study, transfer learning-based fruit image 

segmentation is implemented, which not only alleviates the 



stringent need of a large image dataset, but also saves much 

time for training. Experimental results show that the 

instance fruit image segmentation achieves state-of-the-art 

results in terms of the mean intersection over union. 

Furthermore, it is verified that the Xception_65 based 

structure obtains the highest MIoU value in three backbone 

networks. The model can reach a high MIoU in only about 

ten hours of training. The segmentation results with 

Xception_65 are satisfactory and apparently superior to 

results with other two.  

A high-accuracy semantic segmentation ensures an 

accurate localization and efficient harvest for robots, which 

is of great significance to smart agriculture. 
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