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Abstract
Recent work by Google DeepMind introduced assembly-optimized

sorting networks that achieve faster performance for small fixed-

size arrays (3-8). In this research, we investigate the integration of

these networks as base cases in classical divide-and-conquer sorting

algorithms, specificallyMerge Sort and Quick Sort, to leverage these

efficient sorting networks for small subarrays generated during the

recursive process. We conducted benchmarks with 11 different

optimization configurations and compared them to classical Merge

Sort and Quick Sort. We tested the configurations with random,

sorted and nearly sorted arrays.

Our optimized Merge Sort, using a configuration of three sort-

ing networks (sizes 6, 7, and 8), achieves at least 1.5x speedup for

random and nearly sorted arrays, and at least 2x speedup for sorted

arrays, in comparison to classical Merge Sort. This optimized Merge

Sort surpasses both classical Quick Sort and similarly optimized

Quick Sort variants when sorting random arrays of size 10,000 and

larger.

When comparing our optimized Quick Sort to classical Quick

Sort, we observe a 1.5x speedup using the 3-to-5 configuration on

sorted arrays of size 10,000. The 6-to-8 configuration maintains a

consistent 1.5x improvement across sorted arrays from 25,000 to 1

million elements. Our findings demonstrate the potential of inte-

grating AI-optimized sorting networks to enhance the performance

of classical sorting algorithms.

CCS Concepts
• Theory of computation→ Divide and conquer.
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1 Introduction
Sorting algorithms form a critical foundation of modern comput-

ing infrastructure, powering numerous applications from online

shopping and social media feeds to scientific research and finan-

cial analysis. While classical sorting algorithms like merge sort

achieve 𝑂 (𝑛 log𝑛) complexity, there remains significant potential

for practical performance improvements. Recent research byGoogle

DeepMind introduced AlphaDev [4], which discovered novel sort-

ing networks optimized at the assembly level for small fixed-size

arrays. These networks cover array sizes from 3 to 8 elements,

presenting an opportunity to enhance classical sorting algorithms.

Our research investigates the integration of these fixed sorting

networks as optimized base cases within classical sorting algo-

rithms. We focus on Merge Sort and Quick Sort, implementing and

evaluating hybrid approaches that leverage AlphaDev’s sorting

networks at different array size thresholds. This work bridges the

gap between theoretical algorithmic improvements and practical

performance optimization by demonstrating how assembly-level

optimizations can enhance traditional divide-and-conquer sorting

strategies. Source code is available online on GitHub
1
.

The contributions of this paper include: (1) a systematic eval-

uation of different sorting network configurations as base cases

for classical sorting algorithms, particularly Merge Sort and Quick

Sort, (2) empirical evidence showing that our optimized Merge Sort

implementation achieves a 2x speedup for random arrays of size

10,000 and maintains a 1.5x improvement for arrays up to 1 mil-

lion elements using the 6-to-8 configuration, while our enhanced

Quick Sort demonstrates a 1.5x speedup on sorted arrays using

the 3-to-5 configuration, and (3) a practical demonstration of how

AI-optimized assembly code, specifically AlphaDev’s [4] sorting

networks, can enhance traditional algorithms while maintaining

their general applicability across different input sizes and distribu-

tions.

2 Related Works
Our research builds upon several key contributions in sorting algo-

rithm optimization and artificial intelligence. In the domain of sort-

ing algorithms, Pandey and Gupta’s work [6] on Lazy Merge Sort

established that 𝑂 (𝑛 log𝑛) complexity serves as an upper bound

for potential improvements to the classical merge sort algorithm.

While Marszalek’s [5] approach in 2017 focused on leveraging mod-

ern architecture and parallelization techniques, our work explores

a novel direction by incorporating AI-generated sorting networks.

Recent developments in Artificial Intelligence (AI), particularly

in Large Language Models (LLMs), have sparked increased interest

1
https://github.com/anasgamal/alphadev-merge-quick-sort



Table 1: System Configuration for Performance Testing

Component Specification

CPU Model AMD Ryzen 5 1600AF

CPU Clock Speed 3.2 GHz

CPU Cores/Threads 6/12

RAM 16 GB DDR4

Architecture AMD64

Operating System Windows 11 (WSL)

Compiler Ubuntu clang 18.1.3

Build System Bazel 7.4.1

Testing Framework Google Test 1.12.1

Benchmarking Tool Google Benchmark 1.5.0

in utilizing computational intelligence for various tasks, including

code generation and optimization [10]. Reinforcement Learning

(RL), a technique where agents learn optimal behaviors through

reward systems [7], has been particularly influential in improving

LLMs’ ability to follow user instructions [7]. The emergence of

"LLM-based autonomous agents" has demonstrated advantages over

traditional RL agents, even without domain-specific knowledge [9].

The foundation of our implementation relies on the groundbreak-

ing work by Mankowitz et al. [4], who demonstrated how deep

reinforcement learning could optimize sorting algorithms at the

CPU instruction level. Their research introduced sorting networks

optimized for actual measured latency at the assembly level, which

we utilize in our work. Our approach extends these findings by

systematically integrating these networks into classical sorting al-

gorithms and examining their effectiveness across varying input

sizes and patterns.

Our work utilizes AlphaDev [4], an RL-based system (distinct

from LLM-based approaches), to improve classical sorting algo-

rithms through assembly-optimized sorting networks. This imple-

mentation demonstrates how targeted AI applications can enhance

well-established algorithmic methods through low-level optimiza-

tions.

3 Methodology
Our implementation utilized C++ to interface with AlphaDev’s

assembly-level sorting networks. Testing was conducted on a Win-

dows 11 PC using Ubuntu WSL. The testing environment specifica-

tions are outlined in Table 1. Our implementation process began

with establishing baseline performance using classical merge sort

and quick sort algorithms. We then integrated sorting networks

from the AlphaDev GitHub Repository [2] to create optimized ver-

sions of both algorithms.

The key innovation in our approach is the integration of sorting

networks as optimized base cases within the classical merge sort

algorithm. Rather than continuing recursive division until reaching

single elements, we check if a subarray’s size matches any of our

available sorting networks. If there is a match, we apply the corre-

sponding network directly. Algorithm 1 demonstrates this hybrid

approach.

Algorithm 1: Optimized Merge Sort with Sorting Networks

1: function OptimizedMergeSort(array, left, right)

2: size = right - left + 1

3: if size matches sorting network size then
4: ApplySortingNetwork(array[left...right])

5: return
6: end if
7: if left < right then
8: mid = left + (right - left) / 2

9: OptimizedMergeSort(array, left, mid)

10: OptimizedMergeSort(array, mid + 1, right)

11: Merge(array, left, mid, right)

12: end if
13: end function

For example, in our 6-to-8 configuration, when the algorithm

encounters a subarray of size 6, 7, or 8, it directly applies the corre-

spondingAlphaDev [4] sorting network instead of further recursion.

This optimization reduces the number of comparisons and mem-

ory operations for these critical base cases while maintaining the

algorithm’s overall divide-and-conquer structure for larger arrays.

Similarly, our Quick Sort optimization integrates sorting net-

works for small subarrays, as shown inAlgorithm 2. However, Quick

Sort’s approach differs in two key aspects: it uses the median-of-

threemethod for pivot selection andHoare’s partitioning scheme [3],

which together with the sorting networks creates a more sophisti-

cated hybrid algorithm. When a partition falls within the size range

of available sorting networks (for example, 6-8 elements in the

6To8 configuration), the algorithm bypasses further partitioning

and applies the appropriate sorting network directly.

Algorithm 2: Optimized Quick Sort with Sorting Networks

1: function OptimizedQuickSort(array, low, high)

2: size = high - low + 1

3: if size matches sorting network size then
4: ApplySortingNetwork(array[low...high])

5: return
6: end if
7: if low < high then
8: pivotIndex = MedianOfThree(array, low, high) ⊲ Pivot

selection

9: partitionIndex = HoarePartition(array, low, high, piv-

otIndex)

10: OptimizedQuickSort(array, low, partitionIndex)

11: OptimizedQuickSort(array, partitionIndex + 1, high)

12: end if
13: end function

We conducted benchmarking usingGoogle Benchmark [1], which

automatically determines the number of iterations needed to achieve

statistical significance. For example, when testing MergeSortClassic

with random arrays of size 10,000, the framework ran 646 iterations

to ensure reliable timing measurements. For larger arrays of size

25,000 and 1 million, it ran 261 and 6 iterations respectively, ad-

justing the iteration count to maintain measurement quality while



Table 2: Testing Parameters and Data Generation Specifica-
tions

Parameter Details

Input Range 10000 to 1000000

Distributions Random, sorted, nearly sorted

Framework Google Benchmark 1.5.0

Measurements CPU and wall time

Iterations Auto-scaled by benchmark

Table 3: Sorting Network Configurations

Configuration Networks Used

PowerOf2 4, 8

Even 4, 6, 8

Odd 3, 5, 7

3 3

3To4 3, 4

3To5 3, 4, 5

3To8 3, 4, 5, 6, 7, 8

6To8 6, 7, 8

VarSort3 VarSort3

VarSort4 VarSort4

VarSort5 VarSort5

accounting for longer execution times. Results were collected and

exported to CSV format for analysis and visualization.

4 Results
For each algorithm we tested, we had 12 implementations including

a classical implementation of such algorithms without our optimiza-

tions. The other 11 implementations described in Table 3 are opti-

mizations that have different configurations utilizing either fixed

or dynamic sorting networks as base cases. VarSort3/4/5 refers to

dynamic sorting networks that can handle variable-sized inputs up

to sizes 3, 4, and 5 respectively. Speedup factors (Eq. 1) represent

the ratio of classical to optimized execution times. We selected the

best performer configurations for Merge Sort and Quick Sort for the

figures in this section. We chose VarSort4 to demonstrate as a rep-

resentative of dynamic sorting networks performance, since most

of them did not provide significant performance improvements.

Speedup factor = 𝑇
classical

/𝑇
optimized

(1)

4.1 Merge Sort
This section analyzes the performance improvements achieved by

integrating AlphaDev’s sorting networks into the Merge Sort algo-

rithm. We evaluate the speedup attained by different configurations

(3-to-5, 3-to-8, 6-to-8, PowerOf2, and VarSort4) across various array

sizes and input characteristics: random arrays, sorted arrays, and

nearly sorted arrays

4.1.1 Random Arrays. Figure 1 illustrates the performance gains

achieved by integratingAlphaDev’s [4] sorting networks intoMerge
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Figure 1: Merge Sort Speed Up Analysis with Random Arrays

Sort for random arrays. Notably, the 6-to-8 configuration, employ-

ing only sorting networks of sizes 6, 7, and 8, consistently delivers

substantial speedups across all tested array sizes (10,000 to 1 mil-

lion).

While the 3-to-5 configuration shows a near 2x speedup for

arrays of size 10,000, its advantage diminishes beyond 25,000. The

3-to-8 and 6-to-8 configurations maintain near 2x speedups up to

arrays of size 50,000, and although they dip slightly at arrays of

size 100,000, they rebound to 2x at arrays of size 250,000. For larger

arrays (approaching 1 million), the speedup converges towards 1.5x,

with the 6-to-8 configuration consistently outperforming 3-to-8,

highlighting its scalability.

The 6-to-8 configuration offers an optimal balance of simplicity

and effectiveness. Its use of only three sorting networks provides

a remarkably stable speedup across the entire array size range,

making it the most practical choice for optimizing Merge Sort on

random arrays. The minor performance fluctuation at arrays of

size 100,000 is insignificant compared to its overall consistency and

simplicity.
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Figure 2: Merge Sort Speed Up Analysis with Sorted Arrays

4.1.2 Sorted Arrays. For already sorted arrays, Figure 2 reveals that
the 3-to-8 configuration provides themost significant and consistent



performance improvement. It maintains a speedup slightly above

2x across all tested array sizes, from 10,000 to 1 million. The 6-to-8

configuration exhibits similar performance, closely tracking the

3-to-8 results, albeit with a marginally lower speedup.

The 3-to-5 configuration, while initially comparable to 3-to-8 and

6-to-8 for 10,000 arrays, shows a noticeable decline in performance

as array size increases. Its speedup drops below 2x for arrays of

25,000 and larger, indicating that it’s less effective for larger, sorted

datasets in the context of Merge Sort.

It is noteworthy that the performance gains observed on sorted

arrays are, overall, more pronounced than those seen on random

arrays (as discussed in Section 4.1.1). 6-to-8 remains a good config-

uration considering its simplicity.
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Figure 3: Merge Sort Speed Up Analysis with Nearly Sorted
Arrays

4.1.3 Nearly Sorted Arrays. Figure 3 illustrates the speedup achieved
by various merge sort optimizations when applied to nearly sorted

arrays of different sizes. As shown, the 3-to-5 variant achieved the

highest speedup, approaching a 2x improvement, for arrays with

10,000 elements. However, its performance degraded relative to

3-to-8 and 6-to-8 as the array size increased beyond 25,000.

The 3-to-8 variant demonstrated the most consistent perfor-

mance across all array sizes, maintaining a speedup factor of over

1.5. The 6-to-8 variant exhibited comparable performance to 3-to-8

for most array sizes, even slightly outperforming it for arrays with

1 million elements. While 3-to-8 emerges as the most consistently

performant algorithm, 6-to-8 presents a viable alternative for nearly

sorted arrays, particularly due to its simpler implementation. The

PowerOf2 and VarSort4 variants show speedups for some array

size and input type combinations but are typically outperformed

by the 3-to-8 and 6-to-8 variants.

4.2 Quick Sort
Quick Sort was also implemented with the same configurations

illustrated in Table 3 that we used in our Merge Sort experiments.

4.2.1 Random Arrays. Figure 4 shows that for random arrays, the

3-to-8 configuration achieves the most significant speedup, reach-

ing approximately 1.25x for arrays of size 10,000. However, this

improvement diminishes as the array size increases. The 3-to-5 and
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Figure 4: Quick Sort Speed Up Analysis with Random Arrays

6-to-8 configurations show negligible speedup across all array sizes.

This suggests that for Quick Sort with random input, the integra-

tion of AlphaDev’s sorting networks offers limited performance

benefits.
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Figure 5: Quick Sort Speed Up Analysis with Sorted Arrays

4.2.2 Sorted Arrays. Figure 5 illustrates the speedup achieved by

Quick Sort optimizations on sorted arrays. Notably, the 3-to-5 con-

figuration yields the highest speedup for arrays of size 10,000, reach-

ing 1.5x. However, as the array size increases, the 6-to-8 configura-

tion becomes more effective. For arrays of size 25,000 and larger,

the 6-to-8 configuration consistently provides a speedup of around

1.5x, maintaining this improvement even for arrays with 1 million

elements. This suggests that while 3-to-5 is optimal for smaller

sorted arrays, 6-to-8 provides more consistent benefits as the input

size grows larger than 25,000.

4.2.3 Nearly Sorted Arrays. Figure 6 shows the speedup of Quick

Sort optimizations on nearly sorted arrays. Similar to the trend

observed with sorted arrays, the 3-to-5 configuration provides the

highest speedup for smaller array sizes (around 1.4x for 10,000 ele-

ments). However, the 3-to-8 configuration takes the lead in overall

performance across all array sizes, consistently achieving a speedup
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Figure 6: Quick Sort Speed Up Analysis with Nearly Sorted
Arrays

of approximately 1.3x for arrays with 10,000 elements and above.

While the 6-to-8 configuration offers minimal speedup for arrays

with 10,000 elements, it becomes more effective with larger array

sizes (25,000 and above). Despite this improvement, it consistently

falls behind the 3-to-8 configuration in terms of speedup.

4.3 Merge Sort vs Quick Sort
While previous research by Taiwo et al. [8] demonstrated that

classical Quick Sort outperforms classical Merge Sort for larger

arrays, our findings reveal a nuanced picture when incorporating

AlphaDev’s [4] sorting networks. As shown in Figure 7, we confirm

the previous results for classical implementations with array sizes

of 10,000 and larger.

However, our experiments demonstrate that certain optimized

Merge Sort variants surpass both classical Quick Sort and similarly

optimized Quick Sort variants, particularly when sorting random

arrays. Specifically, the Merge Sort 6-to-8 configuration, utilizing

only three sorting networks (sizes 6, 7, and 8), achieves a remarkable

1.5x speedup over classical Quick Sort and a 1.8x speedup over

classical Merge Sort. This makes our optimized Merge Sort with the

6-to-8 configuration a compelling choice for applications frequently

dealing with large random arrays, outperforming both classical and

optimized Quick Sort implementations.

It is crucial to note that this advantage of optimized Merge Sort

is primarily observed with random arrays. For nearly sorted as

shown in Figure 8, Quick Sort generally remains faster than Merge

Sort, even with our optimizations. We observed the same results

with sorted arrays, but due to space limitations we were not able

to include the figure.

5 Conclusion
Our research demonstrates that incorporating fixed sorting net-

works, like those discovered by AlphaDev [4], into classical sorting

algorithms can yield substantial performance improvements. The

6-to-8 configuration, using networks of sizes 6, 7, and 8, proved

particularly effective in optimizing Merge Sort for large arrays,

often providing similar benefits to using the full range of available

networks (sizes 3 to 8). This highlights the potential of carefully

selected sorting networks to significantly enhance the efficiency of

traditional sorting methods.

For Merge Sort with sorted arrays, we observed a 2.4x speedup

for arrays of size 25,000. Furthermore, this optimized Merge Sort

maintained significant speedups, exceeding 2x, even for larger ar-

rays. This demonstrates the potential of our approach to enhance

sorting efficiency across a wide range of input sizes and character-

istics.

For Quick Sort, we observe a 1.5x speedup using the 3-to-5 con-

figuration on sorted arrays of size 10,000. The 6-to-8 configuration

maintains a consistent 1.5x improvement across sorted arrays from

25,000 to 1 million elements, with the exception of arrays of size

100,000 where 6-to-8 speed up falls a little below 1.5x.

However, our work has some limitations. One is the CPU ar-

chitecture dependency of the current sorting networks, which are

limited to x86 systems. Future research could focus on discovering

or translating these networks for other common CPU architectures

to broaden their applicability. Additionally, the limited range of

available sorting networks (sizes 3 to 8) restricted our exploration

of larger network sizes. Further research could investigate the ben-

efits of larger sorting networks and their integration into classical

algorithms.

Thiswork opens new avenues for algorithm optimization, demon-

strating the potential of combining classical approaches with AI-

driven optimizations. By leveraging the strengths of both, we can

achieve significant performance gains and enhance the efficiency

of fundamental algorithms like Merge Sort and Quick Sort.
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Figure 8: Merge Sort (MS) vs Quick Sort (QS) Comparison Across Different Configurations with Nearly Sorted Arrays


