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ABSTRACT 
The standard planar Othello game has 8 (rows) * 8 (columns) = 
64 (squares). Although this planar Othello game has been solved, 
this paper still proposes a new problem based on this foundation: 
Has the originally evenly matched situation between the first 
move and second move sides changed in the game of Othello 
played on a cubic board? 

Certainly, it is not very suitable for people to play against each 
other, because playing cubic Othello in a real-world environment 
is very difficult. Even if it is changed to the smallest cubic Othello 
board with 4 (squares) * 6 (faces) = 24 (squares). Playing cubic 
Othello is very challenging because it requires understanding the 
characteristics of cubic Othello and making clear definitions of 
the ways of moving. Only in this way can we attempt to apply 
artificial intelligence (AI) techniques to cubic Othello and develop 
an expert system that can play chess on a cubic Othello board. 

Machine learning (ML) is a computer technique that uses a lot of 
input and output data to train software to understand correlations 
between the two. But before using ML techniques, we first used 
Monte Carlo simulations to predict the possible outcomes that 
would occur in cubic Othello. Monte Carlo simulation predicts 
that the winning rate of the first move (black) of cubic Othello is 
about 20%, while the winning rate of the second move (white) is 
about 80%. Clearly, in 4 (squares) * 6 (faces) cubic Othello, the 
second move has an advantage. 

Furthermore, the expert system proposed in this paper that is 
trained using the Web GPU on a personal computer can be 
executed on any contemporary browser. The training that 
originally took tens of days to complete using CPU memory on a 
personal computer can now be completed in tens of minutes in the 
Web GPU of a personal computer. This clearly shows that the 
significant benefits that can be achieved by effectively utilizing 
the GPU memory on a personal computer have surpassed the use 
of a large CPU memory computer. 
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1 Introduction 

The earliest self-play in planar Othello began with 
Logistello[1]. In August 1997, Logistello defeated the 1996 
Othello world champion Takeshi Murakami. Subsequently, 
various classical board games have been conquered by computer 
AI. It is evident that in virtual battles, whether there is computer 
assistance has become the key to the outcome of the battle. 

The rules for placing pieces in cubic Othello and planar 
Othello are the same. After placing a piece, if any of your own 
pieces on the board are on the same line (horizontal, vertical, or 
diagonal) and there are opponent's pieces in between, you can flip 
these sandwiched opponent's pieces to your own (just flip them 
over). When neither side can place a piece according to the above 
conditions, the game ends and the player with more pieces of their 
color wins. Therefore, to determine whether an empty space on 
the cubic Othello board can be placed, the cube must be spread 
out into a plane. 

The difference in difficulty between cubic (4 * 6) Othello and 
planar (8 * 8) Othello can be shown in Figure 1. Excluding the 
first move, cubic (4 * 6) Othello has approximately 3.53 * 1012 
routes, while planar (8 * 8) Othello has approximately 5.77 * 1052 
routes. 

However, real battles do not exist in purely planar battlefields, 
but more often in cube space battlefields. Therefore, there is a 
necessity for system simulation of cubic Othello chessboards. In 
the early days, when Web GPU was not widely applied, executing 
ML models could take more than a week. Thus, this paper also 



  
 

 
 

takes the opportunity to demonstrate how to utilize Web GPU on 
personal computers or smartphones to quickly perform ML 
computations in the development of this cubic and planar Othello 
expert system. 

  
Figure 1: Comparison of the average number of positions that 
can be chosen at each step between cubic Othello and planar 
Othello. 
 
2 The Characteristics of the Cubic Othello 

Chessboard 
In a cubic chessboard, each square has 7 adjacent squares 

(including diagonally), unlike a planar chessboard where there are 
corners with only 3 adjacent squares, and edges with 5 adjacent 
squares. This leads to a strategy in a planar chessboard where 
players or machines tend to take corners and avoid losing corners. 
Moreover, although each square on a cubic chessboard only has 7 
adjacent squares (a regular square on a planar has 8 adjacent 
squares), the squares on a cubic chessboard have five attack loops 
(a loop is a line that passes through the square when the cube is 
flattened in a way that each face is connected). This is one more 
than the lines that a regular square on a planar chessboard can 
attack (as shown in Figure 2). 

In addition, taking the position of the white pieces on the cubic 
chessboard in Figure 2, marked as 30, as an example, the various 
colored loop lines are spread out on the plane after the cube is 
unfolded, as shown in Figures 3 to 7. 
 

 
Figure 2: Display the directional lines that the white piece can 
attack on the cubic chessboard and the planar chessboard. 

 
Figure 3: The loop line surrounding the left face of the cube. 
 

 
Figure 4: The loop line surrounding the top face of the cube. 
 

 
Figure 5: The axis around which the loop line is wrapped is 
composed of the point formed by the three faces of 04, 14, 44 
and the point formed by the three faces of 53, 23, 33. 
 

 
Figure 6: The loop lines surround the point formed by the 
three faces of 32, 52, 02. 



  
 

 

 
Figure 7: The loop lines surround the point formed by the 
three faces of 21, 41, 31. 
 

At this point, a new question arises: for any position on the 
cubic chessboard, besides the aforementioned 5 types of attack 
lines, are there any other attack lines? The answer is yes, after 
flattening the cubic board, there are other straight lines that can be 
considered as attack lines. However, only these 5 types of attack 
lines are not only loop lines, but also the faces of the cube are 
connected by lines instead of only a point after the cube is 
flattened. In addition, after placing a piece, how to obtain the 
attack lines that can flip the opponent's pieces, as shown in 
Algorithm 1. 
 

Algorithm 1. CL(p, h, c): Find the attack lines that 

can flip the chess pieces into mine. 

Require: p: The position object p of the square to 

place the piece, this position object must contain an 

array of attack  

lines, and each line in the array of attack lines 

must record the coordinates of the positions passed 

by the attack line. 

Require: h: The current situation array h of the 

chessboard, the array will record the current 

situation of each  

position coordinate. 

Require: c: The situation c of the current placing 

piece. 

Ensure: h only recorded the following three 

situations: black piece, white piece, and no piece. 

The three situations  

are mutually exclusive and do not overlap. 

  1: o ← {} 

  2: for l ∈ p.lines do 
  3:     f ← 0 

  4:     t ← h[l[f + 1].coordinate] 

  5:     while t is not c and t is not no piece do 

  6:         f ← f + 1                               

                       ▷f is not bigger then l.length 
  7:         t ← h[l[f + 1].coordinate] 

  8:         if t is c then 

  9:             o ← o + l, f 

 10:             break while 

 11:         end if 

 12:     end while 

 13: end for 

 14: return o 

 
From Algorithm 1, assuming n is the number of attack lines at 

a certain position, and m is the number of squares that this attack 
line passes through, then the time complexity of the attack line 
increasing is O(n), and the space complexity is O(n × m), so the 
increase of the chessboard size cause insufficient memory, the 
increase of the attack line at each position will also cause 
insufficient memory. Therefore, choosing meaningful loop lines 
as attack lines can reduce the difficulty of implementing the 
expert systems of the cubic Othello. 

In addition, playing the Monte Carlo simulation[2] of Othello 
on a plane and a cube, it can be observed that on the cubic Othello, 
the player with the second move (white) has an advantage, as 
shown in Table 1. 
 
Table 1. Compare whether the first move has an advantage or 
the second move has an advantage in the plane and the  
cube. 
Playing the Monte Carlo 

simulation 

Black Win 

(first move) 

White Win 

(second move) 

Tie 

Planar Othello 46% 48% 6% 

Cubic Othello 16% 82% 2% 

 
3 Method 
3.1 Backtracking[3] 

After trying Q-learning[4] (Q table) and multithreading, it was 
found that the fastest way to obtain battle records is still to 
execute single-threaded backtracking. However, the method of 
recording wins and losses adopts a reward method similar to 
reinforcement learning[5]. The goal is to find if there is a path for 
the first move (black) to win, and adopt a black-winner-takes-all 
strategy. Let each square on the path to victory for the black piece 
have a reward value of -24 (if there is only one black piece on the 
board, it is -1, up to 24, so it is -24). On the contrary, if this game 
has ended and the white piece still wins, then the squares on this 
path will maintain their original reward value (the original reward 
value refers to the reward value at the position after a piece is 
placed, which is the number of white pieces on the board minus 
the number of black pieces, and all possible next steps The reward 
value is set to -25, indicating that any reward value generated in 
the next step can replace it). 
 
3.2 K-nearest neighbor algorithm[6] 

After obtaining the battle record, the next step is to train the 
computer to establish a model. After comparing neural networks 
(NN) and K-nearest neighbor algorithm (KNN), it was found that 
neural networks have difficulty obtaining feature values between 



  
 

 
 

square reward values and winning paths. The reason is that after 
each move in Othello, the change in reward value is too large, 
causing training errors to be difficult to converge. Therefore, we 
adopt the K-nearest neighbor algorithm that requires a large 
amount of calculation. Fortunately, now is the era of GPU, and 
since Google opened TensorFlow.js[7], we have entered an era 
where large-scale calculations can be performed on the front end 
of web pages. In addition, ml5.js[8] makes TensorFlow.js more 
friendly to programmers. After that, ML technology has become 
easier to apply in various fields. 
 
3.3 Prediction 

The predictive data of KNN is based on the data obtained from 
the backtracking method. The backtracking data used in this paper 
for cubic Othello is a path where there are no empty squares on 
the board when the game ends. Then, all path data within 9 steps 
of backtracking from this path is collected. For the 8 * 8 planar 
chessboard of our paper (used as a control group), applying the 
above logic can only backtrack the path data within 7 steps. This 
is done to ensure that the usage of GPU memory does not exceed 
8GB. 

The principle of the first move (black) is to try not to let white 
pieces go to positions where the reward value is not -24. On the 
contrary, the principle of white pieces is to try to find positions 
where the reward value is not -24. As long as a white piece goes 
to a position where the reward value is not -24, it means that white 
pieces are almost certain to win, except for errors in KNN 
prediction, black pieces may win. 

Comparing with the paper we referred to, "Othello is 
Solved"[9], that first finds all the results of the first ten steps 
(where there are still 50 squares left to play) on an 8 * 8 planar 
chessboard, and then uses α-β search to remove unwanted paths 
from the situation presented by that game, until there are only 36 
squares left to play. Finally, it calculates the game-theoretic value 
of all 36 squares that meaning all possible paths for the remaining 
36 squares are run, and the optimal path leading to a tie. However, 
this referenced paper cannot explain the phenomenon caused by 
the prediction of the expert system in this paper. 
 
4 Implementation 

The cubic Othello and the planar Othello implementation URL 
is: https://www.cpapeijer.com/home/autolearn2. It is written in 
JavaScript and uses the public packages p5.js[10] and ml5.js. The 
model trained under the condition of not exceeding 8GB GPU 
memory can be smoothly executed on any computer or mobile 
phone that can run a browser for prediction. 
 
5 Results and Discussion 

Through Web GPU computation, the workload that originally 
required several days to complete with CPU memory can be 
completed in just a few minutes, and the time spent on predicting 
answers can also be completed in a few seconds. 

In the implementation of the expert system for cubic Othello, 
we not only compared battles in ML vs. Monte Carlo simulation 
(MCS), but also implemented an expert system for planar Othello 
as a control group because the results on cubic Othello were too 
strange. The experimental results are shown in Table 2 and Table 
3. 
 
Table 2. Comparison of playing the cubic version of the expert 
system. 
Playing expert system 

of cubic Othello games 

Black Win 

(first move) 

White Win 

(second move) 

Tie 

Black ML 

 vs. White ML 

0% 100% 0% 

Black MCS 

 vs. White ML 

15% 82% 3% 

Black ML 

 vs. White MCS 

31% 67% 2% 

 
Table 3. Comparison of playing the planar version of the 
expert system. 
Playing expert system 

of planar Othello 

games (control group, 

GPU memory out of 8GB) 

Black Win 

(first move) 

White Win 

(second move) 

Tie 

Black ML 

 vs. White ML 

0% 100% 0% 

Black MCS 

 vs. White ML 

37% 60% 3% 

Black ML 

 vs. White MCS 

57% 42% 1% 

 
Referring to the results in Table 1, it is evident that the second 

move (white) is very advantageous when both sides use ML. This 
is likely because when trained using KNN, the input data is set to 
the black-winner-takes-all strategy, which leads to the first move 
(black) have an overly optimistic belief in victory. The second 
move (white) only needs to focus on finding that glimmer of light 
in the darkness to win. 
 
6 Conclusion 

In this era where AI triumphs over human chess masters, this 
paper advances the world of chess gaming into the cubic 
chessboard, and discovers some astonishing characteristics in it, 
such as the number and selection of attack lines, the advantages of 
going first or second, and the reaction of AI to the situation of 
asymmetric advantages. These are new discoveries made in the 
process of implementation. Of course, in the future, more flat 
chess games may be cubed, because there are always some people 
who are not afraid to try that is too difficult. 

Certainly, we also recognize that some readers may be 
skeptical about the effectiveness of the expert system proposed in 
this paper. But in fact, the focus of this paper is on the application 
of Web GPU, not on the development of new AI or ML 
technologies. At present, there are fewer papers discussing the use 



  
 

 

of front-end GPU memory on web pages. Although HTML 5 
already included the WebGL[11] 3D drawing framework that uses 
GPU memory since 2006, it wasn't until the emergence of 
TensorFlow.js in 2018 that the threshold for using WebGL to 
build AI in the browser was lowered. The ml5.js announced in the 
same year is a user-friendly version of TensorFlow.js. So far, the 
trilogy of ML (collection, training, and prediction) can be more 
easily executed on the front end of the browser. 

This paper is just a starting point, hoping that in the future 
there will be more AI applications on the front end of the browser, 
so that the construction of AI is not exclusive to certain 
professionals, but like cooking, as long as you want to do it for the 
people you love, everyone can become a master. 
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