
EasyChair Preprint
№ 12767

Discovery of the Characteristics of the Cubic
Othello Chessboard and Its Implementation of
Visualization Expert System

Jer Fong Chen and Fang Rong Hsu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 22, 2024

Discovery of the Characteristics of the Cubic Othello Chessboard
and its Implementation of Visualization Expert System

Jer-Fong Chen
 Information Engineering and Computer Science

 Feng Chia University
 Taichung

 p1300056@o365.fcu.edu.tw

Fang-Rong Hsu
 Information Engineering and Computer Science

 Feng Chia University
 Taichung

 frhsu@o365.fcu.edu.tw

ABSTRACT
The standard planar Othello game has 8 (rows) * 8 (columns) =
64 (squares). Although this planar Othello game has been solved,
this paper still proposes a new problem based on this foundation:
Has the originally evenly matched situation between the first
move and second move sides changed in the game of Othello
played on a cubic board?

Certainly, it is not very suitable for people to play against each
other, because playing cubic Othello in a real-world environment
is very difficult. Even if it is changed to the smallest cubic Othello
board with 4 (squares) * 6 (faces) = 24 (squares). Playing cubic
Othello is very challenging because it requires understanding the
characteristics of cubic Othello and making clear definitions of
the ways of moving. Only in this way can we attempt to apply
artificial intelligence (AI) techniques to cubic Othello and develop
an expert system that can play chess on a cubic Othello board.

Machine learning (ML) is a computer technique that uses a lot of
input and output data to train software to understand correlations
between the two. But before using ML techniques, we first used
Monte Carlo simulations to predict the possible outcomes that
would occur in cubic Othello. Monte Carlo simulation predicts
that the winning rate of the first move (black) of cubic Othello is
about 20%, while the winning rate of the second move (white) is
about 80%. Clearly, in 4 (squares) * 6 (faces) cubic Othello, the
second move has an advantage.

Furthermore, the expert system proposed in this paper that is
trained using the Web GPU on a personal computer can be
executed on any contemporary browser. The training that
originally took tens of days to complete using CPU memory on a
personal computer can now be completed in tens of minutes in the
Web GPU of a personal computer. This clearly shows that the
significant benefits that can be achieved by effectively utilizing
the GPU memory on a personal computer have surpassed the use
of a large CPU memory computer.

I-DO '24, May 22–24, 2024, Taipei, Taiwan

© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0918-0/24/05

https://doi.org/10.1145/3658549.3658550

CCS CONCEPTS
• Human-centered computing • Visualization • Visualization design and
evaluation methods

• Computing methodologies • Modeling and simulation • Model
development and analysis • Model verification and validation
• Computing methodologies • Machine learning • Machine learning
approaches • Stochastic games

KEYWORDS
Othello Game, Cubic Chessboard, Artificial Intelligence, Machine
Learning, K-Nearest Neighbors Algorithm, Web GPU

1 Introduction

The earliest self-play in planar Othello began with
Logistello[1]. In August 1997, Logistello defeated the 1996
Othello world champion Takeshi Murakami. Subsequently,
various classical board games have been conquered by computer
AI. It is evident that in virtual battles, whether there is computer
assistance has become the key to the outcome of the battle.

The rules for placing pieces in cubic Othello and planar
Othello are the same. After placing a piece, if any of your own
pieces on the board are on the same line (horizontal, vertical, or
diagonal) and there are opponent's pieces in between, you can flip
these sandwiched opponent's pieces to your own (just flip them
over). When neither side can place a piece according to the above
conditions, the game ends and the player with more pieces of their
color wins. Therefore, to determine whether an empty space on
the cubic Othello board can be placed, the cube must be spread
out into a plane.

The difference in difficulty between cubic (4 * 6) Othello and
planar (8 * 8) Othello can be shown in Figure 1. Excluding the
first move, cubic (4 * 6) Othello has approximately 3.53 * 1012
routes, while planar (8 * 8) Othello has approximately 5.77 * 1052
routes.

However, real battles do not exist in purely planar battlefields,
but more often in cube space battlefields. Therefore, there is a
necessity for system simulation of cubic Othello chessboards. In
the early days, when Web GPU was not widely applied, executing
ML models could take more than a week. Thus, this paper also

takes the opportunity to demonstrate how to utilize Web GPU on
personal computers or smartphones to quickly perform ML
computations in the development of this cubic and planar Othello
expert system.

Figure 1: Comparison of the average number of positions that
can be chosen at each step between cubic Othello and planar
Othello.

2 The Characteristics of the Cubic Othello

Chessboard
In a cubic chessboard, each square has 7 adjacent squares

(including diagonally), unlike a planar chessboard where there are
corners with only 3 adjacent squares, and edges with 5 adjacent
squares. This leads to a strategy in a planar chessboard where
players or machines tend to take corners and avoid losing corners.
Moreover, although each square on a cubic chessboard only has 7
adjacent squares (a regular square on a planar has 8 adjacent
squares), the squares on a cubic chessboard have five attack loops
(a loop is a line that passes through the square when the cube is
flattened in a way that each face is connected). This is one more
than the lines that a regular square on a planar chessboard can
attack (as shown in Figure 2).

In addition, taking the position of the white pieces on the cubic
chessboard in Figure 2, marked as 30, as an example, the various
colored loop lines are spread out on the plane after the cube is
unfolded, as shown in Figures 3 to 7.

Figure 2: Display the directional lines that the white piece can
attack on the cubic chessboard and the planar chessboard.

Figure 3: The loop line surrounding the left face of the cube.

Figure 4: The loop line surrounding the top face of the cube.

Figure 5: The axis around which the loop line is wrapped is
composed of the point formed by the three faces of 04, 14, 44
and the point formed by the three faces of 53, 23, 33.

Figure 6: The loop lines surround the point formed by the
three faces of 32, 52, 02.

Figure 7: The loop lines surround the point formed by the
three faces of 21, 41, 31.

At this point, a new question arises: for any position on the
cubic chessboard, besides the aforementioned 5 types of attack
lines, are there any other attack lines? The answer is yes, after
flattening the cubic board, there are other straight lines that can be
considered as attack lines. However, only these 5 types of attack
lines are not only loop lines, but also the faces of the cube are
connected by lines instead of only a point after the cube is
flattened. In addition, after placing a piece, how to obtain the
attack lines that can flip the opponent's pieces, as shown in
Algorithm 1.

Algorithm 1. CL(p, h, c): Find the attack lines that

can flip the chess pieces into mine.

Require: p: The position object p of the square to

place the piece, this position object must contain an

array of attack

lines, and each line in the array of attack lines

must record the coordinates of the positions passed

by the attack line.

Require: h: The current situation array h of the

chessboard, the array will record the current

situation of each

position coordinate.

Require: c: The situation c of the current placing

piece.

Ensure: h only recorded the following three

situations: black piece, white piece, and no piece.

The three situations

are mutually exclusive and do not overlap.

 1: o ← {}

 2: for l ∈ p.lines do
 3: f ← 0

 4: t ← h[l[f + 1].coordinate]

 5: while t is not c and t is not no piece do

 6: f ← f + 1

 ▷f is not bigger then l.length
 7: t ← h[l[f + 1].coordinate]

 8: if t is c then

 9: o ← o + l, f

 10: break while

 11: end if

 12: end while

 13: end for

 14: return o

From Algorithm 1, assuming n is the number of attack lines at

a certain position, and m is the number of squares that this attack
line passes through, then the time complexity of the attack line
increasing is O(n), and the space complexity is O(n × m), so the
increase of the chessboard size cause insufficient memory, the
increase of the attack line at each position will also cause
insufficient memory. Therefore, choosing meaningful loop lines
as attack lines can reduce the difficulty of implementing the
expert systems of the cubic Othello.

In addition, playing the Monte Carlo simulation[2] of Othello
on a plane and a cube, it can be observed that on the cubic Othello,
the player with the second move (white) has an advantage, as
shown in Table 1.

Table 1. Compare whether the first move has an advantage or
the second move has an advantage in the plane and the
cube.
Playing the Monte Carlo

simulation

Black Win

(first move)

White Win

(second move)

Tie

Planar Othello 46% 48% 6%

Cubic Othello 16% 82% 2%

3 Method
3.1 Backtracking[3]

After trying Q-learning[4] (Q table) and multithreading, it was
found that the fastest way to obtain battle records is still to
execute single-threaded backtracking. However, the method of
recording wins and losses adopts a reward method similar to
reinforcement learning[5]. The goal is to find if there is a path for
the first move (black) to win, and adopt a black-winner-takes-all
strategy. Let each square on the path to victory for the black piece
have a reward value of -24 (if there is only one black piece on the
board, it is -1, up to 24, so it is -24). On the contrary, if this game
has ended and the white piece still wins, then the squares on this
path will maintain their original reward value (the original reward
value refers to the reward value at the position after a piece is
placed, which is the number of white pieces on the board minus
the number of black pieces, and all possible next steps The reward
value is set to -25, indicating that any reward value generated in
the next step can replace it).

3.2 K-nearest neighbor algorithm[6]

After obtaining the battle record, the next step is to train the
computer to establish a model. After comparing neural networks
(NN) and K-nearest neighbor algorithm (KNN), it was found that
neural networks have difficulty obtaining feature values between

square reward values and winning paths. The reason is that after
each move in Othello, the change in reward value is too large,
causing training errors to be difficult to converge. Therefore, we
adopt the K-nearest neighbor algorithm that requires a large
amount of calculation. Fortunately, now is the era of GPU, and
since Google opened TensorFlow.js[7], we have entered an era
where large-scale calculations can be performed on the front end
of web pages. In addition, ml5.js[8] makes TensorFlow.js more
friendly to programmers. After that, ML technology has become
easier to apply in various fields.

3.3 Prediction

The predictive data of KNN is based on the data obtained from
the backtracking method. The backtracking data used in this paper
for cubic Othello is a path where there are no empty squares on
the board when the game ends. Then, all path data within 9 steps
of backtracking from this path is collected. For the 8 * 8 planar
chessboard of our paper (used as a control group), applying the
above logic can only backtrack the path data within 7 steps. This
is done to ensure that the usage of GPU memory does not exceed
8GB.

The principle of the first move (black) is to try not to let white
pieces go to positions where the reward value is not -24. On the
contrary, the principle of white pieces is to try to find positions
where the reward value is not -24. As long as a white piece goes
to a position where the reward value is not -24, it means that white
pieces are almost certain to win, except for errors in KNN
prediction, black pieces may win.

Comparing with the paper we referred to, "Othello is
Solved"[9], that first finds all the results of the first ten steps
(where there are still 50 squares left to play) on an 8 * 8 planar
chessboard, and then uses α-β search to remove unwanted paths
from the situation presented by that game, until there are only 36
squares left to play. Finally, it calculates the game-theoretic value
of all 36 squares that meaning all possible paths for the remaining
36 squares are run, and the optimal path leading to a tie. However,
this referenced paper cannot explain the phenomenon caused by
the prediction of the expert system in this paper.

4 Implementation

The cubic Othello and the planar Othello implementation URL
is: https://www.cpapeijer.com/home/autolearn2. It is written in
JavaScript and uses the public packages p5.js[10] and ml5.js. The
model trained under the condition of not exceeding 8GB GPU
memory can be smoothly executed on any computer or mobile
phone that can run a browser for prediction.

5 Results and Discussion

Through Web GPU computation, the workload that originally
required several days to complete with CPU memory can be
completed in just a few minutes, and the time spent on predicting
answers can also be completed in a few seconds.

In the implementation of the expert system for cubic Othello,
we not only compared battles in ML vs. Monte Carlo simulation
(MCS), but also implemented an expert system for planar Othello
as a control group because the results on cubic Othello were too
strange. The experimental results are shown in Table 2 and Table
3.

Table 2. Comparison of playing the cubic version of the expert
system.
Playing expert system

of cubic Othello games

Black Win

(first move)

White Win

(second move)

Tie

Black ML

 vs. White ML

0% 100% 0%

Black MCS

 vs. White ML

15% 82% 3%

Black ML

 vs. White MCS

31% 67% 2%

Table 3. Comparison of playing the planar version of the
expert system.
Playing expert system

of planar Othello

games (control group,

GPU memory out of 8GB)

Black Win

(first move)

White Win

(second move)

Tie

Black ML

 vs. White ML

0% 100% 0%

Black MCS

 vs. White ML

37% 60% 3%

Black ML

 vs. White MCS

57% 42% 1%

Referring to the results in Table 1, it is evident that the second

move (white) is very advantageous when both sides use ML. This
is likely because when trained using KNN, the input data is set to
the black-winner-takes-all strategy, which leads to the first move
(black) have an overly optimistic belief in victory. The second
move (white) only needs to focus on finding that glimmer of light
in the darkness to win.

6 Conclusion

In this era where AI triumphs over human chess masters, this
paper advances the world of chess gaming into the cubic
chessboard, and discovers some astonishing characteristics in it,
such as the number and selection of attack lines, the advantages of
going first or second, and the reaction of AI to the situation of
asymmetric advantages. These are new discoveries made in the
process of implementation. Of course, in the future, more flat
chess games may be cubed, because there are always some people
who are not afraid to try that is too difficult.

Certainly, we also recognize that some readers may be
skeptical about the effectiveness of the expert system proposed in
this paper. But in fact, the focus of this paper is on the application
of Web GPU, not on the development of new AI or ML
technologies. At present, there are fewer papers discussing the use

of front-end GPU memory on web pages. Although HTML 5
already included the WebGL[11] 3D drawing framework that uses
GPU memory since 2006, it wasn't until the emergence of
TensorFlow.js in 2018 that the threshold for using WebGL to
build AI in the browser was lowered. The ml5.js announced in the
same year is a user-friendly version of TensorFlow.js. So far, the
trilogy of ML (collection, training, and prediction) can be more
easily executed on the front end of the browser.

This paper is just a starting point, hoping that in the future
there will be more AI applications on the front end of the browser,
so that the construction of AI is not exclusive to certain
professionals, but like cooking, as long as you want to do it for the
people you love, everyone can become a master.

ACKNOWLEDGMENTS
The author acknowledges that translations and some code
examples for this article were generated by ChatGPT (powered by
OpenAI's language model; http://openai.com). The editing was
performed by the author.

REFERENCES
[1] M. Buro. 1995. Logistello: A Strong Learning Othello Program. 19th Annual

Conference Gesellschaft für Klassifikation e.V., Basel.
[2] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta

H. Teller, Edward Teller. 1953. Equation of State Calculations by Fast
Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953). DOI:
https://doi.org/10.1063/1.1699114

[3] Gurari, Eitan. 1990. "CIS 680: DATA STRUCTURES: Chapter 19:
Backtracking Algorithms". Archived from the original on 17 March 2007.

[4] Watkins, C.J.C.H. 1989. Learning from Delayed Rewards. PhD Thesis,
University of Cambridge, England.

[5] A. L. Samuel. 1959. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, vol. 3, no. 3, pp. 210-
229.

[6] Fix E., Hodges J.L.. 1951. "Discriminatory Analysis. Nonparametric
Discrimination: Consistency Properties". Tech. rep. 21-49-004, USAF School of
Aviation Medicine, Randolph Field, Texas.

[7] Google Research. 2015. "TensorFlow: Large-scale machine learning on
heterogeneous systems". https://tensorflow.org

[8] Daniel Shiffman. 2018. A Beginner's Guide to Machine Learning in JavaScript.
https://thecodingtrain.com

[9] Hiroki Takizawa. 2023. Othello is Solved. arXiv (2023). DOI:
https://doi.org/10.48550/arXiv.2310.19387

[10] Lauren McCarthy, Casey Reas, Ben Fry. 2015. "Getting Started with p5.js:
Making Interactive Graphics in JavaScript and Processing". Make Community,
LLC.

[11] Tony Parisi. 2012. "WebGL: Up and Running: Building 3D Graphics for the
Web". O'REILLY.

https://thecodingtrain.com/

