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Abstract. SHM systems have been widely implemented in long-span bridges, and
seas of field measurement data have been accumulated. Due to the imperfect sensors,
data transmission and acquisition, various anomalies inevitably exist in the SHM data,
which may lead to unreliable structural condition assessment. Thus, an effective
approach for detecting data anomalies is highly desirable. Due to the imbalanced data,
some anomalous patterns are undertrained in popular end-to-end deep neural network
models, resulting in a reduction in detection precision.In this paper, a hierarchical
classification model with deep neural network tree is proposed for imbalanced data.
The DNN tree contains three levels: (1) CNN to divide seven types of data into four
categories (134, 2, 5, 67), denoted as C4; (2) two DNNs to classify to two classes
separately (1, 34, 6, 7), denoted as D2D2; (3) DNNs to classify to two classes (3, 4).
So, the DNN tree is presented as C4_D2D2_D2. The DNN tree is an open framework
and can be defined based on the data characteristics. In the data processing, three data
sets are built for training, namely single-channel data set, dual-channel data set and
statistical data set. To validate our work, we considered the effects of balanced and
imbalanced training sets and training ratios. The results show that our model can
detect the multi-pattern anomalies of SHM data efficiently with 95.5% high accuracy.
Besides, the proportion of abnormal data classified to normal data has been reduced,
especially 3-minor. This model successfully solves the problem in a simple and easy
to understand way, which has certain reference significance for the bridge structure
anomaly judgment in the future.

1. Introduction
Bridges are fundamental facilities in the transportation system, and their operational safety is crucial to
the economic and social development. The routine environmental actions and operational loads as well
as the extreme events such as typhoons and earthquakes may cause unfavorable effects on bridges and
shorten the service life [1]. In order to recognize structural condition in a real-time online fashion,
more and more bridges, during the last three decades, are equipped with structural health monitoring
(SHM) systems, which utilize sensing techniques and structural characteristics analysis to detect
structural damage or degradation [2-6].

However, the SHM system itself suffers from malfunction and produces a variety of data anomalies.
This practical issue adversely affects the subsequent monitoring data analysis and may mislead the
bridge condition assessment. Therefore, identifying data anomaly becomes a prerequisite for an
effective SHM [7-8].

To solve the imbalanced classification problem with bias distribution of data and improve the data
anomaly detection accuracy further, a hierarchical classification model with deep neural network tree
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is proposed. First, in the data processing, the raw data, its Fourier transform images and the statistical
characteristics are integrated for model training. Second, three levels of DNN tree was established. (1)
CNN divided the seven types of data into four categories (134, 2, 5,67), which were represented as C4;
(2) the two DNNs are classified into two categories respectively (1,34,6,7), denoted as D2D2; (3) The
DNN is classified into two classes (3,4). So, the DNN tree is represented as C4_D2D2_D2. The
experimental results show that our model can detect the multi-pattern anomalies of SHM data
efficiently with 95.5% high accuracy. Besides, the proportion of abnormal data classified to normal
data has been reduced, especially 3-minor.

The main contributions of this paper are as follows:
1. A hierarchical model with deep neural network tree is proposed for the imbalanced classification

problem with bias distribution of data. It is an open framework and can be defined based on the data
characteristics. Compared with the end-to-end models, it is easy to control the training details, which
can reduce the number of abnormal samples being classified to normal classes especially 3-minor.

2. Three data sets are built for training, namely single-channel data set, dual-channel data set and
statistical data set. Compared with only using the raw data, more features are integrated and play an
important role at subtrees of the model.

2. Related Work
Since Geoffrey Hinton and his student Simon Osindero proposed a new deep belief network training
method in 2006 [9], deep learning has developed rapidly and has been applied to many fields.
Compared with the previous shallow learners, deep learning has a more excellent feature learning
ability and a more essential characterization of the data. Many feature extraction steps that previously
required manual coding are completely replaced by isomorphic networks in deep learning, which
greatly reduces the difficulty of developing new algorithms for specific tasks. Previous work shows
that, as long as there is enough training, deep networks can often extract better feature representations
than those carefully designed manually [10]. Many excellent deep neural networks are proposed, such
as AlexNet [10], VGGNet [11], Google Inception Net [12], ResNet [13]. In this paper, we combine the
advantages of these networks and the data characteristics to propose an effective network for feature
extraction and anomaly detection.

At present, many researches have been based on neural networks. Gu et al. detected structural
damage under varying temperatures using auto‐associative neural networks [14]. Ye et al. conducted
vision-based dynamic displacement measurements of a long-span bridge using a pattern matching
algorithm [15]. Zhou et al. applied a hierarchical clustering method for damage detection [16]. Ma
used DBN network to train label data, and proposed GSO-DBN model to solve the defect of
parameters falling into local optimal [17]. Bao et al. presented a computer vision and deep
learning‐based automatic anomaly detection method [7]. They trained a deep neural network (DNN) to
observe and classify future data pieces automatically. Zhiyi Tang et al. [8] used Convolutional Neural
Network (CNN) to detect anomaly. But a common problem arose in these studies is the unbalance of
the input data sets. Some of the anomalous patterns were under-trained because of the lack of training
samples, which resulted in lower detection accuracy compared with other patterns.

3. METHOD
In this study, we conducted data anomaly detection on the acceleration data given by SHM system of a
long-span cable-stayed bridge in China. The system consists of 38 channels with a sampling frequency
of 20Hz. The acceleration data is divided into 7 patterns, including 6 abnormal patterns: missing,
minor, outlier, trend and drift. A brief description of the characteristics of these seven data patterns is
presented in Table 1.



Table 1. Ratio of each pattern in actual data anomaly distribution

No Anomaly patterns Description
1 Normal The time response is symmetrical; frequency response is

peak-like (may differ between bridges)
2 Missing Most/all of the time response is missing, which makes

the time and frequency response zero
3 Minor Relative to normal sensor data, the amplitude is very

small in the time domain
4 Outlier One or more outliers appear in the time response
5 Square The times response is like a square wave
6 Trend The data has an obvious trend in the time domain and

has an obvious peak value in the frequency domain
7 Drift The vibration response is non-stationary, with random

drift

Figure 1 shows 7 images each for channels 2, 20, and 35 from the training set. And the coordinate
system is invisible, because the information about duration and amplitude of the vibration response are
not essential for an outline classification.

Figure 1. Examples of data visualization for channels 2, 20, and 35 (samples are reordered by
anomaly patterns): (a) channel 2, (b) channel 20, and (c) channel 35.

3.1. Formatting the title



Figure 2.Workflow of the data processing

3.1.1 Raw Data. The data was measured by the SHM system in January 2012. There were 38 channels
in the system, and each channel contained 744 samples for a total of 28272 samples. The single sample
data was based on 72,000 time points within 1 hour and the sensor collected data every 0.05 seconds.
These samples are divided into the 7 data patterns. The distribution of samples is shown in Table 2. We
can briefly conclude that these eight types of data patterns are distributed inhomogeneous. In addition
to normal data, trend data accounted for the largest share, followed by missing and square data. So, it
is a classification problem with unbalanced labels.

Table 2. Ratio of each pattern in actual data anomaly distribution

Anomaly patterns Quantity (pieces of
data)

Ratio of anomalies
(%)

Ratio of total
(%)

Normal 13575 - 48.02
Missing 2942 20.02 10.41
Minor 1775 12.08 6.28
Outlier 527 3.58 1.86
Square 2996 20.39 10.59
Trend 5778 39.31 20.44
Drift 679 4.62 2.40
Total anomalies 14697 100.00 51.98
Total 28272 - 100

The abnormal patterns of the samples are also labeled as marking normal, missing, minor, outlier,
trend and drift as numbers 1 to 7 respectively. During sample training, we convert the labels into one-
hot labels.

Three data sets are built based on these samples, namely single-channel data set, dual-channel data
set and statistical data set.

3.1.2 Single-channel data set. A 72000×1 image vector is used to visualize the 72000 data points in
one hour of each channel. Then, the image vector is transformed and resized to a 100×100 image pixel
array by sequentially in line-by-line order. There are 38 × 744 images in total, denoted as

{x , [0,744], [1,38]}t
i t i  X .



3.1.3 Dual-channel data set. The raw data undergone a fast Fourier transform to obtain Magnitude
maps. The obtained magnitude maps are converted into 100×100 grayscale maps, which could be
defined as a single-channel data set. The dual-channel data set was obtained from a combination of the
Fourier maps and the above single-channel data set, denoted as {m , [0,744], [1,38]}t

i t i  M .

3.1.4 Statistical data set. The statistical characteristics of the data are sorted out. For each sample of
each channel, the mean u, standard deviation s and range r of every 100time points are extracted to
form a 3× 720 matrix named. Similarly, we inspect the aforementioned four factors after Fourier
changes every 5 seconds to construct a 3×720 matrix. The above two matrices are combined to the
6×720 matrix. The statistical data set contains 38×744 matrices for 38 channels with 744 samples, in
which each matrix is 6×720. The statistical data set is denoted as: [u,u ,s,s ,r, r ]f f fU .

3.2 DNN tree based hierarchical Classification Model

Figure 3. DNN tree based hierarchical Classification Model

Following the divide and conquer strategy, a hierarchical classification model with deep neural
network tree is proposed for data anomaly detection method. The DNN tree combines convolutional
neural network and deep neural networks with fully connected layers. CNN is used to divide abnormal
data patterns into some easily distinguishable classes. Then DNN models are adopted to classify the
remaining classes which are not be well distinguished. In details, the DNN tree contains three levels:
(1) CNN to divide seven types of data into four categories (134, 2, 5, 67), denoted as C4, in which
the normal classes, the minor classes and the outlier classes are grouped together to form a new class
in the first level.
(2) two DNNs to classify to two classes separately (1, 34, 6, 7), denoted as D2D2;
(3) DNN to classify to the remaining two classes (3, 4), denoted as D2.
So, the DNN tree is presented as C4_D2D2_D2. The DNN tree can be defined based on the data

characteristics. In practice, through experiments it can be seen which classes are easy to distinguish or
not. And the classes which are not easy to distinguish are grouped into one category and then classify
them layer by layer.

The model includes two basic models, namely CNN and DNN. CNN is in charge of image
processing, completing the preliminary classification, CNN is proper for extracting feature of image



which is arrange in the first branch of classify tree. CNN includes four convolutional layers and the
neuron of each layer is design for two dimensions, including height and width. First two layers
possess 8 neurons and a Maxpooling layer with 2×2 pool-size is designed after it. The later two layers
possess 16 neurons, all kernel size of layers is 6×6. Besides, each layer sharing the weight. Another
2 × 2 pooling-size Max-pooling layer is designed before classification dense. ReLU is treat as
activation function. The convolution in layers recognize the feature of image and complete the
extraction, max-pooling implements image sampling.7 output dense provides position for
classification results. The metrics depends accuracy and categorical_crossentropy is used as loss
function.

DNN acts on further classification, it was design for three hiding layers, the first layer consist of
100 units, the second layer consist of 50 units and the third layer consist of 25 units, using the ReLU
as activation function. While calculating the first layers, we add the 0.2 drop out coefficient to avoid
model overfitting caused by possibility of lack of data. The tight connection of neurons of proximal
layers ensure the effective disseminate of calculated vectors. Multi-layers improve the expressing
ability of model. Each layer has its weight and the unit follows the regression relationship focusing on
the neuron. The last step outputs three dense and completes the classification. To complete the
classification, the final layers process 3 dense activated by softmax. The metrics is accuracy and
categorical cross-entropy is used as loss function,same as the framework of CNN.

3.3Model Training
In the C4 process, CNN model, which trained by 3000 samples selected from the Dual-channel dataset
is applied. The selected samples contains 300 samples for each class of anomalies, totally 1800
samples for the 6 classes of anomalies, and 1200 samples for the normal samples. In this way, 7
abnormal data patterns can be classified into 4 classes. And pattern 2 and 5 can be clearly
distinguished, while pattern 1,3,4 and 6,7 were still always divided into one class. The model
continues to classify these two classes of data.

For the class of data patterns 6 and 7, the DNN model with single-channel data set is used. So the
data obtained in C4 is organized into the form of single-channel data set and 800 samples of 6
abnormal pattern and 400 samples of 7 abnormal pattern were selected for training.

For the other class of data patterns 1,3,4, two-classification operation is adopted twice. The data
obtained in C4 is organized into the form of statistical data set. The DNN model is selected for training
with samples of 1600, 1200, 400 for abnormal pattern 1,3,4 respectively. In this way, pattern 1 will be
distinguished and pattern 3 and 4 will be grouped together. Then, the DNN model with single-channel
data set is selected again to distinguish 3 and 4. We set samples of 400,400 for pattern 3 and 4 for
training.

During the whole process, all the abnormal data patterns are distinguished and classified well.
Table 3 Training sample composition

Model Training data set size
CNN 1200(normal)+300×6(abnormal)
DNN1 1200×normals+800×minor+400×outlier
DNN2 800×trend+400×drift
DNN3 400×minor+400×outlier

4. Experiment

4.1 model evaluation
Before our model was proposed, some other models like CNN [7], DNN [8] and CNN+DNN were
also taken into account. CNN+DNN model is a combination of the DNN model and the CNN model.



The results obtained from C4_D2D2_D2 model and three other models are presented in Table 4
respectively. In the training phase, 3000 samples, about 10% of the total samples are taken for training,
and the remaining samples are used for validation. The selected samples contain 300 samples for each
class of anomalies, totally 1800 samples for the 6 classes of anomalies, and 1200 samples for the
normal samples.

Accuracy, precision rate, and recall rate are important indicators for testing model. Accuracy is the
ratio of the correctly predicted sample to the total sample. The precision rate is the average of the
proportion of samples that were correctly predicted to be abnormal as a proportion of all samples
predicted to be abnormal in each abnormal pattern. The recall rate is averaged over the proportion of
each type of exception that was correctly predicted as an exception to the actual exception.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)
Precision = TP/(TP + FP) (2)

Recall = TP/(FN + FP) (3)
where: TP = True positive; FP = False positive; TN = True negative; FN = False negative

Table 4. Comparison of different models

Models Data sets Test
accuracy

Precision
rate

Recall
rate

DNN Single-channel data set 0.93759 0.7650 0.6431
Dual-channel data set 0.966287 0.8384 0.7602
Statistical data set 0.85569 0.7745 0.3273

CNN Single-channel data set 0.95668 0.7750 0.6750
Dual-channel data set 0.9761 0.8916 0.7332

DNN+CNN Single-channel data set 0.96897 0.7980 0.6908
Dual-channel data set 0.941041 0.8282 0.5859

C4_D2D2_D2 Single-channel data set
Dual-channel data set
Statistical data set

0.9524 0.9428 0.7115

Through training, a simple conclusion can be drawn that the accuracies of the three models with
different data sets make little difference except for the DNN model with statistical data set achieves
the lowest accuracy. However, it is found that when using CNN or DNN alone, an increase in the
accuracy of one anomaly is likely to cause a decrease in the accuracy of another anomaly. In addition,
the data sets are treated equally for each anomaly, so the data obtained by one model can distinguish
well between two anomalies while it hard to classify other anomalies. In this way, a hierarchical
classification model is designed for better performance on the detection of all anomalies. Our method
can achieve higher precision rate and recall rate.



Figure 4. Confusion matrix of C4_D2D2_D2, CNN+DNN, CNN, DNN

In details, from the confusion matrixes shown in Figure 4, it can be concluded that the three types
of training models have good discrimination for the two abnormal patterns of 2-missing and 5-square,
and there are few other abnormal patterns mixed in these two patterns. In addition, the three types of
abnormal patterns as 1-normal, 3-minor and 4-outlier are always classified together. Pattern 6-trend
and 7-drift are classified together sometimes. However, C4_D2D2_D2 performs better in anomaly
identification, especially in classifying pattern 1-normal, 3-minor and 4-outlier.

So, this hierarchical classification model can address the shortcomings posed by individual model
to some extent. When using hierarchical classification model, distinguishable anomalies can be
separated out at first and then come to resolve the more difficult-to-differentiate anomalies. Besides,
the advantage of the different processing methods to obtain the data set is emerged so that less worries
about the data set exist which can lead to confusion of several other anomalies. A hierarchical
classification model is also effective for adjusting model parameters when training models.

The thermodynamic diagrams of 38×744 labels with time as x and channel number as y is shown
in Figure 5 to present the comparison between the raw data and the training results, the raw data is
roughly indistinguishable from the results obtained from model training. It also reveals in Figure 5 that
some subtle differences exist in the marked boxes 1, 2, and 3. The model predictions are largely
correct in terms of the time distribution. The sample distribution predicts that the wrong samples are
mostly concentrated in a specific region, with a very small fraction being discrete. The thermodynamic
diagram can be used to improve our model.



Figure5. Comparison between actual data anomaly distribution and detection results

4.2 Design of training set
A specific number of normal and abnormal data patterns are chosen in the design of network
infrastructure. The impact of the two methods of sampling a specific number of each anomaly as well
as random sampling on the data set should also be considered. As the accuracy difference of the
training model is not obvious, the DNN model with single-channel data set is chosen to train the
optimal training set size, because it has the shortest training time and can effectively save time.

For the design of training set, 8 training tasks are set, which are shown in Table 5. After training, a
simple conclusion can be got that there are still some inaccuracies in general. For random sampling, if
the sample size is too small, some anomalies will not be recognized. When the sample size is increased
to a certain size, the sample accuracy rate and the test set accuracy rate tend to be the same because
enough samples are almost distributed to all abnormalities and distributed proportionally. When the
accuracy of the model improves the discrimination of the pattern 1-normal, 3-minor and 4-outlier
would be more likely to be recognized as pattern 1-normal. In brief, the training set size of 3000
samples are the best one.



Table 5. Comparison of different data sets under DNN model

Architectures Training data set size Training
accuracy

Test dataset size Test
accuracy

DNN

DNN1 1200(normal)+300×6(abnormal
)= 3000samples

0.95444 12375(normal)
+26472(abnormal)

0.93759

DNN2 2000(normal)+500×6(abnormal
)= 5000samples

0.894 11575(normal)
+25272(abnormal)

0.9335

DNN3 400(normal)+100×6(abnormal)
= 1000samples

0.87166 13175(normal)
+27672(abnormal)

0.90157

DNN4 3000 samples at random 0.79967 Total samples-
training samples

0.79314

DNN5 5000 samples at random 0.79713 Total samples-
training samples

0.79876

DNN6 10000 samples at random 0.95057 Total samples-
training samples

0.94646

DNN7 15000 samples at random 0.9562 Total samples-
training samples

0.95103

DNN8 500(normal)+500×6(abnormal)
= 3500samples

0.91886 13075(normal)
+25272(abnormal)

0.89545

In the design of training set size, the single channel data set is used. However, this type of data set
is not the best choice and other type of data set should be considered. So, DNN with statistical data set
and CNN with dual-channel data set is trained of 3000 samples. From the results presented in Figure 8,
the DNN model with statistical data set performs well in distinguishing pattern 1,3, and 4 which are
always difficult to be classified, but it is less able to distinguish between other anomalies. The CNN
with dual-channel data set has high ability to distinguish between various types of anomalies, so it is
applied in our hierarchical model.

Figure 6. The confusion matrix of DNN and CNN

The highlight of the chosen datasets is the statistical data set. The statistical data set is more
advantageous for data information compression and retention compared to a single grayscale graph



type dataset. When transforming the original data into images, a longitudinal coordinate adaptive way
is applied. Under this circumstance, the image data obtained may lose part of the information
contained in the longitudinal coordinates. However, the statistical data set, using the combination of
these three numerical features as the mean, standard deviation, extreme deviation can reflect the trend
of data changes and data changes in the range of data orders of magnitude, which is equivalent to
retain a considerable part of the information in the longitudinal coordinates. At the same time, the
compression ratio of the statistical data set is also relatively high.

5. Discussion

5.1 Defect recognition
Using C4_D2D2_D2 model for classification, combining the resulting image labels with the
visualization of the initial data, we found that more than 100 samples were mislabeled, resulting in a
decrease in the accuracy of model predictions. In Figure 7, this sample was originally labeled as 6-
trend, but to be predicted as 7-drift under C4_D2D2_D2 model. In fact, based on the way the data
moves, we can tell it's 7-drift instead. Similarly, Figure 8 shows that 3-minor was labeled as 4-outlier
wrongly.

Figure 7.Mistaken for 6-trend (2012-01-01 17-VIB.mat channel 21)

Figure 8.Mistaken for 4-outlier (2012-01-17 18-VIB.mat channel 1)

5.2 Limitation
Although we have done a lot of work, there are still some weaknesses in our study. The main
weakness is that 1-normal data might be classified into other abnormal data due to the limitations of
the model and we haven't done a better job of separating the 4-outlier from the 1-normal, which
reduced the accuracy of the final classification. Another limitation of this model is that the steps of
data preprocessing are complex. Thirdly, some of the data labels provided by the match side are wrong,
and we did not deal with the wrong labels, resulting in misclassification to some extent.

6. Conclusion
In this paper, an anomaly detection method based on computer vision and deep learning was presented
to auto-detect multiple anomalies in SHM systems. The SHM time series data are first converted into
image, which can be visualized for computer, and then the image vectors of grayscale figures are used
as training set. Then a hierarchical classification model called C4_D2D2_D2 was proposed. The data



in the example includes six patterns of data anomaly, the global accuracy of data anomaly detection
results by the designed and trained C4_D2D2_D2 can achieve 95.5%. Compared with the manual
inspection method, the proposed computer vision and deep learning–based method is much higher
efficient. While the data preprocessing is more complicated and this model failed to optimize the
separation of anomaly 4-outlier from 1-normal. Because of the numerous data size and extremely
imbalanced proportion between patterns in actual applications, in future work we will use image
processing to increase the number of samples.
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