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Abstract. Three-dimensional (3D) modeling of urban road scenes has
warranted well-deserved interest in entertainment, urban planning, and
autonomous vehicle simulation. Modeling such realistic scenes is still
predominantly a manual process, relying mainly on 3D artists. Cameras
mounted on vehicles can now provide images of road scenes, which can
be used as references for automating scene layout. Our goal is to use the
information from such images from a single camera sensor on a moving
vehicle to build an approximate 3D virtual world. We propose a workflow
that takes the human out of the loop through the use of deep learning
to generate a dense depth map, an inverse projection to correct for per-
spective distortion in the image, collision detection, and a rendering en-
gine. The engine loads and displays 3D models belonging to a particular
type, at accurate relative positions, thus building and rendering a virtual
world corresponding to the image. This virtual world can then be edited
and animated. Our proposed workflow can potentially speed up the pro-
cess of modeling virtual environments significantly when integrated with
a modeling tool. We have tested the efficacy of our 3D virtual world-
building and rendering using user studies with image-to-image similarity
and video-to-image correspondences. Even with limited photorealistic
rendering, our user study results demonstrate that 3D world-building
can be effectively done, with minimal human intervention, using our
workflow with monocular images from moving vehicles as inputs.

Keywords: 3D World-Building · Modeling · Convolutional Neural Net-
works · Deep Learning · Depth Estimation · Inverse Projection · Collision
Detection · Graphics Rendering · Virtual World · Human-in-the-loop

1 Introduction

Building a three-dimensional (3D) world of a scene from a two-dimensional (2D)
image is a challenging problem in computer vision. Its technological solutions
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have applications in entertainment, digital mapping, urban planning, and train-
ing simulations for automated driving systems. Testing of autonomous driving
software is critical for validation. It is estimated that autonomous vehicles might
have to be tested on up to 17.7 billion kilometers of simulation before one can
have valid data on their safety to compare with human drivers [19]. While one
could record the footage for this entire (simulated) distance using cameras, it is
more advantageous to use virtual worlds that can be modeled from real-world
traffic data, edited, and animated to produce a variety of scenarios.

Fig. 1. Overview of our proposed workflow. Given a monocular image, we (1) estimate
dense depth using a CNN and obtain per object depth using semantic segments, and
(2) correct perspective distortion DLT using selected points. Using the 3D positions
and object labels obtained from (1) and (2) for our classes of interest, we (3) place 3D
mesh models followed by an AABB collision detection, and lastly, (4) interactively edit
the scene. We examine the outcomes of building and editing by rendering the virtual
world(s) using a rendering engine, e.g., a basic one using OpenGL, as shown here.

Most methods to automate the process of 3D world-building use data from
a combination of sensors and modalities which typically require an elaborate
or expensive setup with multiple cameras and sensors. With the onslaught of
digital camera devices, the Web has become a source of billions of images and
videos of traffic scenes. This image/video data is now used as the starting point
for modeling 3D environments, thus eliminating complex data acquisition. In
tandem, advances in machine learning and computer vision provide the tools to
augment 2D images with 3D information and create new uses for these images.

However, 3D geometric reconstructions from image and sensor data that can
directly be used as a high-quality 3D world are still a work in progress. As a
result, world-building remains a manual process. Most 3D artists still follow the
same workflow that usually starts with gathering inspiration and ideas from the
Web, making a simple construction of the scene using basic objects to mock the
scene layout. The scene is then lit with the main lights and detailed.

Two important metrics of the modeling process are the extent of visual real-
ism, i.e., how close in appearance an artist can make the virtual environment look
when compared to the real world, and performance, i.e., how fast these scenes
can be modeled. Sophisticated modeling tools assist in realizing an artist’s cre-
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ative ideas rather than participating in the building process itself. In this regard,
a technology that is capable of delivering an animatable, realistic 3D world with
minimal human input is an interesting focus of research that we believe has po-
tential for popularizing the usage of 3D worlds. To summarize, there is a demand
for production-ready 3D content that resembles real-world scenes and that can
be easily edited and animated. We then pose the following research question: Is
it possible to design an automated system for world-building from a monocular
image captured by a camera in a moving vehicle?

To enable image-to-3D world-building, we propose a workflow that uses a
convolutional neural network (CNN) to estimate the depth and computes a ma-
trix to correct the effects of perspective projection using direct linear transform
(DLT). Our proposed workflow automates the initial steps of 3D scene modeling
up to the stage where the primary objects in the scene have been placed, and the
scene is rendered with ambient light. There are four main steps in the workflow,
namely, depth estimation, perspective correction, model loading, and interactive
editing (Figure 1). Our workflow exclusively builds 3D virtual worlds of urban
road traffic scenes with paved roads, parked or stationary, and moving traffic,
people, trees, and buildings. Our novel contributions are in:

– An automated workflow for the building of 3D virtual worlds from monocular
images of traffic scenes captured from a moving vehicle, that can be further
edited and animated.

– A user study to validate correspondence of the 3D world to its source image.

2 Related Work

We refer to creating an approximate world with the objects of the same type
placed, as in the scene, as 3D virtual world-building. Our approach to image-to-
3D world-building is novel. World-building and 3D reconstruction have overlap-
ping solutions as they rely on depth inference and camera approximation. How-
ever, the former looks at creating animatable scenes with prefabricated models
using relative positions of key objects, and the latter is focused on identifying
sizes and types of objects present in the scene. While both can be used in tandem,
we focus on the former exclusively here. We discuss literature on both here.

Structure from Motion (SfM): SfM refers to the methods that use observa-
tions from two or more viewing directions to derive the position of a point in 3D
space by triangulation. Early self-calibrating metric reconstruction systems [2,
18] served as some of the first systems on 3D reconstruction from images. Polle-
feys et al. [20] used monocular video to deliver 3D models as textured meshes.
Incremental SfM is a well-accepted strategy for reconstruction from unordered
image collections. Unordered photo collections on the Web have been used to
generate sparse 3D models [7, 23]. As an extension, multibody SfM (MSfM) has
been used for the reconstruction of dynamic traffic scenes and vehicle/camera
trajectories [3]. The camera in these cases is not necessarily mounted on the
moving vehicle. Our workflow uses a monocular image captured by a camera
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sensor in the moving vehicle, as the input, and gives an approximate 3D world
corresponding to the image, unlike the 3D reconstruction of traffic images.

Joint Semantic Segmentation and 3D Reconstruction: Image segmen-
tation and 3D reconstruction can be tightly coupled and jointly implemented,
by constraining the solution using priors, thus yielding smoother 3D reconstruc-
tions and more precise segmentation. For instance, the surface area has been
used as a regularization prior to obtaining the final surface construction in-
directly via volumetric optimization [17]. This has been improved by adding
class-specific geometric cues guided by image appearances [13]. Joint inference
of 3D scene structure and semantic labeling of forward-moving monocular image
sequences has been done using class-specific semantic cues and conditional ran-
dom fields [16]. Geometric cues have been used to simultaneously perform depth
estimation from monocular images of traffic scenes and semantic segmentation
on a CNN [14].

Generative Adversarial Networks (GANs): GANs have been used as ex-
tensions to self-supervised networks for improving depth estimation in monocular
images from moving vehicles [12]. Additionally, for image sequences/collections
data, GANs are used in image-to-image synthesis tasks and for generating pho-
torealistic images. A noteworthy contribution comes from Isola et al. [15] who
have proposed a conditional GAN architecture and a corresponding pix2pix soft-
ware as a general-purpose solution for image-to-image translation. pix2pix has
been tested on a variety of tasks and datasets, including the generation of images
from semantic labels trained on the Cityscapes dataset [6]. Conditional GANs
have been used for video-to-video synthesis [25]. Similar to pix2pix, this method
synthesizes images from segmented frames while maintaining temporal coher-
ence. This work has been extended to generate graphics for a driving simulator.
One limitation is that the structure of the world is created manually and only
the graphics or texture is synthesized. Our work differs in that we infer the
scene layout and use off-the-shelf mesh models to create the final scene that can
be animated as such. These GAN-based methods predominantly work in cases
where the source and destination spaces are of the same dimension, which are
not directly applicable for image-to-3D world synthesis.

3D Virtual World-Building: Virtual world rendering from images and Li-
DAR data has been an active area of research. Modeling of full 3D virtual rep-
resentations of dynamic events from multiple video streams has been done using
a collection of fused visible surface models [21]. There are several methods for
the automated extraction of geographic information from LiDAR to support the
construction of high-fidelity 3D virtual environment models [1]. Clarke [5] has
proposed a pipeline for automated, customized virtual world construction by
specifying a set of locations and target style for each location. Our work differs
from these in that we consider the construction of approximate environments
from a specific data source, namely the monocular images.

Our work is also notably different from the Virtual KITTI dataset gener-
ation [4, 8]. The Virtual KITTI dataset consists of photo-realistically rendered
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Fig. 2. (a) Interpretation of a road scene using a Latent Hierarchical Part-based Model
(LHPM) [24] for the choice of objects in the synthesized 3D world. (b) Depth values
along the lines Y = y in image space and on the ground plane can be assumed to have
the same depth. Each colored line represents a different value, and all points on the
line have the same depth. Note that no line is drawn through objects since those pixels
do not correspond to ground points. In terms of Y , a > b > c > d, whose order reverses
in terms of depth.

videos of image sequences from the camera sensor in the moving vehicles, gener-
ated using Unity, which enabled manual world-building through crowdsourcing
from the activity user community of Unity. Our work builds approximate virtual
worlds using a mostly human-out-of-the-loop workflow.

3 Our Method

3D worlds are traditionally constructed manually by 3D artists who take inspira-
tion from or model parts of the real world. In contrast, we propose a workflow to
automatically construct 3D worlds of urban road traffic scenes based on a refer-
ence monocular image with minimal user intervention. Our proposed workflow is
currently intended for images of urban, outdoor scenes with straight roads, that
include objects of interest, namely, people, trees, buildings, and sidewalks. Our
work pertains exclusively to straight roads owing to the constraints imposed by
our perspective correction methodology. We use the Latent Hierarchical Part-
based Models (LHPMs) [24] for the choice of objects in the scene which we
include in 3D virtual worlds. All objects in the scene are organized in a hierar-
chical structure in an LHPM. While we conceptually use the tree data structure
given in an LHPM, the indexing of the levels in the tree is different in our work-
flow to suit our requirements. In our current implementation, we have considered
level-1 of road regions (i.e., just the roads without identifying structures at finer
levels of granularity, such as lanes, separators, etc.), level-2 of dynamic objects
(i.e., pedestrians, cars), and level-2 of static background (i.e., trees, buildings),
as shown in Figure 2 (a).

Our workflow has four main steps, as shown in Figure 1. In step 1, we use
the CNN architecture proposed by Godard et al. [11] to estimate depth from
a monocular image and ground truth semantic segments to compute per-object
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depth for our classes of interest. In step 2, we approximate the projection matrix
of the camera that created the image using DLT and apply an inverse of this
to obtain world space coordinates. In step 3, we use the obtained 3D position
and the semantic class to load a generic mesh model belonging to that class
at the computed location. We additionally run an axis-aligned bounding box
(AABB) collision detection to eliminate any mesh intersection in the 3D world-
building. In step 4, interactive editing of the world is facilitated. We finally
render the synthesized world using a graphics engine or shader-based OpenGL
software. The novelty of our workflow is in choosing and integrating appropriate
methods for our requirement of image-to-3D world-building. We do not perform
a comparison with other methods for subcomponents of our workflow, namely,
depth generation or perspective correction, as these methods are already well
studied, and equivalent methods can be used to replace them in our workflow.
Since our work focuses on identifying relative positions of key objects in a scene,
we have used the standard validation technique of user studies to evaluate the
closeness of the 3D world from our method to the real world.

Step 1: Depth Estimation: Godard et al. [11] have posed depth estimation
from a monocular image as an image reconstruction problem instead of a su-
pervised learning problem. Their main idea is that given a set of stereo images
captured by a calibrated binocular camera, if a network learns a function that
can reconstruct one image of a stereo pair from the other, then the network has
learned something about the 3D structure of the input image. If the baseline
distance b between the two cameras and the camera focal length f are known
then depth, d̂ can be trivially recovered from the predicted disparity as, d̂ = bf

d .

Here, given the novelty of our work in 3D world-building, we choose to
use Cityscapes dataset over other similar traffic scene image collection, e.g.,
KITTI [9], owing to the higher resolution, quality, and variety of the images [11].
The recent GANs that are trained on KITTI and generalized on Cityscapes,
provide a marginal improvement in per-pixel accuracy of depth estimation [12].
This is especially because batch normalization that is used for adversarial train-
ing does not provide significant improvement for the Cityscapes data [11]. Also,
for Cityscapes images to work with the GANs, the images are cropped to resolve
the artifacts in the images [12]. Overall, the simpler CNN proposed with lower
training time by Godard et al. [11] is suitable for our experiments, owing to
our requirement of the accuracy of relative depths in pixels for world-building
as opposed to the per-pixel accuracy. Since the depth estimation component is
decoupled from others in the workflow, a depth estimation model suitable for
the input data can be selected and plugged in.

We use the model that has been trained for 50 epochs, with a 512 × 256
resolution, a batch size of 8, and a VGG encoder-decoder, using images from
both KITTI and Cityscapes datasets [11]. A single input image is run through
the depth estimation model to obtain a dense depth map. Using ground truth
semantic labels, the average depth of each object of interest is estimated. Depth
estimation has been observed to be estimated with higher error especially for
occluded objects and objects farther away from the camera [11].
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To overcome model limitations and ensure all objects of interest in our work
are assigned the right depth value with respect to each other, we propose a post-
processing step. Here, we make the assumption that the depth of all points along
the same line Y = y in pixel coordinates space and are also on the ground plane
in the real world will have the same depth. Y -axis1 in image space corresponds
to the axis along which height of objects is considered in the world space (+Y-
axis). In Figure 2 (b), each colored line represents a different value, and all
points on the line (not including the breaks) have the same depth. We compute
the bounding box of each segment and consider the Y -coordinate (increases
downwards) of the bottom corner to be the point at which the object touches
the ground in the image. An object with a higher value of Y must be closer to
the camera and have a smaller depth value. We sort the objects in the increasing
order of average depth, compare their ground points, and assign depth in the
post-processing step, with the following adjustments:

1. If two objects have similar Y values and their average depths differ not less
than a certain threshold, δ (we have used δ = 1), then we set the average
depth of both to be the average-depth of the closer object.

2. If an object with a higher Y value has greater depth than a closer object,
also with a lower Y value, we move the former ‘behind’ the latter in 3D
space, along the +Z-axis from the camera.

Step 2: Perspective Correction: Perspective projection is a non-linear, non-
affine transformation in Z-axis as lines that are parallel in the original coordinate
space appear to intersect in the transformed coordinate space or the projected
image. An accurate synthesis of the corresponding 3D world will require that
the image coordinates of each object first be remapped to its original world
coordinates using perspective correction.

To localize the objects, we use the Z-coordinate estimated in Step 1 and
now approximate the X- and Y-coordinates. Since the scenes here pertain to
urban roads, we assume that all objects of interest lie on the ground plane, i.e.,
Y=0 for these objects in 3D space. We now use inverse projection to estimate
X-coordinate. To construct a 3D world out of an image scene, we compute the
value of some matrix P using Ii=PWi, where Ii is a set of projected image coor-
dinates, Wi is the corresponding set of world coordinates and P is a projection
matrix. Since all objects of interest have been assumed to be on the ground
plane, this simplifies to the 2D case of DLT. Given a point ii in the image space,
zi can be obtained by a lookup from the corresponding depth map, and xi can
be approximated. The approximation is done for a set of 5-6 selected points on
the image with reference to the vanishing point in the image. Our experiments
show that selecting the nearest ground point from the objects of interest in the
scene (in 3D world space) provides the best approximation. We compute P by
solving a system of equations given by the world space-image space point corre-
spondences with the requirement that ‖P‖2=1 using the least-squares criterion

1 We refer to the axes in image space as X-Y , and those in 3D world space as X-Y-Z.
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and its inverse is used. To obtain the position of each object along the X-axis, we
multiply the extents of the bounding box around each segment with the inverse
matrix obtained and averaged. The center of the object is now translated along
X by this value, for the placement of the object/instance in the scene.

Step 3: 3D World-Building: We have manually curated a small database of
3D mesh models based on the classes of interest from Cityscapes. These geomet-
ric models are triangular meshes of an instance of the expected class and are in
the standard OBJ format. We have fixed the orientation of every model in 3D
space as well as set the scale of every object with respect to another other by
intuitively comparing unit mesh model sizes. The X- and Z-coordinates, and the
class label are sent to the rendering engine. The database is looked up using the
class label, and a corresponding mesh model is loaded into the scene at the world
space coordinates. For example, if an object in the image has been semantically
segmented as ‘car’ the rendering engine loads a generic hatchback or SUV (using
a random number generator) to construct the 3D world. A woman in an image
is semantically labeled as ‘person’ and the engine will load a generic model of a
male human, Similarly, a generic tree is loaded for ‘vegetation’ even if the object
in the image might be a shrub. This is acceptable in our workflow as we are
focused on creating a virtual world, which mimics the scene in the image.

We position the object mesh in the scene using the position coordinates
computed in steps 1 and 2, such that the center of the ‘base plane’ of the mesh
(touching the ground) is at the computed position coordinates. We then com-
pute the new centroid of the mesh in the 3D space. We perform a uniform scaling
transformation at the centroid, where the scale is computed based on the ratio
of the extent of X-coordinates of the road in the image space to that of X-
coordinates of the road in the 3D space. This scale value needs to be checked
manually and perturbed in some instances to obtain visually accurate relative-
ness of the sizes of the objects in the scene. The automation of the computation
of the scale is currently out of the scope of this paper.

Before the final rendering of the scene, we use an AABB collision detector
to ensure that no models intersect with each other along the X and Z axes,
and accordingly perturb the models. This serves as an additional corrector for
predicted depth and horizontal translation. The 3D position coordinates and
semantic label of each model in the final scene are written into a text file for
future use or loading by a similar, or even advanced, rendering engine.

Step 4: Editing the Virtual World: This 3D scene can be optionally inter-
actively edited to add, delete, or replace mesh models, before or after rendering
the scene. In step 4, scene parameters from step 3 can be passed as input to
modeling tools and rendering engines, such as Unity or Unreal.

We introduce the notion of “permissible” edits, as the destination mesh model
must fit into the space selected for its placement. The fitting of the mesh model
is done after it is scaled to a size comparable to the neighborhood of the new
position and without distorting its aspect ratio. In the case of replacing a selected
mesh model, one can also now place conditions on the semantic class of the object
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that can replace the object type of the selected model. Thus, the permissible edits
also include changing the type of object or position of an existing object.

This editing process in the workflow allows an artist to create a variety of
scenes using the same skeleton—a feature that can be particularly useful in
autonomous vehicle simulation. Edits can be made to the output of step 3, and
the edited scene can be directly fed into external modeling and rendering engines.
While we have a rudimentary graphical user interface (GUI) to edit the scene
interactively, this can be enhanced in the future scope of work.

Rendering the Virtual World: In the current implementation, we render the
3D virtual world using OpenGL [22] graphics system to visualize and demon-
strate it. We render the virtual world without any textures, using a perspective
projection in OpenGL, ambient lighting, a Phong shader, and a shadow map.
The rendered result in the orientation corresponding to the source monocular
image may look slightly different from the source, owing to the known differences
between the orientation of the camera sensor in the vehicle and the OpenGL set-
tings, i.e., the camera as well as the perspective projection. In Figure 3, we ob-
serve that the object models have been loaded at approximately correct relative
positions, depth, and scale, albeit with minor visually perceptible differences.

4 Experiments, Results and Discussion

We have tested our workflow on images of straight roads from Cityscapes that
contain objects of our interest, which are vehicles, trees, sidewalks, people, and
buildings. Our current implementation is limited to straight roads without breaks
and curves. We have demonstrated our best results of rendering 3D virtual worlds
synthesized from four different monocular images using our workflow, namely,
S1, S2, S3, and S4 (Figure 3). These images are also picked for the variety of res-
idential and non-residential areas with straight roads, buildings, trees, vehicles,
and sidewalks in the scenes. We have further validated the perceptual similarity
of our results of 3D worlds with the corresponding source images. To more com-
prehensively evaluate the accuracy of our results in terms of inferring the right
3D positions and overall scene layout, we have conducted two user studies. The
questionnaire forms for the user studies are available at https://forms.gle/

Zecjbi9UKXTC439Q6 and https://forms.gle/f9LmpzYg3LNjazPu8. We do not
use any special methodology to ensure that the samples are representative of all
possible traffic scenes. However, given that the results of each study corroborate
the accuracy of the generated world we believe it is a useful evaluation.

User Study of Video-to-image Correspondences (T1): We have gener-
ated a video of fly-through of two 3D worlds synthesized using our proposed
workflow that starts from the point of capture of the scene and moves forward
into the scene before providing an aerial view. Thus, this video has a blend of
overhead aerial view and rotation about the Y-axis of the 3D world space for
developing the animation using OpenGL rendering. This user study entails view-
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Fig. 3. 2D input image and corresponding view from the camera of the 3D virtual
world, built using our proposed workflow. From top left clockwise: Scene S1, S2, S3,
and S4. All four scenes are used for our image-to-image similarity user study; and S2
and S3, for our video-to-image correspondences study.

ing the video along with four potential RGB images from which the scene could
have been generated, with a task to identify the correct source image.

We have generated a smooth animation of the 3D virtual world, for the best
user experience. In the animation, we have additionally included the “source”
vehicle where the camera is mounted as an object in the scene, rendered in red.
This is to provide the realism and completeness of the virtual world, wherein
when the camera is moving outside of the “source” vehicle for the fly-through,
the “source” vehicle too is a part of the synthesized virtual world (Figure 4).

For each question in T1, we include images that are similar to the source
image. We identify such images from the image collection using the structural
similarity index (SSIM). The three images with ∼0.5 SSIM are selected, and
including the source image, we provide four choices for each question (Figure 4).
This is to ensure that the choices available are similar in semantic content, but
yet differentiable to perceive the correct image-to-3D world correspondence.

User Study of Image-to-image Similarity (T2): We have provided the
survey respondents with a source RGB image and its corresponding 3D virtual
world construction from the view of the camera sensor in the vehicle, rendered
using OpenGL. This user study entails assessing the image-to-image similarity
on a five-point Likert scale. Having choices 1 and 5 correspond to the worst and
best matches, respectively, the Likert scale captures how close the virtual world
perceptually matched with the source image, with respect to the presence and
relative positions of the objects of interest, e.g., cars, people, sidewalk (Figure 5).

Outcomes of User Studies: We present our results from a total of 41 survey
respondents to both tests. The respondents participated voluntarily in social
media groups. In all cases, T1 was administered before T2, in order to provide
an appropriate context to the participants. We have used four test monocular
images taken from moving vehicles, S1, S2, S3, and S4 (Figure 3).

For T1, the images chosen for S2 in the question have an SSIM of 0.58, 0.50,
and 0.48 with the source image. Similarly, for S3, the selected images have an
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Fig. 4. Questionnaire for the user study of video-to-image correspondences (T1).

SSIM of 0.39, 0.43, and 0.39 with the source image. 90.2% of the users correctly
identified the source image for S2, and 95.1% of the users correctly identified the
source of the second question S3. Participants scored an average of 1.85 points
in the study with a standard deviation of 0.48. Out of the 41 participants, 37
respondents got both correct, 2 got one correct, and 2 got both wrong. For the
2 respondents who got one correct answer, they both got the answers correct for
S3. The wrong answers for S2 included all the other 3 choices and the wrong
answers for S3 included 2 other choices. We observe that the question on S2 was
perceptually more difficult than that on S3, which is validated by a relatively
higher SSIM index, where the options for S2 are structurally more similar to the
source image than that of S3.

For T2, S1, S2, S3, and S4 (Figure 3) were rated an average of 4.17, 4.24,
4.00, and 3.49 respectively, on the five-point Likert scale. Cronbach’s alpha is
used for Likert-scale responses to measure latent variables, such as openness and
reliability of responses. The alpha value is indicative of whether a designed test
accurately measures the variable of interest, which is the perceived similarity
between the source image and the synthesized 3D virtual world. We computed a
Cronbach’s alpha of 0.803 for the responses. By rule of thumb, an alpha of 0.8 is
a good goal [10]. We can thus conclude that our survey with ranking questions
has been reliable.
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Fig. 5. Questionnaire for the user study of image-to-image similarity (T2).

Our workflow implementation is a significant improvement over the manually
curated scene construction. It takes ∼4-7 seconds to generate the final rendered
output for one image. The construction time can be sped up by increased par-
allelization, particularly during averaging of values within segments. Generation
of the depth itself takes to the order of 35 milliseconds for a 512 × 256 image
on a modern GPU [11]. Manual input is required only at the time of perspec-
tive inversion where a user selects 5-6 points on the image, and as required, for
correcting the relative scales of mesh models of objects of interest. By design,
human-in-the-loop is reintroduced in the workflow for editing the scene. We have
used untextured models in our user study to focus on relative object placements.

5 Conclusions

We have proposed a workflow to automatically build 3D virtual worlds based
on a reference monocular image with minimal manual intervention to reduce the
time and manual effort that goes into scene modeling. The workflow we have
proposed can be operated to generate 3D worlds of urban traffic scenes which
can be used as simulation environments for autonomous vehicle testing. Given
the vast collection of reference images on the Web, our proposed workflow builds
approximate 3D virtual worlds from these images efficiently creating a scene that
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can be detailed and animated. Two key ideas that drive our workflow are the use
of deep learning to estimate depth and perspective correction to get real-world
positions from an image.

Our proposed workflow can be improved by adding a pose estimation mod-
ule to automatically detect the orientation of every model and instance-specific
labels to load more relevant mesh models. Our prototype implementation works
for urban traffic scenes of straight roads, and our results show that our solu-
tion presents a useful direction for future research. An important aspect of the
rendering of such a world is lighting, which implies determining the lighting
parameters from the monocular images is an open problem.
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