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Abstract. Semantic segmentation of remote sensing images plays a vital role in 
urban planning, traffic guidance and other fields. However, high-resolution re-
mote sensing images typically include large and complex scenes and heterogene-
ous objects, leading to poor segmentation at the edges of objects, which in turn 
leads to undesirable segmentation of the whole image. Specifically, current se-
mantic segmentation techniques highlight the superiority of CNNs in maintaining 
local ground details, but they still can't globally build when processing full-geo-
morphic images. To address these problems, we propose an effective bi-fre-
quency fusion semantic segmentation network (BFNet) for high-resolution re-
mote sensing images. BFNet uses a bi-branch structure, where the low-frequency 
branch captures low-frequency context information at different scales based on 
ESwin-Transformer; meanwhile, a pixel-attention mechanism is designed behind 
the low-frequency branch to select the optimal global context information; The 
high-frequency branch extracts high-frequency edge information based on 
stacked CNNs and transverse connections. In addition, to tackle the issue of detail 
loss caused by the direct fusion of high-frequency and low-frequency infor-
mation, we designed a boundary fusion module for bi-frequency balancing to en-
able better segmentation. Our method achieves good performance on two recog-
nized remote sensing datasets, Potsdam and LoveDA, with mIoU of 87.22% on 
Potsdam and 92.85% on F1. mIoU on LoveDA is 51.37%, which is a relatively 
good balance in inference speed and accuracy. 

 

Keywords: Semantic Segmentation, Bi-Frequency Fusion, Boundary Fusion, 
Pixel Attention. 

1 Introduction 

The study of semantic segmentation in high-resolution remote sensing images is a ma-
jor field of research and is essential for practical applications like urban planning and 
land use [1-6]. The aim of semantic segmentation is to assign a label of a specific cate-
gory to each pixel in the image. However, remote sensing images are rich and varied in 
detail and the background is complex and variable, so how to accurately and efficiently 
complete the semantic segmentation of them remains a challenging problem. Recently, 
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deep learning methods have proven effective for segmenting remote sensing images. 
Owing to their inherent ability to extract local detail features, deep convolutional neural 
networks (DCNNs) have a natural advantage, researchers have studied many remote 
sensing segmentation models [7,10,11] with high performance on this basis. However, 
these methods still have two limitations: 

• Inadequate modeling of global information for full geomorphic images. The recep-
tive field is small, which makes it difficult to fully learn the global information and 
long-distance context information. For remote sensing image segmentation, global 
information, long-range spatial context information and  edge detail information are 
particularly important, but most models usually ignore these information. 

• Imbalanced fusion of high-frequency and low-frequency information. Fusion of lo-
calized low-frequency contextual information is crucial for segmentation results. 
Most of these models tend to directly fuse the captured low-frequency information 
(context information) and high-frequency information (edge information). This ap-
proach can overwhelm the detailed features leading to inadequate information fu-
sion. 

To address the above limitations, inspired by the boundary attention mechanism, we 
propose a Bi-Frequency Fusion Network (BFNet), as shown in Fig1.  

 

Fig. 1. The figure is a Model of Bi-Frequency Fusion Network. 

The BFNet consists of two branches with complementary functions: A branch for ob-
taining low-frequency data and a branch for obtaining high-frequency data. The low-
frequency branch extracts low-frequency information (contextual information) based 
on ESwin-Transformer blocks. The high-frequency branch uses stacked convolution 
and optimization loss to highlight the boundary information to extract high-frequency 
information (edge information). In order to address the issue of inadequate extraction 
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of global information from remote sensing images, a pixel attention module is designed 
to select the optimal context information and learn its representation; to address the 
problem of imbalance in the fusion of high-frequency and low-frequency information, 
a boundary fusion module is designed, which balances the high-frequency edge infor-
mation and the low-frequency context information by using boundary attention to fuse 
the information from different domains. In conclusion, the key contributions of this 
work include: 
1. BFNet is proposed to extract high-frequency information and low-frequency infor-

mation through a novel two-branch structure composed of CNN and ESwin-Trans, 
which provides a new perspective to capture both contextual information and bound-
ary information within a unified deep network. 

2. A pixel attention module is designed, which uses pixel attention to horizontally se-
lect the detail information across feature maps of varying scales, which greatly im-
proves the generalization ability of the model. 

3. A boundary fusion module was designed. Boundary attention is utilized to balance 
the boundary and context information extracted from high-frequency and low-fre-
quency branches to coordinate the fusion of high-frequency features and low-fre-
quency features. 

2 Related Works 

2.1 Transformer-Based Segmentation Method 

Most Transformer-based segmentation models have achieved good results. Trans-
former-based segmentation methods extract the local information of contextual infor-
mation and fuse these information, these models combine Transformer and CNN with 
self-attention mechanism to fuse the local information of low-frequency contextual in-
formation. However, these segmentation methods use direct fusion, which ignores the 
adequacy of information fusion and leads to the loss of detailed information. 

2.2 Bi-Frequency Fusion 

The proposed bi-frequency fusion refers to the balanced fusion of high-frequency and 
low-frequency information from different domains to achieve better segmentation. The 
fusion methods in existing works usually simply sum or splice the information in the 
same domain. For example, FPN effectively fuses features of different scales by top-
down and lateral connectivity. [24] proposed a TBN network architecture, which con-
tains two different branches for obtaining contextual information and detail parsing. In 
order to fuse the features extracted from these two branches, the authors designed a 
feature fusion module, FFM, on which they proposed some subsequent work, which is 
used to improve its generalization ability. However, these methods are direct fusion of 
information at different scales, which usually leads to the detailed information being 
lost. 
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In general, existing works tend to neglect modeling global information and balancing 
high and low frequency information. Therefore, we propose a bi-frequency fusion net-
work that focuses on sensing boundary information and utilizes pixel attention to bal-
ance high-frequency information with low-frequency information to obtain more accu-
rate semantic segmentation results. 

3 Method 

3.1 Overview 

The bi-frequency fusion semantic segmentation network uses a two-branch structure. 
The Low Frequency Branch (LFB) extracts the low-frequency information, i.e., con-
textual information, of the remote sensing images through four stages. Each stage con-
sists of multiple consecutive ESwin-Transformer (ESTB) blocks, where stage 2, stage 
3 and stage 4 are also down sample using Patch Merging (PM) operation. The different 
scales of context information generated by stage 3 and stage 4 in the LFB are then fed 
into the pixel attention module to selectively extract the more plausible low-frequency 
context information. 

The High Frequency Branch (HFB) uses stacked convolution to capture high fre-
quency information i.e. boundary information, every convolutional layer is accompa-
nied by BN and ReLU. This branch fuses low frequency context information at the 
same scale in LFB at stage 3 and stage 4, and works with the boundary loss to capture 
the high frequency edge information of the image. 

Then, the different domain outputs in LFB and HFB are fused using boundary atten-
tion to balance the high-frequency edge information and low-frequency context infor-
mation. Finally the segmentation header module is added to transform the fused fea-
tures into segmentation maps, achieving precise semantic segmentation. 

3.2 Low-Frequency Branch 

Low-frequency branch (LFB) utilises ESwin-Transformer to capture context infor-
mation from the graph. We argue that only low-frequency context information of a 
single patch of an image can be extracted by a standard Transformer block, and local 
context information between neighboring patches cannot be captured. Inspired by 
Swin-Transformer[9], ESwin-Transformer block is designed in LFB.  

The purpose of the Patch Merging layer in the ESwin-Transformer module is to 
down sample the feature map for hierarchical feature representation. This is shown in 
Fig.2.  
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Fig. 2. The process of patch merging. 

The Efficient Swin Transformer in the ESwin-Trans block is designed to extract multi-
scale contextual information at different stages in the LFB. The block consists of a 
moving window based MSA module and the calculation process is shown below. Con-
sidering the input X, the context information after ESwin-Transformer can be repre-
sented as: 

𝐸𝑆𝑊𝑇𝐵(𝑿) = 𝐿(𝑿) +𝑀𝐿𝑃 .𝐿𝑁0𝐿(𝑿)12 (1) 

𝐿(𝑿) = 𝑿 + 𝐸𝑀𝑆𝐴(𝑸,𝑲, 𝑽) (2) 

 
Fig. 3. ESwin-Trans calculation procedure 

3.3 Pixel Attention Model 

Inspired by[25], Pixel Attention Module uses a pixel attention mechanism to select the 
optimal low-frequency context information for learning. We believe that the direct fu-
sion of different scale information of stage 3 and stage 4 will cause some small details 
to be lost. Therefore, we use the pixel attention mechanism to calculate the weights of 
different scales of information and select the optimal contextual information. The pixel 
attention selection process is shown in Fig.4.  

 
Fig. 4. Pixel Attention Selection Process 

𝜎(𝑥) denotes Sigmoid; here all convolution kernels are of size 1*1. 



6 

First, the feature mapping of stage3 is bilinearly differenced and expanded to the 
same size as stage4, and then the corresponding element vectors in the feature mappings 
of stage 3 and stage 4 are linearly embedded respectively defined as �⃗�!"#,	𝑣!"$: 

�⃗�!"# = 𝑓0𝐺!"#(𝑥)1 (3) 

�⃗�!"$ = 𝑓0𝐺!"$(𝑥)1 (4) 

where f(⋅) is a linear function. The output of the Sigmoid function can be expressed as 
follows: 

ω = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑0𝑓"(�⃗�!"#) ⋅ 𝑓%(�⃗�!"$)1 (5) 

where ω denotes the probability that the two pixels belong to the same object. If ω is 
high, we trust �⃗�!"# more because the branch is semantically richer and more accurate, 
and vice versa. Therefore, the optimal low-frequency context information selected 
through the pixel attention mechanism is represented as follows: the output of pixel 
attention (PA) can be written as: 

𝑣&' = 𝜔�⃗�!"# + (1 − 𝜔)�⃗�!"$ (6) 

3.4 High-Frequency Branch 

High-frequency information exists only at object boundaries [25], so we propose high-
frequency branch (HFB) to highlight and extract the high-frequency semantic infor-
mation to further predict the boundary region of the object. 

HFB is a lightweight convolutional network consisting of stacked convolutions to 
build four different convolutional layers to capture high-frequency details. The branch 
takes the 1⁄2 feature map as input, passes through multiple layers of convolutional net-
work, and fuses the low-frequency contextual information LFB details from the low-
frequency information branch before stage 3 and stage 4, which is used to better predict 
the high-frequency detail features. Considering the input X, the output of the HFB can 
be formalized as: 

�⃗�()* = 𝐻𝐹𝐵(𝐗) = 𝐻$0𝐻#0𝐻+0𝐻,(𝐗)1 + 𝐿𝐹11 + 𝐿𝐹21 (7) 

Here, H consists of a convolutional layer, BN layer and a ReLU. 

3.5 Boundary Fusion 

We designed a boundary fusion module as shown in Fig.5. The high-frequency region 
of the HFB is populated with pixel attention (PA) and stage2 detail features and context 
features. The context branch is semantically correct, but it lost too many details, espe-
cially boundary information and small objects. Due to the fact that HFB better preserves 
boundary information, we force the model to trust the HFB in boundary regions more 
and fill in other regions with contextual features from the LFB. Defining the vectors of 
pixel attention (PA), stage2, and the corresponding pixels of the output feature map of 
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the HFB as �⃗�&', �⃗�!"+, and �⃗�()*, respectively, the output of the fused image is repre-
sented as: 

𝜔 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑0�⃗�()*1 (8) 

𝑂𝑢𝑡𝑝𝑢𝑡*)- = 𝑓 .(1 −𝝎)⊗ �⃗�!"+ + �⃗�&'2 + 𝑓0𝝎⊗ �⃗�&' + �⃗�!"+1 (9) 

 
Fig. 5. Boundary fusion process 

3.6 Losses Optimization 

Bd-Loss denotes Weighted Binary Cross-Entropy Loss. It is employed to address the 
detection imbalance of HFB paths in the boundary highlighting process. In order to 
enhance the features of the small object boundaries, we use a coarse boundary to high-
light the edge information. Seg-Loss denotes Cross-Entropy Loss, which uses the out-
put of the segmentation head to optimize the semantic segmentation process and en-
hance the functionality of the BF module.  

𝐵𝑑𝐿𝑜𝑠𝑠 = −
1
𝑛]  

.

%/,

[𝑦% ⋅ log𝑦d% + (1 − 𝑦%) ⋅ log(1 − 𝑦d%)] (10) 

where 𝑦% denotes the segmentation ground-truth and 𝑦d% denotes the prediction result of 
the i-th pixel. 

𝑆𝑒𝑔𝐿𝑜𝑠𝑠 = −]{1: 𝑜% > 𝑡} 
%,1

𝑦% log 𝑦d% (11) 

where 𝑜% denotes the output of the segmented head predicted to be of class c and t is the 
set threshold. 
So, the total Loss of the model is defined as: 

𝐿𝑜𝑠𝑠 = 𝜆2𝐵𝑑𝐿𝑜𝑠𝑠 + 𝜆,𝑆𝑒𝑔𝐿𝑜𝑠𝑠 (12) 
Based on the training experience, we set the final 𝜆2 = 30, 𝜆, = 1, and t = 0.7. 
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4 Experiments 

In this section, we train the BFNet and other works in Potsdam and LoveDA.And 
graphs are given comparing the results with other works performing on the Potsdam 
dataset.  

4.1 Experimental Details 

The experiments were trained using a single NVIDIA GTX 4090 GPU. We randomly 
cropped the training set images to 512 × 512 size. The data were enhanced by randomly 
flipping, resizing and rotating during the training process, with a batch size of 16. The 
three major metrics, F1, mIoU, and OA, were monitored during the training process, 
and if the three metrics did not grow within 20 epochs on the validation set, the training 
was stopped to prevent overfitting, and the maximum training epoch was set to 100. 

4.2 Results 

In this section, we compare BFNet’s work with existing work[13,24,26,27,28] on se-
mantic segmentation of remote sensing images, and the results are presented in tables 
below and we draw some conclusions. 

Table 1. The results of the experiments conducted on the Potsdam dataset. 

Network Surf. Building Low Veg. Tree Car Mean F1 OA mIoU 
BiSeNet 89.13 93.42 84.91 86.81 92.12 88.18 87.94 79.91 

EANet 91.71 94.82 83.73 85.67 94.98 88.63 88.67 82.71 

SwifNet 90.95 95.91 85.38 86.73 93.67 90.64 88.92 82.08 

MANet 92.97 96.88 87.42 88.21 96.23 91.94 90.31 86.78 

ShelfNet 91.93 95.48 85.89 86.89 94.09 91.31 89.87 83.68 

BANet 93.34 96.51 87.18 88.92 95.87 92.50 91.03 86.88 

Ours. 93.71 95.96 88.71 89.88 96.74 92.85 91.64 87.22 

 

Table 2. The results of the experiments conducted on the LoveDA dataset. Agri. means Agri-
culture. 

Network Background Building Road Water Barren Forest Agri. mIoU 
PSPNet 43.87 51.91 53.37 76.32 8.97 43.93 57.43 47.9 

DeepLabV3+ 42.98 50.87 51.88 73.98 10.13 43.18 58.41 47.37 

BANet 42.91 51.45 50.91 76.84 16.81 43.82 61.91 48.91 

TransUnet 42.86 55.82 53.63 77.76 9.17 44.87 56.38 48.78 

DC-Swin 40.87 54.32 55.48 77.92 14.42 46.89 62.29 50.29 

Ours. 44.13 55.64 54.89 78.63 19.12 46.78 62.53 51.37 
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From the Table 1, our proposed BFNet exceeds the previous segmentation networks in 
many ways, achieving the highest F1 score of 92.85% on the Potsdam and mIoU is 
87.22%. While on LoveDA dataset mIoU reaches 51.37% and all the fine categories 
also performed well . 

The main difference between BFNet and BiSeNet is that we use ESwin-Transformer, 
and the experimental results in Table 1 show that BFNet outperforms BiSeNet in all the 
metrics. The training of the two models is based on the designed parameter script, which 
includes the image preprocessing format, training parameters and so on. 

The main difference between BFNet and BANet is that we utilise boundary attention 
in the fusion of two-branch information, in addition to our low-frequency branches are 
appended at the end of the pixel attention module that extracts low-frequency context 
information. The experimental results indicate that BFNet surpasses BANet across all 
metrics. 

 

 
Fig. 6. The experimental results on the Potsdam dataset. GT represents Ground Truth. 
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To validate the model's effectiveness for image segmentation, we visualize the segmen-
tation results of BFNet alongside other methods. As can be seen from Fig.6, existing 
methods tend to consider only local detail information, which leads to fragmentation of 
segmentation and classification confusion in some regions. BANet uses an attention 
mechanism and a two-branch network, and its segmentation effect has been improved.  

4.3 Ablation Experiments 

In this chapter, we employ a comprehensive set of ablation experiments on the dataset 
to substantiate the efficacy of each module. We performed the three experiments for 
each method and the final results are averaged results are shown in the Table3 and 4.  

• LFB denotes that only low frequency branching is used to segment the image. 
• (𝑃𝐴)3 denotes that the pixel attention module is not used in the BFNet model.  
• (𝐵𝐴)3 denotes that the boundary fusion module is not used in the BFNet model. 

We conduct experiments comparing the LFB model with the ResT model. ResT is 
the same as LFB and uses a single-branch structure. The difference between the two of 
them is that ResT uses the traditional Trans to extract features from the image, while 
LFB uses ESwin-Trans to extract features. From Table 3, it can be seen that LFB out-
performs ResT in all the data of the metrics Mean F1, OA and mIoULFB while the 
computational power is improved. Thus, the effectiveness of our ESwin-Trans module 
can be verified. 

Table 3. The results of the experiments on ResT and LFB. 

Module Surf. Building Low Veg. Tree Car Mean F1 OA mIoU 
ResT 92.13 95.56 86.03 87.21 94.18 91.21 89.71 84.74 
LFB 91.95 95.36 86.31 87.87 93.98 91.23 88.34 85.03 
BFNet 93.58 96.01 88.38 89.18 96.73 92.58 91.58 86.73 

In addition to verifying the effectiveness of the ESwin-Trans module, we also verified 
the efficiency of the pixel attention module (PA) and boundary fusion module (BF). 
The (𝑃𝐴)3 lacks the pixel attention module compared to the BFNet model. The (𝑃𝐴)3 
does not optimize the different scales of low-frequency context information of the LFB 
branch, but directly sends the output of the final stage to the next module. A review of 
Table 4 reveals that the values of all the metrics of (𝑃𝐴)3 are substantially lower than 
those of BFNet. Thus, it is clear that the pixel attention module has a crucial influence 
on the BFNet model. 

The (𝐵𝐴)3 lacks the boundary fusion module compared to the BFNet model. The 
(𝐵𝐴)3 directly fuses the outputs of two branches without applying the boundary atten-
tion mechanism. Due to the fact that the low-frequency information and the high-fre-
quency information are in different domains, direct summation or splicing is not the 
best approach. As can be observed in Table 4, the metrics of BFNet are optimal, and all 
the metrics of the (𝐵𝐴)3 are lower than those of BFNet. The results demonstrate the 
efficacy of the boundary fusion module on the BFNet model. 
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Table 4. The results of the ablation study.  

Module Surf. Building Low Veg. Tree Car Mean F1 OA mIoU 
(𝑃𝐴)! 92.09 95.65 86.42 87.60 94.39 91.48 89.12 85.47 
(𝐵𝐴)! 92.38 95.87 86.44 88.14 94.78 91.69 89.65 85.77 

BFNet 93.58 96.01 88.38 89.18 96.73 92.58 91.58 86.73 

5 Conclusion 

We propose a Bi-Frequency Fusion Network for high-resolution remote sensing im-
ages(BFNet). Specifically, the BFNet is a two-branch structure, where the low-fre-
quency branch captures the low-frequency context information at different scales based 
on ESwin-Trans; the high-frequency branch extracts the high-frequency edge infor-
mation and local context information based on stacked convolution and transverse con-
nection. In particular, in order to better select the optimal context information, we de-
sign the pixel attention module to select the different scale context information. Mean-
while, In order to balance the features of different frequencies, we design the boundary 
fusion module, which applies boundary attention to the high-frequency data and low-
frequency data from the unused domains for fusion, so as to realize accurate segmenta-
tion. A substantial number of experiments is conducted on both the Potsdam and 
LoveDA datasets have validated the efficacy of our proposed BFNet model. We hope 
that this paper can provide more researchers with ideas for semantic segmentation in 
the following years. 
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