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How Developers Handle Exceptions and Fix
Exception Bugs in Mobile Apps?

Abstract—Modern programming languages provide a mech-
anism for programmers to handle exceptions, i.e., unexpected
errors occurring while a software system is running. However,
learning to handle exceptions correctly is often challenging for
mobile app developers due to the fast-changing nature of API
frameworks for mobile systems and the insufficiency of API docu-
mentation and source code examples. Failing to catch and handle
exceptions could leads to serious bugs and issues such as crashing,
resource leaking, or causing negative end-user experiences. The
goal of our paper is to present a thorough understanding about
the nature of exception-related bugs and how developers handle
exceptions and fix those bugs in mobile app environment. To that
end, we first present a detailed empirical study on 246 exception-
related bugs and fixes from 10 Android apps. Eight findings from
the study suggest that handling exception has proven difficult
and error-prone for many app developers. Our study suggests
the need of tool support to help app developers become better
in this task. Thus, we also performed another study on how
professional app developers handle exceptions in 4000 high-
quality Android apps. This study provides useful guidance and
insights on building exception handling recommendation tools.

I. INTRODUCTION

Exceptions are unexpected errors occurring while a software
system is running. For example, when a software system wants
to open a file with a given file name but, unexpectedly to
the programmer, the file system contains no file having that
name, a ”file not found” exception occurs. Failing to handle
exceptions properly could lead to more serious errors and
issues such as system crashes or resource leaks. For example,
a prior study reports that correctly releasing resources in the
presence of exceptions could improve of 17% in performance
of the application [1]. Thus, effective exception handling is
important in software development.

Modern programming languages like Java or C++ often
provide built-in supports for exception handling. For example,
in Java, we can wrap a try block around a code fragment
where one ore more exceptions potentially occur. Then, we
add one or more catch blocks to handle such exceptions. An
API library often defines many API-specific exception types
and exception handling rules. For example, in Java SDK,
class FileNotFoundException is defined for the file not found
exception. When such an exception happens, the software
system could notify users about the error and/or write the
relevant information (e.g., filename) to the system’s log for
future debugging or investigations.

However, learning to handle exception properly is often
challenging especially in mobile app development due to
several reasons. First, a mobile API library often consists
a large number of components. For example, the Android

application framework contains over 3,400 classes, 35,000
methods, and more than 260 exception types [2]. Moreover,
the documentation for handling exceptions is generally in-
sufficient. Kechagia et al. found that 69% of the methods
from Android packages in their stack traces had undocumented
exceptions in the Android API and 19% of the crashes could
have been caused by insufficient documentation. Coelho et
al. [3] found that documentation for explicitly thrown Run-
timeExceptions is almost never provided. Second, due to the
fast development of mobile devices and the strong competition
between software and hardware vendors, those frameworks are
often upgraded quickly and include very large changes and
therefore they could introduce new types of exceptions. For
example, 17 major versions of Android framework contain-
ing nearly 100,000 method-level changes have been released
within five years [2]. Thus, it is difficult to learn and memorize
what method could causes what exception and what to do
when a particular exception occurs. That could leads to high
number of programming errors (bugs) related to exceptions in
app development.

In this paper, we first present a detailed empirical study on
246 exception-related bugs and fixes from 10 Android apps.
Our aim is to understand the nature of exception-related bugs
in mobile app development and how app developers fix them.
In particular, we focus on three main research areas:
1. Causes and Effects of Exceptions. Missing exception
handling code or failing to handle exceptions properly could
introduce serious errors in an app. Thus, we focus on how
exception bugs affect the running apps. Secondly, we study
exception bugs in several aspects including what are object
types and methods often cause exception bugs, what are
exception types that often happen in those bugs, and are there
any correlations between object types or methods that cause
exceptions and exception types.
2. Handling Exceptions. In this research area, we focus
what app developers do in exception bug fixes. Swallowing
exception by adding a simple try-catch block could avoid the
program crashing when exception occurs but might introduce
new bugs to an app. Thus, we study whether this type of
handling occurs in the bug fixes. Next, we focus on what
type of actions that app developers do in their handling code.
Finally, we also identify if there are still bugs after developers
handle exceptions.
3. Logging Exceptions. Logging is a method to pinpoint the
existence and location of exceptions and provide runtime in-
formation that helps programmers in fixing exception bugs. In
this research area, we focus on the logging code in exception



bug fixes.
We manually collected and analyzed 246 bugs and fixes

related to exceptions across 10 Android apps. We discovered
several interesting findings from our empirical study on the
dataset.

First, we found out that almost all exception bugs causes
serious problems for the apps such as crashing or running in
a unstable state. In 80% of the cases, exception bugs cause
crashes and in 13% of the exception bugs cause the apps
running in a unstable state or make some features not function
properly. Further investigate, we found out that 51% (127/246)
of exception bugs are caused by Android API methods.
Regarding exception types, we found out that in 246 exception
bugs, there are 58% (143/246) of runtime exceptions. We also
found out that there are some exceptions have very strong
associations with some particular method calls.

In the second research area, our results show that pro-
grammers do not perform any actions to handle occurring
exceptions in about 16% (40/246) bug fixes and they add
repairing code in only 42% of the exception bug fixes. More
interestingly, we discover some patterns in the repairing code
of developers. The patterns include closing or releasing objects
that hold resources such as Cursor, Activity; invoke method that
causes exception again or with different parameters; or create
a new object to replace object that causes the exception.
In addition, we found that mobile developers even failed to
handle exceptions properly in several exception bug fixes.

Finally, we focus on the logging actions of app developers
when fixing exception bugs. In totals, programmers add log
statements in about 76% (187/246) of bug fixes. We further
investigate on what programmers log when handling excep-
tions. We found that about in 71% (134/187) of bug fixes
that have log statements, programmers only log messages
indicates the exceptions or where the exceptions happens,
i.e. stack trace. In the remaining 29% (53/187), programmers
includes more context information in logs such as value or
information of objects when exception. In general, including
context information is a better logging scheme as it provides
more runtime information to help developers in debugging and
fixing exception bugs.

The study suggests that automated exception handling rec-
ommendations are needed to assist app developers prevent
and fix exception bugs, and help them to handle exception
correctly. Thus, we also performed study on how professional
developers handle exceptions on 4000 high-quality mobile
apps. We found several interesting findings. First, we found
that developers spend most of their time handle runtime
exceptions. Thus, a recommendation model could focus on
those types of exceptions. Second, we found that there are
correlations between methods and exception types in terms of
co-occurrence, which suggests that co-occurrence can be used
to predict potential exceptions that might occur when using
a specific method. Finally, we found that most of the time,
app developers only use one main method per an object to
handle exceptions. The result from the study suggests several
guidelines for building exception handling support models.

The key contributions of our paper include:
• A study of 246 exception-related bugs and fixes from 10

mobile apps, and eight findings providing insights about
exception bugs and fixes in mobile app development.

• A study on how professional app developers handle
exceptions on 4000 high-quality mobile apps. Which
provides several suggestions on how to detect and handle
exception correctly.

II. STUDY ON EXCEPTION BUG FIXES IN MOBILE APPS

In this section, we describe how we collected and built the
dataset used in our empirical study and our research questions.
The dataset includes real bug fixes that related to exceptions
in mobile app development. In particular, we focus on bugs
that are caused by not catching exceptions or adding proper
exception handlers. For convenience, we defined those bugs
as exception bugs. The fix for those type of bugs is called
exception bug fixes. Understanding the nature of exception
bugs and fixes helps us to answer our research questions.

A. Dataset

To perform our empirical study on bug fixes, we collected a
dataset consists of several open-source Android projects. Table
I lists 10 subject projects used in our study. Each project is
an application published in Google Play Store 1. AntennaPod is
an open-source podcast manager for Android. ConnectBot is a
SSH, telnet and terminal emulator. Conversations is a XMPP-
based instant messaging client. FBReader is an e-book reader.
K-9 is email client focused on managing large volumes of
email. MozStumbler is a wireless network scanner developed
by Mozilla. PressureNet is a crowd-sourced barometer net-
work. Signal and Surespot are secure instant messaging apps.
WordPress is the official Android client of WordPress. All the
projects are written in Java and have source code repositories
available on GitHub. For each project, we checked out its
source code repository to retrieve all the code and commits.
The number of commits of each project (at the time we
checked out the repositories) are listed in column Commits. To
ensure the reliability of our study, we selected medium to large
projects compared to other Android projects. Each project has
at least over 1,000 commits and the total number of commits
are over 66,000.

To study exception bug fixes, the first step of our analysis
on the dataset is identifying bug fixes. We define a bug fix
is a commit in which the fixer fixed a bug found in the
project. Identifying all bug fixes in a software project is often a
hard task as issue tracking systems are incomplete to capture
all bugs, and the fixers might not describe a fix explicitly.
Generally, bug fixes are identified based on two types of
bugs: 1) bugs reported through issue trackers, which are called
reported bugs, and (2) those not reported to issue trackers,
which are called on-demand bugs [4].
1. Reported bugs. All the projects in our empirical study have
an issue tracking system to track various issues including bugs,

1play.google.com
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TABLE I: The Empirical Dataset

Mobile App Website Commits Bug Fixes Candidate Bug Fixes Exception Bug Fixes

AntennaPod antennapod.org 3,404 767 89 28
ConnectBot connectbot.org 1,450 327 39 8
Conversations conversations.im 3,318 922 123 23
FBReaderJ fbreader.org 27,944 1,403 118 30
K-9 github.com/k9mail 7,254 1,797 223 31
MozStumbler location.services.mozilla.com 2,667 692 55 7
PressureNet cumulonimbus.ca 1,017 203 31 11
Signal whispersystems.org 2,754 1,030 130 28
Surespot surespot.me 1,590 274 54 8
WordPress apps.wordpress.org 15,546 3,691 425 72

Total 66,944 11,106 1,287 246

improvements, new features, tasks, etc. Using the system, users
can report issues or requests they encountered when they are
using the software. Each reported issue has an associated
issue number and can be labeled based on the type of it (e.g.
bugs, improvements, new features, tasks, and sub-tasks). As
an example, in Wordpress, an user reported a bug with the
title “Crash report 3.7: IllegalStateException in WPDrawerActivity
#2372”. The issue number for this bug is #2372 and it is
labeled as [Type] Bug. Additional information is also included
in the thread of the issue such as its status, its description, the
discussions among programmers, and the relations to other
issues. The programmers or fixers of the project then look
at the reported issue and try to resolve it. If a change of
an issue is committed, programmers often write its issue
number to the message of the commit. For example, in the
fix commit for the above bug, the commit’s message says
“fix #2372 by catching IllegalStateException” to indicate that,
in the commit, the fixer fixed the bug in the issue #2372 by
catching IllegalStateException. As the fixer already fixed the bug,
he marked the status of the issue as closed or fixed.

To identify bug fixes from reported bugs, [4], [5] used a
pattern to extract all commits that mention a issue number.
Then they used the issue number to determine whether it
indicates a bug or not (using the label of the issue). If the
issue is a bug, the associated commits are considered bug
fixes. For instance, the commit in the previous example points
to the issue #2372, and as the issue is a bug, the commit is
considered as a bug fix.

2. On-demand bugs. Issue trackers often do not contains
all information about the bugs and fixes. In many cases,
developers might bypass the issue trackers, especially when
they discover bugs from other sources by themselves or other
sources (e.g. user reviews, discussion with other developers).
In such cases, they often fix the bugs and commit the changes
without creating issues in the issue tracking system. When
they commit a change, programmers may write a message to
describe the fix. For example, in the project Wordpress, the
message of a commit indicates “Fixes crash where postID
could be larger than max int value”. In the commit, the
developer added a try-catch block to handle a NumberFormatEx-
ception which caused the app scraching if postID is larger than
maximum integer value. The bug that the developer referred

in the commit message is an on-demand bug.
To identify bug fixes from on-demand bugs, a number of

previous studies (e.g. [4], [6], [7] used a simple keyword-
based technique. They identified a commit is a bug fix if
its message contains words such as “fix”, “fixes”,“bug”, or
“patch”. The method is based on assumption that when fixing
a bug, developers often write commit message to describe the
fix. In the previous, as the commit message contains the word
“fixes”, it is considered as a bug fix.

In our study, we identified bug fixes using both methods
described above and combine the result to form a set of bug
fixes for each project. The column Bug Fixes lists the number
of bug fixes of each project. In total, there are over 11,000
bug fix commits over 10 projects.

The next step in our analysis is identifying exception bug
fixes from all bug fixes. Not all bug fixes are related to
exception and manually identifying exception bug fixes from
all bug fixes is very time consuming. Thus, we used a semi-
automated method for identifying exception bug fixes. First,
we developed a simple filter technique to only consider bug
fixes that can potentially be exception bug fixes. As most of
the exception bug fixes involving adding try-catch blocks, we
consider a commit to be candidate exception bug fixes if the
changes in the commit contain at least one adding of catch
statement. For example, consider a change of the an example
bug fix shown in Figure 1.

- postContent = new SpannableStringBuilder(
-                                mEditorFragment.getSpannedContent());
+ try {
+     postContent = new SpannableStringBuilder(
+                                mEditorFragment.getSpannedContent());
+ } catch (RuntimeException e) {
+     // A core android bug might cause an out of
+     // bounds exception, if so we'll just use the current editable
+     // See https://code.google.com/p/android/issues/detail?id=5164
+     postContent = new SpannableStringBuilder(
+         StringUtils.notNullStr((String) mEditorFragment.getContent()));
+ }

COMMIT MESSAGE: "fix #2695: re-introduce a workaround we were 
using in previous versions"

Fig. 1: Example 1

We can see that in the fix version, the developer added an
catch statement. Thus, the commit is considered as a candidate
exception bug fixes. After using this filtering method, the
number of candidate exception bug fixes are 1,287 as showed
in column Candidate Bug Fixes of Table I.
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Next, we manually inspected the remaining 1,287 bug fixes
to find exception bug fixes. We formed an assessment group
consists three Ph.D. students in the field of software engineer-
ing to do this task. A bug fix is considered an exception bug
fix if an exception is thrown on the bug and the fixers fix the
bug by adding proper exception handling code. Our criteria
to determine whether a bug fix is an exception bug fix is
based on commit message, changes in commit, and comments
adding in source files. In some bug fixes, we may not have
all these three information to consider whether a bug fix is
an exception bug fix, e.g. comments are missing. In these
situations, we used all available information and tried our best
to understand what developers do in these bug fixes before
making classifications. At the end, a bug fix is considered as
an exception bug fix if at least two of three students vote
for it. For example, in the preceding example bug fix, the
developer noted that he fixed the issue #2695. By looking at
the issue in the issue tracking system of the project, we found
that it is a reported bug as its description showed a stack trace
in which an IndexOutOfBoundsException had been thrown when
the code was executed. In the change of the commit, we can
see that he added a try-catch block to catch the method new
SpannableStringBuilder. He also commented that he found the
cause of the bug is related to an core issue of Android and
he tried to work around with it by using the current editable.
Based on these information, we identified that the example
commit is an exception bug fix.

@Override
protected void onPause() {
  super.onPause();

+ try {
+   unregisterReceiver(mGalleryReceiver);
+ } catch (IllegalArgumentException e) {
+   AppLog.d(T.EDITOR, "Illegal state! Can't unregister receiver that was no 
+   registered");
+ }
  stopMediaUploadService();
  mAutoSaveTimer.cancel();
}
. . . 
@Override
protected void onDestroy() {
  super.onDestroy();
- unregisterReceiver(mGalleryReceiver);
  AnalyticsTracker.track(AnalyticsTracker.Stat.EDITOR_CLOSED_POST);
}

COMMIT MESSAGE: “Catching IllegalArgumentException when 
unregistering receiver.”

Fig. 2: Example 2

Figure 2 shows a more complicated example that we agreed
to be an exception bug fix. Because this is a on-demand bug,
there was not associated issue for us to know more about the
bug. Thus, our judgment mostly based on the commit message
and the code changes. In the commit message, the fixer noted
that he caught an IllegalArgumentException when unregistering
receiver. We inferred that there was an IllegalArgumentException
being thrown when unregistering a receiver. By investigating
the code changes, we found a call of the method unregis-
terReceiver in the definition of the method onDestroy, so that
might be where the exception was thrown. We also found that
in the fix, the fixer moved the method unregisterReceiver from
onDestroy to onPause and wrapped the method with a try-catch
block. In the exception log message, the fixer also noted that

the code might lead to an illegal state. With all the information,
at the end, we considered the bug fix is an exception bug fix.

. . .  
super.onCreate(savedInstanceState);
setContentView(R.layout.manage_accounts);

+ if (savedInstanceState != null) {
+     String jid = savedInstanceState.getString(
+                                          STATE_SELECTED_ACCOUNT);
+     if (jid != null) {
+         try {
+             this.selectedAccountJid = Jid.fromString(jid);
+         } catch (InvalidJidException e) {
+             this.selectedAccountJid = null;
+                  }
+     }
+ }

accountListView = (ListView) findViewById(R.id.account_list);
this.mAccountAdapter = new AccountAdapter(this, accountList);
accountListView.setAdapter(this.mAccountAdapter);
. . .

COMMIT MESSAGE: "fixed crashes when activity got destroyed 
when selecting pgp key."

Fig. 3: Example 3

Figure 3 shows an example in which the bug fix was not
considered as an exception bug fix. In the commit message,
the fixer only noted that he fixed crashes when activity got
destroyed when selecting pgp key. With this information, we
were unable to locate exactly the what type of the crashes and
where the crashes happened in the code. Although, in the code
change, the fixer add a portion of code with a try-catch block,
he also modified the code in other functions and files so we
agreed that the bug fix should be too general to be recorded
as an exception bug fix.

If a bug fix is considered as an exception bug fix, we
recorded several information related to it for the purpose
of our study, including the effects of the exception bugs,
what types and methods causing exception, the exception
types, the handling action of the fixer, the logging messages,
etc. Finally, we identified 246 exception bug fixes across
10 projects. Column Fixes of Table I shows the number of
exception bug fixes for each projects. Our dataset is available
at: rebrand.ly/ExDataset.

B. Empirical Results

1) RQ1: Causes and Effects of Exceptions:
Finding 1.1. First, we focused on how exception bugs af-
fect the running apps. Thus, we classified exception bugs
into different types of effects including: CRASH, UNSTABLE,
UNKNOWN. CRASH implies that the app crashed when an
exception bug occurred. Figure 1 shows an example of an
exception bug is classified as CRASH. The app crashed when
calling the constructor of SpannableStringBuilder. UNSTABLE
means that the app continued to run but in an unstable state
or some features might not function properly. Figure 4 shows
an example of an exception bug classified as UNSTABLE. The
exception occurred in another thread instead of the main thread
which caused the notifications not rendering generated avatars.
If we did not have enough information to figure out the effect
of an exception bug we labeled it as UNKNOWN.

We studied the number of exception bugs classified by
the defined types. Exception bugs caused apps crashing in
over 80% of the cases (199/246). Over 13% (33/246) of the

4



- bitmap = Bitmap.createBitmap(canvasWidth, canvasHeight,
                                              Bitmap.Config.ARGB_8888);
- Canvas canvas = new Canvas(bitmap);
- drawable.draw(canvas);
+ try {
+    bitmap = Bitmap.createBitmap(canvasWidth, canvasHeight,
+                                              Bitmap.Config.ARGB_8888);
+    Canvas canvas = new Canvas(bitmap);
+    drawable.setBounds(0, 0, canvas.getWidth(), canvas.getHeight());
+    drawable.draw(canvas);
+ } catch (Exception e) {
+    Log.w(TAG, e);
+    bitmap = null;
+ }

COMMIT MESSAGE: "Fix for lollipop notifications not rendering 
generated avatars."

Fig. 4: Example 4

TABLE II: Top-10 Types

Types #

android.app.Activity 14
android.content.Context 8
java.lang.Integer 5
android.database.sqlite.SQLiteDatabase 5
android.graphics.BitmapFactory 5
android.graphics.Bitmap 4
java.text.SimpleDateFormat 4
android.content.ContentResolver 3
android.database.sqlite.SQLiteDatabase 2
android.media.MediaPlayer 2
android.database.Cursor 2

exception bugs caused the app running in a unstable state
or some features might not function properly. There are 14
exception bugs are labeled as UNKNOWN as we did not have
enough information to classify those bugs in one the two types
above. From the statistics, we can see that exception bugs
often cause serious problems for the apps such as crashing or
running in a unstable state.
Finding 1.2. Most of exception bugs are caused by Android
API methods. Table II shows top-10 types by the number of
times the methods of those types cause exceptions. Our first
observation is that all 10 classes are Android APIs (to save
space, we do not show the full qualify name of each classes).
Further investigated, we found out that 51% (127/246) of
exception bugs is caused by Android API methods. Note
that, in our study, we only identified which methods cause
exceptions inside the try block of a bug fix. A third-party
method that causes exception may used several Android API
objects and methods inside its implementation, and the actual
cause of exception might be from those API calls. Thus, in
reality, we believe the percentage of exception bugs caused
by Android APIs could be even higher. The finding suggests
that using Android APIs could lead to considerable number of
exception-related bugs.
Finding 1.3. Most of exceptions in bugs occurs by runtime
exceptions. Recall that, in Java, exceptions are divided into
three categories: checked exceptions, runtime (unchecked)
exceptions, and runtime errors. Table III also top-10 exception
types appear in the exception bug fixes. From the table, we
have several observations. First, the java.lang.Exception class
appears most often. Exception is the base class for all checked
and unchecked exception in Java. An Exception can be checked

TABLE III: Top-10 Exceptions

Exceptions #

java.lang.Exception 54
java.lang.NullPointerException 25
java.lang.IllegalArgumentException 22
java.lang.OutOfMemoryError 19
android.content.ActivityNotFoundException 14
java.lang.NumberFormatException 9
java.lang.IllegalStateException 9
java.lang.Throwable 8
android.database.sqlite.SQLiteException 8
java.lang.ClassCastException 8

TABLE IV: Frequency of methods that causes exceptions

OutOfMemoryError #

Bitmap.createBitmap 2
BitmapFactory.decodeFile 2
BitmapFactory.decodeByteArray 2
Byte.new 2
BitmapFactory.decodeResource 1

NumberFormatException

Integer.parseInt 4
Long.parseLong 2
Integer.valueOf 1

ActivityNotFoundException

Activity.startActivityForResult 5
Context.startActivity 4
Activity.startActivity 3
LinkMovementMethod.onTouchEvent 1
Fragment.startActivity 1

or unchecked exception. This result could be explained as the
fact that when catching exception, developers may not know
or care about what type of exception is thrown and they just
catch the most general exception. Another observation is that
most of remaining exception types are runtime exceptions.
There is only one type of runtime errors in the ranked list,
which is OutOfMemoryError. Further investigation on the type
of exceptions, we find out that in 246 exception bugs, there
is 58.13% (143/246) of runtime exception, 7.31% (18/246)
of checked exceptions, and 9.34% (23/246) of runtime errors.
For the 62 remaining exception bug fixes, developers catch
exceptions using general exception types such as Exception or
Throwable, thus, we cannot identify types of exceptions in these
fixes. The result indicates that the majority of exceptions in
exception bugs are runtime exceptions. The finding suggests
that an exception support tool should focus on predicting the
occurrences of runtime exceptions.
Finding 1.4. There are associations between methods and
exception types. Studying the dataset, we found that some
exceptions have a very strong association with specific meth-
ods. Table IV shows frequency of methods that causes Out-
OfMemoryError, NumberFormatException and ActivityNotFoundEx-
ception. From the table we can see that parsing numbers often
throws NumberFormatException, starting an activity could intro-
duce ActivityNotFoundException and using Bitmap often causes
OutOfMemoryError. The reverse relationship is also true as all
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three exceptions are only occur by methods in the table.
2) RQ2: Exception Handling:

Finding 1.5. In this finding, we study what developers do
in exception bug fixes. Based on the fixes of developers
in the dataset, we classify 3 types of fixes that the fixers
performed: catch the exception and do not perform any actions
(SWALLOW), re-throw another exception to transfer handling
jobs to other functions (RETHROW), invoke method calls or
operations to handle exceptions (HANDLING). After analyzing
each type of actions, we found that, in total, programmers did
not perform any actions to handle exception in about 16%
(40/246) bug fixes. They re-threw another exception in about
12.6% (31/246) of the cases. Finally, fixers handled exceptions
in 41.86%(103/246) of the exception bug fixes. We label a bug
fix as SWALLOW if programmers only add try-catch blocks to
the portion of code that causes exception but the catch block
in the fix does not contain any statements or only contains log
statements. This action is also called swallowing exception.
An example for this type of handling is shown in Figure 5.

- unregisterReceiver(mediaUpdate);
+ try {
+     unregisterReceiver(mediaUpdate);
+ } catch (IllegalArgumentException e) { }

Fig. 5: An example of swallowing an exception

In this example, the method unregisterReceiver throws an
exception when it is executed and makes program crash. The
programmer fixed the bug by adding a try-catch block to cover
the method. This handling method will avoid the program from
crashing when an exception occurs. In general, swallowing
exception is a bad practice, the data and logic in program
might change because of the exception, thus, continue running
without modification could introduce new bugs to the program.
Our results suggests that there are considerable exception bugs
are fixed by swallowing exceptions.
Finding 1.6. In totals, programmers invoke method calls or
operations to handle exceptions in 41.86%(103/246) of bug
fixes. We label a bug fix as HANDLING if the catch block
in that fix contains at least one statement other than a log
statement. To further understanding how programmers han-
dle exceptions, we categorized handling actions into several
categories. We found that about 52% (54/103) of these bug
fixes, programmers used default values to handle exceptions.
One example of this handling type is if an exception occurs
inside a method that returns an object, in the catch block of
the fix, programmers handle exception by returning null. Or if
exceptions occur while getting or creating object, he or she will
assign the result variable to a default values such as null, true,
0, etc. Figure 8 shows an example of handling an exception
by return null value. We also found that in 2 cases of the bug
fixes, programmers created alerts to notify users about the bug
that happened.

Programmers invoke method calls in catch block to handle
exceptions in the remaining 47 bug fixes. After analyzing
these bug fixes, we found that in almost all of these bug
fixes (40/47), programmers invoke method calls of the same

class with the method that causes exception. Let consider an
example bug fix in Figure 6.

- in = new BufferedInputStream(conn.getInputStream());
+ try {
+     in = new BufferedInputStream(conn.getInputStream());
+ } catch (Exception ex) {
+     in = httpURLConnection.getErrorStream();
+ }

Fig. 6: An example of exception bug fix that invoke method calls

In this example, the call of method getInputStream causes
exception, the programmer handle this exception by invoke
function getErrorStream on the same object with getInputStream.

We further find patterns in the remaining 47 bug fixes.
The patterns includes closing or releasing objects that hold
resources such as Cursor or Activity (10), invoke method that
causes exception again or with different parameters (12),
create a new object to replace object that cause exception (4),
and other actions (21). Examples for each pattern are shown
in the Figure 7. This finding suggests that there are patterns
in exception-handling actions of app developers.

- db.delete(COMMENTS_TABLE, "blogID=" + blogID, null);
+ try {
+   db.delete(COMMENTS_TABLE, "blogID=" + blogID, null);
+ } catch (Exception e) {
+   Log.i("WordPress", e.getMessage());
+   db.close();
+   return false;
+ }

Handling Type #1: Close or release objects that hold resources

- postContent = new SpannableStringBuilder(mEditorFragment.getSpannedContent());
+ try {
+  postContent = new SpannableStringBuilder(mEditorFragment.getSpannedContent());
+ } catch (IndexOutOfBoundsException e) {
+  // A core android bug might cause an out of bounds exception, if so we'll just 
use the current editable
+  // See https://code.google.com/p/android/issues/detail?id=5164
+  postContent = new SpannableStringBuilder(StringUtils.notNullStr((String) 
mEditorFragment.getContent()));
+ }

Handling Type #2: Invoke methods again with different parameters

Date d;
- d = (Date) thisHash.get("dateCreated");
- values.put("dateCreated", d.getTime());
+ try {
+  d = (Date) thisHash.get("dateCreated");
+  values.put("dateCreated", d.getTime());
+ } catch (Exception e) {
+  Date now = new Date();
+  values.put("dateCreated", now.getTime());
+ }

Handling Type #3: Create new objects

+ try {
   LocationManager lm = 
(LocationManager)this.getSystemService(Context.LOCATION_SERVICE);
   Location loc = lm.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);
   double latitude = loc.getLatitude();
   double longitude = loc.getLongitude();
   Intent intent = new Intent(getApplicationContext(),PNDVActivity.class);
   intent.putExtra("latitude", latitude);
   intent.putExtra("longitude", longitude);
   startActivity(intent);
+ } catch (NullPointerException npe) {
+  // Android 4.2 NPEs here. Try again but still be careful
+  try {
+    Intent intent = new Intent(getApplicationContext(),PNDVActivity.class);
+  intent.putExtra("latitude", mLatitude);
+  intent.putExtra("longitude", mLongitude);
+  startActivity(intent);        
+  } catch (Exception e) {
+    Intent intent = new Intent(getApplicationContext(),PNDVActivity.class);
+  startActivity(intent);
+  }
+ }

Handling Type #4: Combine multiple handling actions

Fig. 7: Different types of handling actions

Finding 1.7. In several exception bug fixes, we found that
programmers did not handle exceptions properly. Figure 8
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shows an exception bug fix of Cursor object. In this example,
an exception occurs when using Cursor object. To handle this
bug, the programmer added a try-catch block to cover the code
portion that uses the Cursor object, and returned null in the catch
block. This action of handling may lead to memory leak bugs.
After exception occurs and the function returns, the Cursor
object still lives and holds system resources until it is collected
by garbage collector. This may prevent other parts of the
program access the resources. The proper way to handle this
exception is calling close method on the cursor object before
the return statement. The close method will release resources
that hold by the cursor object before the function lost reference
to it.

. . .
+ try {
     if (cursor.getCount() == 0) {
         return null;
     } else {
         cursor.moveToFirst();
         return new Pair<>(cursor.getLong(), cursor.getString(1));   
     }
+ } catch (Exception e) {
+    return null;
+ }

COMMIT MESSAGE: "catch exception when reading message id 
from database."

Fig. 8: Example 6

Figure 9 shows an exception bug fix of the object Medi-
aPlayer. As the MediaPlayer object is in an exception state, it
is recommended to call release function immediately so that
resources used by the internal player engine associated with
the MediaPlayer object can be released immediately. Resource
may include singleton resources such as hardware acceleration
components and failure to call release may cause subsequent
instances of MediaPlayer objects to fallback to software imple-
mentations or fail altogether.

- return player.getDuration();
+ try {
+        return player.getDuration();
+ } catch (IllegalStateException e) {
+        e.printStackTrace();
+        return INVALID_TIME;
+ }

COMMIT MESSAGE: “Prevented IllegalStateException when calling 
getDurationSafe()”

Fig. 9: Example 7

Finally, Figure 10 shows an exception bug fix of creat-
ing an bitmap image. When OutOfMemoryError occurs, it is
recommended to not perform any handling actions. In this
case, the fixer continued to call createBitmap which might
cause OutOfMemoryError one more time. This finding suggests
that programmers can still make mistakes when handling
exceptions.

3) RQ3: Logging Exceptions:
Finding 8. In this finding, we focus on the logging actions of
fixers in exception bug fixes. In totals, programmers add log
statements in about 50% (121/246) of bug fixes. We labeled
a bug fix has logging actions if programmers add at least
one log statement in the catch block. Table V shows top-5
log APIs used in the bug fixes. From the table we can see

. . . 
- myBitmaps[iIndex] = Bitmap.createBitmap(myWidth, myHeight, Bitmap.Config.RGB_565);
+ try {
+   myBitmaps[iIndex] = Bitmap.createBitmap(myWidth, myHeight, Bitmap.Config.RGB_565);
+ } catch (Exception e) {
+   System.gc();
+   System.gc();
+   myBitmaps[iIndex] = Bitmap.createBitmap(myWidth, myHeight, Bitmap.Config.RGB_565);
+ }

COMMIT MESSAGE: “sometimes fixes possible OOME”

Fig. 10: Example 8

that most of the time, programmers log using Android Log
APIs (50%) and standard output stream (23%). Some projects
use their custom log APIs such as WordPress uses AppLog and
Crashlytics, Surespot uses SurespotLog. We further investigate
on what programmers log when handling exceptions. We
found that about in 76% (91/121) of bug fixes that have
log statements, programmers only log messages indicates the
exceptions or where the exceptions happens, i.e. stack trace.
In the remaining 24% (30/121), programmers include more
context information in logs such as value or information of
objects when an exception happens. In general, including con-
text information is a better logging scheme as it provides more
runtime information and help developers in fixing exception
bugs. This finding suggests that developers perform logging
in half of the time fixing exception bugs while most of log
statements are used to pinpoint the existence and location of
exceptions

TABLE V: Top-5 Log APIs

Log APIs Usage

android.util.Log 61
java.io.PrintStream 28
org.wordpress.android.util.AppLog 16
surespot.common.SurespotLog 4
android.widget.Toast 4

III. STUDY ON EXCEPTION HANDLING CODE

In this section, we describe our study on exception han-
dling code of mobile apps. In particular, we focus on how
professional app developers handle exceptions on high-quality
Android apps. Results from the study could be used as
guidelines on building exception handling support tools.

A. Dataset

TABLE VI: Data Statistics

Data Collection

Number of apps 4,000
Number of classes 13,969,235
Number of methods 16,489,415
Number of bytecode instructions 341,912,624
Space for storing .dex files 19.9 GB

The dataset used in our study is summarized in Table VI. In
total, we downloaded and analyzed 4000 top free apps from
36 categories in Google Play Store. To ensure the quality
of the apps, the app extractor only downloaded apps has
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TABLE VII: Top-10 exception types handled by developers

Exceptions Frequency %

java.lang.Exception 181095 30.9%
android.os.RemoteException 47051 8.05%
org.json.JSONException 45421 7.77%
java.lang.InterruptedException 20459 3.50%
java.lang.NoSuchFieldError 18305 3.31%
java.lang.NumberFormatException 17633 3.30%
PackageManager.NameNotFoundException 14022 3.01%
java.lang.IllegalArgumentException 13576 2.32%
android.database.sqlite.SQLiteException 12518 2.14%
java.lang.IllegalAccessException 11638 1.99%

overall rating of at least 3 (out of 5). This filtering is based
on assumption that the high-rating apps would have high
quality of code, and thus, would have better exception handling
mechanism. Next, we adopted techniques in [8] and [9] to
extract exception handling instances from bytecode of the apps
for our study.

B. Results

Finding 2.1: In this finding, we first study the most popular
exception types handled by developers. We collected exception
types in each catch block appears in the dataset. Table VII
shows top-10 handled exceptions by frequency. From the table,
we could see that the most frequent exception type is no
surprises java.lang.Exception as developers can use it to catch
any of its subclasses. More interestingly, 7/10 exception types
in the list are runtime exceptions. There is only one checked
exception (JSONException) and one error (NoSuchFieldError) in
the list. The result suggests that developers spend most of their
time to handle runtime exceptions. The result is consistent with
the Finding 1.3 in our previous study as runtime exceptions
are also most often cause exception bugs.
Finding 2.2: We then focus on the co-occurrence between
methods/object types and exceptions. For this purpose, we
selected three methods that we found often lead to excep-
tion bugs in the previous study, Activity.startActivityForResult,
Cursor.moveToFirst, and Integer.parseInt. For each method, we
collected top-5 exception types that co-occur with the methods
by frequency, i.e. the method is in a try block while the excep-
tion is in the corresponding catch block. The result is shown
in Table VIII. From the table, we have several interesting
observations. First, in all three cases, the subjected method
mostly co-occurs with the first two exception types in the
ranked list. While the general java.lang.Exception is in the top-2
results, we could infer that each method mostly occurs with the
top-1 exception in a rank list, such as ActivityNotFoundException
for the method startActivityForResult. Second, we see that the
methods mostly co-occurs with exceptions of the same topic or
context. For example, The startActivityForResult method mostly
co-occurs with exception types related to locating activities
and classes such as Activity/Class/Name-NotFoundException. Simi-
larly, moveToFirst mostly co-occurs with exception types related
to database such as SQLiteException or SQLException. Third, we
found that the result is consistent with the Finding 1.4 in
our previous study. For example, in all exception bugs caused

TABLE VIII: Frequency of exception types against a method

Activity.startActivityForResult # %

android.content.ActivityNotFoundException 189 40.6%
java.lang.Exception 164 35.2%
java.lang.ClassNotFoundException 33 7.1%
pm.PackageManager.NameNotFoundException 31 6.7%
java.lang.SecurityException 10 2.1%

Cursor.moveToFirst

android.database.sqlite.SQLiteException 4874 61.9%
java.lang.Exception 2020 25.6%
android.database.SQLException 264 3.3%
java.lang.Throwable 180 2.2%
android.database.sqlite.SQLiteFullException 130 1.6%

Integer.parseInt

java.lang.NumberFormatException 7025 57.6%
java.lang.Exception 2860 23.4%
java.lang.IllegalArgumentException 397 3.26%
java.lang.Throwable 346 2.8%
java.lang.NullPointerException 206 1.8%

by not handling startActivityForResult in the previous study, the
thrown exception type is ActivityNotFoundException. The result
is similar for the moveToFirst, and parseInt. These observations
suggest that there is high correlation between methods and
exception types in terms of co-occurrence. Thus, we could
use the co-occurrence between methods and exception types
as a measure to predict which exceptions are likely to occur
when using a method.
Finding 2.3: In this finding, we focus on how developers
use method calls to handle exceptions. We first studied object
types that often occur in handling code. We define an object
type occurs in a handling code if at least an object of
that type appears in the try block. Table IX shows top-10
object types occur in handling code by frequency. The second
column shows the frequency. Note that we exclude several
popular and too general object types such as android.util.Log or
java.lang.String. From the table, we can see that the object types
in the table relate to accessing files (FileOutputStream, File),
connecting to database (SQLiteDatabase, Cursor), networking
(HttpURLConnection, Uri), and app management (Context, Intent,
Parcel. This implies that developers often write handling code
for such topics.

In each handling code that an object type occurs, we also
collected all the method calls on the corresponding object in
the catch block. We stored those the method calls as a set.
The second column shows the number of distinct sets for
each object type. We could see most object types have more
than 10 distinct method call sets that might appear in handling
code. The more general object types such as Context, File tends
to have more distinct method call sets. While more specific
object types such as Parcel, Cursor use less combinations of
method calls. We further calculate the average number of
distinct method call sets for all object types and the value
is 14.68.

The third column shows the percentage of a method call set
that contains only one method in handling code. Overall, the
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TABLE IX: Top-10 object types occur in handling code

Object Types #Occur #Sets %1Method Top-1 % Top-2 %

android.content.Context 3078 37 96.1% startActivity() 23.1% deleteFile() 19.4%
java.io.File 2813 37 64.3% delete() 30.1% exist() 28.6%
org.json.JSONObject 2508 37 76.5% new 49.7% toString() 10.6%
sqlite.SQLiteDatabase 1871 21 93.8% endTransaction() 78.1% close() 7.3%
java.io.FileOutputStream 1371 10 98.1% close() 86.8% flush() 10.6%
android.content.Intent 1508 74 66.6% new 49.4% addFlags() 7.16%
android.os.Parcel 1270 2 99.4% recycle() 99.4% readString() 0.5%
java.net.HttpURLConnection 1220 17 97.5% disconnect() 50.5% getErrorStream() 36.9%
java.net.Uri 1175 13 97.9% parse() 77.6% toString() 16.3%
android.database.Cursor 672 14 95.3% close() 85.8% getPosition() 2.5%

value is over 60% across all object types. We could see that
although the number of distinct method call sets are high,
most of the sets contain only one method. Which implies
that developers often only use 1 method of an object type
in handling code.

Furthermore, the fifth and seventh columns show the top-2
method calls used in handling code along with their percentage
of frequency. We have several observations from the statistics.
First, the total frequency of top-2 method calls is often greater
than 50%. It suggests that most of the time, developers only
use one of the top-2 methods of an object type in handing
code. The more general objects such as Context, File often have
more spread of using method calls where there is not much
different in frequency between the top-2 method calls. While
other more specific object such as Cursor, Parcel, the top-1
method is mostly used.

IV. DISCUSSIONS AND FUTURE WORK

In our first study, we found that there are considerable
number of exception-related bugs occurs in app developments.
Those bugs often cause serious problems for the apps such as
crashing or apps running in a unstable state. We also found that
to fix those bugs, app developers still use bad practices such as
swallowing exceptions. In several exception bug fixes, we also
found that app developers did not handle exceptions properly.
Thus, the results suggest the need of exception support tools
to help app developers prevent exceptions from happening and
assist developers to handle exceptions correctly.

In Finding 1.3, we found that most of exception bugs
occurs by runtime exceptions. Thus, we should build models
to predict potential runtime exceptions that might occur given
a piece of code. Such models are useful to detect potentitial
exception bugs. Finding 1.4 suggests that there are associations
between methods and exception types in exception bugs. Some
exceptions have a strong association with specific methods. In
Finding 2.2, we studied co-occurrences between methods in try
block and the exceptions. The result suggests that we could
build a model to predict potential runtime exceptions using co-
occurrences between methods and exceptions collected from
large amount of code.

In Finding 1.6, we discovered that developers often use four
main types of actions to fix exception bugs including close
or release objects that hold resources, invoke methods with
different parameters, create new objects, and combine multiple

actions. In Finding 2.3, we also discovered that most of the
time, professional app developers use just one main method
call to when handling exceptions for an object. These two
findings could provide several guidelines for building models
to handle exceptions.

In the future, we plan to expand our work in several di-
rections. First, similar bugs might have similar corresponding
fixes. A bug could be identified and fixed if it matches other
bugs that occurred in the history of the current project or other
projects. Nguyen et al. [10] showed that there is repetitiveness
in small size bug fixes. As exception bugs are a subset of
general bugs, they are likely to share the same property. In
the future, we plan to study the repetitiveness of exception
bug fixes. From the findings we could desire approaches to
automatically group similar exception bug fixes together.

Second, exception bugs could be exposed to developers
differently. Expert developers have deep knowledge about the
programming language, APIs, and the current working project.
Thus, they are unlikely to introduce exception bugs to the
system compared to inexperience or novice developers. On the
other hand, developers might also have different preferences
when fixing exception bugs. Some developers might prefer
fixing exception bugs by swallowing the exceptions as shown
in our study. Other fixers might prefer fixing bugs by adding
defensive code. In our future work, we plan to study exception
bugs and fixes from developer’s standpoint. Insights from the
study are useful for developing models for bug assignment and
code recommendation.

V. THREATS TO VALIDITY

The threat to internal validity includes errors when we
identified exception bug fixes from the selected projects.
Firstly, we might incorrectly identify reported bugs and on-
demand bugs. For reported bugs, a commit that refers to an
issue might not be a bug fix, thus, identifying bug fixes from
issue numbers might introduce false-positive instances. For on-
demand bugs, not all the bug fixes contains the keywords such
as “fix”, “fixes”,“bug”, or “patch”, thus, we might miss true-
positive instances. To reduce this threat, we could apply more
patterns (e.g. adding more keywords) when identifying bug
fixes from commits. Secondly, we might incorrectly identify
exception bug fixes from the set of candidate bug fixes. As the
filtering process is manually carried out by three researchers,
there are might be some errors when classifying bug fixes due
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to human errors. The threat could be reduced by adding more
people to our labelling process.

The threat of external validity includes our selected projects.
Although we analyzed 10 medium to large Android projects,
the selected projects may still be limited to Android. It is
likely that most our findings still hold for mobile platforms.
To reduce this threat, our study should be replicated in future
work by using projects other mobile platforms such as iOS.
Also, the number of exception of bug fixes should be bigger
for the result of the study more convincing. We plan to extend
the exception bug fixes in our dataset in our future work.

VI. RELATED WORK

There are various empirical studies on bugs and fixes, which
focus on different aspects including bug fixing rate [11],
bugs in build process [12], bugs in machine learnings sys-
tems [13], buffer overflow bugs [14], effects of expert knowl-
edge [15], supplementary bug fixes [16], dormant bugs [17],
javascript [18], [19], repreated bug fixes [20], bug linking [21],
testing [22], [23], [24], and bugs in distributed systems [25],
refactoring [26]. Zhong et al. [4] performed an empirical
study on real bug fixes. Yin et al. [27] performed a study
show that bug fixes could introduce new bugs. Nguyen et
al. [10] showed that repetitiveness is commons in small size
bug fixes. Eyolfson et al. [28] showed that the bugginess of
a commit is correlated with the commit time. Bird et al. [29]
showed that many projects did not carefully maintained the
links between bug reports and bug fixes. In [30], they studied
thether bug fixes recorded in these historical datasets a fair
representation of the full population of bug fixes. Thung et
al. [31] manually examined bug fixes; their results show that
faults are not localized. Ray et al. [32] studied the naturalness
of buggy code. Canfora et at. [33] studied the survival time by
extracting, from versioning repositories, changes introducing
and fixing bugs. Pan et al. [6] developed a technique to extract
27 bug fix patterns using the syntax components and context of
the source code involved in bug fix changes. Other researches
on bugs and fixes include [34], [35], [36], [37], [38], [39], [5].
Due to space limitation, we could not describe each research
in details.

There are several studies empirical studies on exception
handling. To the best of our knowledge, the closest work to
our study are [40] and [3]. Ebert et al. [40] presented an
exploratory study on exception handling bugs by surveying
of 154 developers and an analysis of 220 exception handling
bugs from two Java programs, Eclipse and Tomcat. While our
study focuses on exception bugs specifically for Android app
development. Coelho et al. [3] performed a detailed empirical
study on exception-related issues of over 6,000 Java exception
stack traces extracted from over 600 open source Android
projects. Our empirical study is based on real exception bugs
and fixes and handling code of app developers, while the study
in [3] mostly focus on exception stack traces.

Pádua et al. [41] investigated the relationship between
software quality measured by the probability of having post-
release defects with exception flow characteristics and excep-

tion handling anti-patterns. In [42], they studied exception
handling practices with exception flow analysis. Kechagia et
al. [43] investigated the exception handling mechanisms of the
Android platforms API to understand when and how develop-
ers use exceptions. In [44], they examined Java exceptions
and propose a new exception class hierarchy and compile-
time mechanisms that take into account the context in which
exceptions can arise. In [45], they showed that a significant
number of crashes could have been caused by insufficient
documentation concerning exceptional cases of Android API.
Bruntink et al. [46] provided empirical data about the use of an
exception handling mechanism based on the return code idiom
in an industrial setting. Coelho et al. [47] studied exception
handling bug hazards in Android based on GitHub and Google
code issues. In [48], they studied exception handling guidelines
adopted by Java developers.

Exception handling recommendation has been studied in
several researches [49], [50], [51], [52], [53], [54]. Barbosa
et al. [50] proposed a set of three heuristic strategies used to
recommend exception handling code. In [51], they proposed
RAVEN, a heuristic strategy aware of the global context of
exceptions that produces recommendations of how violations
in exception handling may be repaired. In [52], they presented
a DSL to specify and verify exception handling policies.
Rahman et al. [49] proposed a context-aware approach that
recommends exception handling code examples from a number
of GitHub projects. Filho et al. [54] proposed ArCatch, an
architectural conformance checking solution to deal with the
exception handling design erosion. Lie et al. [55] proposed an
approach, named EXPSOL, which recommends online threads
as solutions for a newly reported exception-related bug.

There exist several methods for mining exception-handling
rules. WN-miner [56] and CAR-miner [57] are approaches that
use association mining techniques to mine association rules
between method calls of try and catch blocks in exception
handling code. Both models are used to detect bugs related
to exceptions. Zhong et al. [58] proposed an approach named
MiMo, that mines repair models for exception-related bugs.

VII. CONCLUSIONS

Exceptions are unexpected errors occurring while an app
is running. Learning to handle exceptions correctly is often
challenging for mobile app developers due to the fast-changing
nature of API frameworks for mobile systems and the insuf-
ficiency of API documentation. Failing to handle exceptions
could lead to serious bugs and issues such as crashing, or caus-
ing negative end-user experiences. To understand the nature of
exceptions in app development and how app developers handle
them, in this paper, we performed a detailed empirical study of
exception handling bugs and fixes 246 exception-related bugs
and fixes from 10 mobile apps. We discovered eight findings
provide insights about exception bugs and fixes of mobile apps
based on three research questions. We also performed another
study on how professional developers handle exceptions on
4000 high-quality mobile apps. The study provides useful
guidance on building exception handling support tools.
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