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LLM for Explainable AI

Abstract – Explainability for large language models
(LLMs) is a critical area in natural language process-
ing because it helps users understand the models and
makes it easier to analyze errors, especially as these
models are widely used in various applications. The
“black-box” nature of AI models raises challenges in
transparency and ethics because we cannot see or un-
derstand how the model processes information to gener-
ate its output. Traditional methods, such as attention
mechanisms, have enhanced explainability in AI models
by improving model focus and accuracy but at the cost
of increased complexity. More specifically, they use tools
like gradient-based methods (e.g., Grad-CAM), making
them less accessible to non-expert users. We employ
in-context learning and prompt refinement techniques,
focusing on the pre-trained Transformer-based large lan-
guage model BART. This approach simplifies model in-
teraction by allowing users to guide the model through
natural language prompts, reducing the need for tech-
nical expertise. We validate this method via a real-life
StudentLife dataset collected 48 college students over 10
weeks. Our results offer the possibility of using LLMs
for XAI to achieve data mining for everyone.

I INTRODUCTION

In recent years, the demand for Explainable Artificial
Intelligence (XAI) has grown significantly due to con-
cerns about the opacity and lack of interpretability in
complex machine learning models [1] and [2]. However,
domain experts without experience in machine learn-
ing (ML) often find it difficult to understand and use
many ML explanations, as they are typically presented
in formats that are not intuitive or easily readable by
humans as in [3], [4] and [5]. The motivation for XAI
stems from the need to uncover what is happening inside
advanced ML models, which are often treated as black
boxes [6], and to make this information understandable
for users. Large Language Models (LLMs), which have
demonstrated their usefulness across various domains [7],
presents a promising approach to advancing the field of
Explainable AI (XAI).

Non-experts, while often aware of the questions they
need to ask to obtain information in a consumable for-
mat, may struggle to understand the technical terms
and intricacies of these AI models [8], [9]. For instance,

traditional methods that require users to interact with
ML models using SQL can be particularly challenging
for non-technical users, making these methods less user-
friendly [10].

Recent research has explored using machine learning
models to interpret user queries and provide suitable ex-
planations [11], [12]. However, these approaches still
pose challenges for non-expert users, because they often
require an understanding of technical terms and model-
specific nuances. Moreover, the key difficulty lies not
only in interpreting model behavior but also in conveying
the explanations in a way that is easily consumable and
useful for the user. In this paper, we improve explainabil-
ity using LLMs through straightforward user prompts to
extract and present information in a format that is easily
consumable by users.

II LITERATURE REVIEW

The development of large language models (LLMs)
has advanced rapidly, with notable examples including
GPT-3.5, which enhances search relevance in Microsoft’s
Bing [13] and Google’s Bard [14]. Notable models like
Google’s BERT [15] and OpenAI’s GPT series have set
new benchmarks in NLP tasks, for example to generate
specific responses upon the input text, including text
generation [16]. ChatGPT, OpenAI’s latest model, ef-
fectively translates complex outputs into user-friendly
language, aiding learners and advisors.

As machine learning models, such as neural networks,
are increasingly used in areas where human judgment is
required, it becomes crucial to explain how these mod-
els generate their outcomes [17]. This growing need for
explainability and transparency in output responses has
led to the development of Explainable AI (XAI), which
aims to make complex models easier to understand by
showing how they make decisions and offering clear, sim-
ple explanations [18]. While interpretability focuses on
understanding how the entire model functions, explain-
ability focuses on why the model gives certain results.

Researchers have employed various techniques to en-
hance explainability, such as feature importance meth-
ods , which identify the features that significantly impact
specific responses [19]. Another example is LIME (Local
Interpretable Model-agnostic Explanations), which ex-
plains a model’s predictions by creating a simpler model



Table 1: Sample entries for social responses, study spaces, and class information data generated by Python script
Social Responses

Person ID Location Number Time (Eastern) Time (Unix)
u01 43.7067925,-72.28917303 4 2013-04-16 1366092021

Study Spaces
Person ID Location Noise Time (Eastern) Place

u30 43.7024991,-72.28938342 1 2013-05-03 Paddock library
Class Information

Course 1 Course 2 Common Week Days - -
ANTH 012 COSC 089 1 [1,2,3,5] - -

around a specific prediction. This helps show which fea-
tures are influencing that decision. More specifically, If
the prompt is ’How does stress affect student GPA?’, the
important features would be ’stress’ and ’GPA’. These
techniques help in explaining how LLMs arrive at their
predictions, making their outputs more understandable
and actionable.

Figure 1: Comparison between the ground truth Python
script written by us (Figure I) and the result obtained
using the refined specific prompt (Table III). The prompt
refinement process focuses on task-specific attention, cal-
culated using the SHAP [20] tool, with the attention
mask for the three categories shown in Figure 2. Due
to the large dataset size and complexity of ChatGPT’s
architecture, the BART model [21] was employed along-
side SHAP to enhance prompt explainability.

III METHODOLOGY

To enhance AI explainability using LLM, we apply
the“locate-then-edi” approach [22] (originally designed
for modifying weights in classification tasks), to sim-
plify explainability with LLM using straightforward user
prompts. Unlike classification tasks, our focus is on im-
proving the explainability of the model. Prompt engi-
neering, in this context, involves designing and refining
the input or question given to a language model to guide
its response effectively. A “prompt” refers to the input

or question given to a language model that guides its
response. For example, asking “What is machine learn-
ing?” directs the model to provide an explanation of that
topic. Our method identifies critical words within the
input prompt which are called prompt features(the “lo-
cate” step) using shapley additive explanations (SHAP)
[20] and then refines the prompt to focus on these fea-
tures (the “edit” step). We choose SHAP because it mea-
sures feature importance by calculating each feature’s
contribution to a model’s prediction using Shapley val-
ues from cooperative game theory. Unlike other meth-
ods, SHAP shows how each feature contributes to the
model’s prediction. For example, in a model predict-
ing health outcomes, both age and blood pressure might
be important together. SHAP not only shows that these
features matter but also explains how they work together
to affect the prediction. By emphasizing relevant as-
pects in the input, we aim to enhance the accuracy and
clarity of the explanations provided by the LLM. We
evaluated this approach by comparing the explanatory
table of data generated in the LLM response III with a
ground truth table created using a python script. This
showed how a single prompt could produce clear, user-
friendly explanations, making the system more intuitive
for non-experts and presenting information in a format
that was easily consumable. In doing so, we improved
the explainability of the AI model using LLM.

IV EXPERIMENTS

In this preliminary study, we use SHAP with large
language models (LLMs) to map prompt features. We
then refine the prompts to generate explanations in the
form of visualization tables for the Experience Sampling
Method (EMA) section of the dataset. We focused on
the social, stress, and study space categories in the EMA
section of the studentlife dataset [23].

We have done experiments with three key tasks. First,
it extracts entries with locations containing the word “li-
brary,” enabling users to easily identify available study
spaces across different libraries on campus. This feature



Figure 2: Feature map of prompts for specific outputs

Social

ID Location Number Time (Unix) Time (Eastern)

U01 43.70,-72.289 4 1366092021 2013-04-16

U02 43.70,-72.289 2 1366092013 2013-04-16

U04 43.70,-72.289 2 1366092013 2013-04-16

Study Space

ID Location Noise Place Productivity

u30 43.70,-72.289 1 Paddock library 4

u45 43.71,-72.30 1 Dona library 2

u56 Unknown 2 Library 2

Class Information

Course 1 Course 2 Common Week Days

ANTH 012 COSC 089 [1,2,3,5]

ANTH 012 EARS 003 [1,2,3,5]

ANTH 012 ENGL 047 [1,2,3,5]

ANTH 012 JAPN 033 [1,2,3,5]

ANTH 012 MATH 022 [1,2,3,5]

ANTH 012 MATH 023 [1,2,3,5]

ANTH 012 NAS 035 [1,2,3,5]

Table 2: Data table for social, study space, and class
information generated by LLM

helps students plan their study sessions based on location
and availability. Second, it matches schedules for courses
like “ANTH 012” and other selected courses, allowing
students to consolidate their class timings in one place,
helping them avoid scheduling conflicts. In the final task,
the system filters entries by response time, ensuring that
users receive the most timely and relevant information,
particularly useful for quick responses in time-sensitive
situations such as social events or announcements.

V RESULTS

The initial understanding of our work is illustrated
in Figure 1. We compared the ground truth, repre-
sented by our Python script I, with the results from a
refined specific prompt III. This refinement, guided by
the SHAP tool, focused importance on key aspects of
the task. Highlighting terms like “library”, “course,”

and “response time” demonstrated basic explainability
using LLM. By providing a more transparent view of
how specific terms or features influence the model’s out-
put. Figure 2 shows the prompt’s feature map across
three categories. These results, including the table gen-
erated using LLMs to convey data, suggest that lever-
aging explainability with LLMs can effectively convey
information in a way that is easily consumable, even for
non-expert users. In summary, we have explored the
potential of LLMs to enhance model explainability and
generate clear, explainable outputs, laying the ground-
work for future advancements in this field.

VI FUTURE DIRECTIONS

Future improvements could involve LLM training
based on user feedback (i.e., LLMs continuously fine-
tuning based on user interactions and feedback in real-
time), using in-context learning, and the locate-and-edit
technique in parallel to enhance explainability in ML
model.

However, the current study has certain limitations,
such as reliance on predefined prompts and the limited
interpretability of complex model outputs. Additionally,
the accuracy of LLM-generated explanations can vary
depending on the quality of input data and the effec-
tiveness of feature importance techniques. To overcome
these limitations, we can improve by continuously refin-
ing prompts to better-fit user needs. This refinement will
help convey information in a clearer and more relevant
way for users in the context of XAI.
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Dispońıvel em: ⟨https://doi.org/10.48550/arXiv.1910.
13461⟩.

[22] FEIGENBAUM, I. et al. Editing arbitrary
propositions in llms without subject labels. arXiv
preprint arXiv:2401.07526, 2024. ArXiv:2401.07526v1

http://arxiv.org/abs/2112.01016
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2309.01029
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/.
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/.
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/.
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2208.14582
https://doi.org/10.48550/arXiv.2208.14582
https://doi.org/10.48550/arXiv.2010.09337
https://www.sciencedirect.com/science/article/pii/S0169260723002158
https://www.sciencedirect.com/science/article/pii/S0169260723002158
https://arxiv.org/abs/1705.07874
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.48550/arXiv.1910.13461
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