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ABSTRACT 
Recommender systems are seen as an efective tool to address infor-
mation overload, but it is widely known that the presence of various 
biases makes direct training on large-scale observational data re-
sult in sub-optimal prediction performance. In contrast, unbiased 
ratings obtained from randomized controlled trials or A/B tests are 
considered to be the golden standard, but are costly and small in 
scale in reality. To exploit both types of data, recent works proposed 
to use unbiased ratings to correct the parameters of the propensity 
or imputation models trained on the biased dataset. However, the 
existing methods fail to obtain accurate predictions in the presence 
of unobserved confounding or model misspecifcation. In this paper, 
we propose a theoretically guaranteed model-agnostic balancing 
approach that can be applied to any existing debiasing method with 
the aim of combating unobserved confounding and model misspeci-
fcation. The proposed approach makes full use of unbiased data by 
alternatively correcting model parameters learned with biased data, 
and adaptively learning balance coefcients of biased samples for 
further debiasing. Extensive real-world experiments are conducted 
along with the deployment of our proposal on four representative 
debiasing methods to demonstrate the efectiveness. 
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1 INTRODUCTION 
Recommender systems (RS) are designed to accurately predict users’ 
preferences and make personalized recommendations. In recent 
years, many studies have focused on deep learning for rating predic-
tions, aiming to ft the collected data using proper deep model struc-
tures [7, 13, 15, 40]. Despite the ease of collection and large scale of 
observed ratings, it is known that such data always contain various 
biases and fail to refect the true preferences of users [6, 22, 44]. 
For instance, users always choose the desired items to rate, which 
causes the collected ratings to be missing not at random, and train-
ing directly on those would leads to long-tail efects [1] and bias 
amplifcation [41]. 

To perform debiasing directly from the biased ratings, previous 
studies can be summarized into three categories: 

• Inferring missing and biased ratings, then replacing them 
using pseudo-labels [31, 38]. However, the data sparsity in RS 
and unobserved features of users and items make it difcult 
to estimate those missing values accurately. 

• Estimating the probability of a rating being observed, called 
propensity, then reweighting the observed data using the 
inverse propensity [35–37, 42]. However, the unobserved 
confounding, afecting both the missing mechanism and the 
ratings, makes it fail to completely eliminate the biases. 

• Modeling missing mechanisms and data generating process 
using generative models [26]. However, it may leads to viola-
tion of model specifcation and data generating assumptions 
in the presence of unobserved variables, resulting in biased 
estimates. 

It can be summarized that these methods would lead to biased 
estimates in the presence of unobserved confounding or model mis-
specifcation. To mitigate the efects of unobserved confounding, 
Robust Deconfounder (RD) proposes an adversarial learning that 
uses only biased ratings [10]. Specifcally, RD assumes that the true 
propensity fuctuates around the nominal propensity and uses sen-
sitivity analysis to quantify the potential impact of unobserved con-
founding. However, the assumption cannot be empirically verifed 
from a data-driven way, and it is essential to relax the assumptions 
while reducing the bias due to the unobserved confounding and 
model misspecifcation. 
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In contrast to observational ratings, uniform ratings are consid-
ered the golden standard and can be obtained from A/B tests or 
randomized controlled trials (RCTs), but harm users’ experience 
and are costly and time-consuming [11, 12]. Due to its small scale 
property, it is impractical to train prediction models directly on 
unbiased ratings. Recent studies propose to use a few unbiased 
ratings for the parameter selection of the propensity and imputa-
tion models using bi-level optimization, which has a more favorable 
debiasing performance compared with the RCT-free debiasing meth-
ods [5, 43]. However, we show that using unbiased ratings only to 
correct propensity and imputation model parameters still leads to 
biased predictions, in the presence of unobserved confounding or 
model misspecifcation. This motivates a more sufcient use of the 
unbiased ratings to combat the efects of unobserved confounding. 

In this paper, we propose a model-agnostic approach to balance 
unobserved confounding with a few unbiased ratings. Diferent 
from the previous debiasing methods, our approach enlarges the 
model hypothesis space to include the unbiased ideal loss. The train-
ing objective of the balancing weights is formalized as a convex 
optimization problem, with balancing the loss estimation between 
biased and unbiased ratings as constraints. Through theoretical anal-
ysis, we prove the existence of the global optimal solution. Then, 
we propose an efcient training algorithm to achieve the training 
objectives, where the balancing weights are reparameterized and 
updated alternatively with the prediction model. Remarkably, the 
proposed balancing algorithm can be applied to any exsiting de-
biased recommendation methods. The main contributions of this 
paper are summarized as follows. 

• We propose a principled balancing training objective with a 
few unbiased ratings for combating unmeaseured confound-
ing in debiased recommendations. 

• To optimize the objectives, we propose an efcient model-
agnostic learning algorithm that alternatively updates the 
balancing weights and rating predictions. 

• Extensive experiments are conducted on two real-world 
datasets to demonstrate the efectiveness of our proposal. 

2 PRELIMINARIES 
Let {�1, �2, . . . , �� } be a set of � users, {�1, �2, . . . , �� } be the set 
of � items, and D = {(��, �� ) | � = 1, . . . , � ; � = 1, . . . , � } be the 
set of all user-item pairs. Denote R = {��,� | (�, �) ∈ D} ∈ R |D | 

be a true rating matrix, where ��,� is the rating of item � by user �. 
However, users always selectively rate items based on their interests, 
resulting in observed ratings, denoted as RB ∈ R | B | (B ⊆ D), are 
missing not at random and thus biased. For a given user-item pair 
(�, �), let ��,� be the feature vector of user � and item � , such as user 
gender, age, and item attributes, etc. Let ��,� be the binary variable 
indicating whether ��,� is observed ��,� = 1 or missing ��,� = 0. 
Given the biased ratings RB , the prediction model �̂�,� = � (��,� ; � )
in the debiased recommendation aims to predict all true ratings 
accurately. Ideally, it can be trained by minimizing the prediction 
error between the predicted rating matrix R̂ = {�̂�,� | (�, �) ∈ D} ∈ 
R |D | and the true rating matrix R, and is given by ∑ ∑ 1 1 L����� (� ) = � (��,� , �̂�,� ) = ��,� , (1)|D| |D| (�,� ) ∈D (�,� ) ∈D 

Trovato et al. 

where � (·, ·) is a pre-specifed loss, and ��,� is the prediction error, 
such as the squared loss ��,� = (�̂�,� − ��,� )2. 

For unbiased estimates of the ideal loss in Eq. (1), previous studies 
proposed to model the missing mechanism of the biased ratings RB . 
Formally, the probability ��,� = Pr(��,� = 1|��,� ) of a user � rating 
an item � is called propensity. The inverse probability scoring (IPS) 
estimator [37] is given as ∑ 1 ��,���,� L��� (� ) = ,|D| �̂�,� (�,� ) ∈D 

where �̂�,� = � (��,� ; �� ) is an estimate of the propensity ��,� , and 
the IPS estimator is unbiased when �̂�,� = ��,� . The doubly robust 
(DR) estimator [35, 42] is given as ∑ h i1 ��,� (��,� − �̂�,� )L�� (� ) = �̂�,� + ,|D| �̂�,� (�,� ) ∈D 

where �̂�,� = �(��,� ; �� ) fts the prediction error ��,� using ��,� , i.e., � �
it estimates ��,� = E ��,� | ��,� , and DR has double robustness, i.e., 
it is unbiased when either �̂�,� = ��,� or �̂�,� = ��,� . 

In industrial scenarios, randomized controlled trials or A/B tests 
are considered to be the golden standard, and users might be asked 
to rate randomly selected items to collect unbiased ratings, denoted 
as RU ∈ R |U | (U ⊆ D). The ideal loss can be estimated unbiasedly 
by simply taking the average of the prediction errors over the 
unbiased ratings ∑ 1 LU(� ) = ��,� ≈ L����� (� ) . |U| (�,� ) ∈U 

However, unbiased ratings are costly and small in scale in reality. To 
exploit both types of data, recent works proposed to use unbiased 
ratings to correct the parameters of the propensity or imputation 
models trained on the biased dataset. Learning to debias (LTD) [43] 
and AutoDebias [5] propose to use bi-level optimization, using 
unbiased ratings RU to correct the propensity and imputation 
model parameters, and then the prediction model is trained by 
minimizing the IPS or DR loss estimated on the biased ratings RB . 
Formally, this goal can be formulated as� � 

� ∗ = arg min LU � ∗(�); U (2) 
� 

s.t. � ∗(�) = arg min LB(�, � ; B), (3) 
� 

where LB is a pre-defned loss on the biased ratings, such as IPS 
with � = {�� }, DR with � = {�� , �� }, and AutoDebias with an 
extra propensity that � = {��1, ��2, �� }. The bi-level optimization 
frst performs an assumed update of � (�) by Eq. (3), then updates 
the propensity and imputation model parameters � by Eq. (2), and 
fnally updates the prediction model parameters � by Eq. (3). 

3 PROPOSED APPROACH 
We study debiased recommendations given biased ratings with a 
few unbiased ratings. Diferent from previous studies [5, 9, 14, 22– 
24, 37, 42, 43], we consider there may be unmesaured confounding 
in the biased ratings, making the unconfoundedness assumption no 
longer hold. In Section 3.1, we show that simply using unbiased rat-
ings to perform model selection of propensity and imputation does 
not eliminate the bias from unobserved confounding and model 
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misspecifcation. In Section 3.2, we propose a balancing training 
objective to combat the unobserved confounding and model mis-
specifcation by further exploiting unbiased ratings. In Section 3.3, 
we propose an efcient model-agnostic algorithm to achieve the 
training objective. 

3.1 Motivation 
First, the unbiasedness of IPS and DR requires not only that learned 
propensities or imputed errors are accurate, but also the uncon-
foundedness assumption holds, i.e., ��,� ⊥ ��,� | ��,� . However, 
there may exist unobserved confounding ℎ, making ��,� ̸⊥ ��,� | ��,� 
and ��,� ⊥ ��,� | (��,� , ℎ�,� ). Let �̃�,� = Pr(��,� = 1 | ��,� , ℎ�,� ) be 
the true propensity, then the nominal propensity ��,� ≠ �̃�,� , and 
Lemma 1 states that the existing IPS and DR on RB are biased esti-
mates of the ideal loss in the presence of unobserved confounding. 

Lemma 1. The IPS and DR estimators are biased in the presence of 
unobserved confounding, even the learned propensities and imputed 
errors are accurate, i.e., �̂�,� = ��,� , �̂�,� = ��,� , then � � 

��,� − ��,� 

E[L�� (� )] − E[L����� (� )] = Cov , ��,� − ��,� ≠ 0. 

E[L� �� (� )] − E[L����� (� )] = Cov , ��,� ≠ 0,
��,� 

and � 
��,� − ��,� 

� 
��,� 

Proof. For DR estimator, if �̂�,� = ��,� , �̂�,� = ��,� , we have � � 
��,� − ��,� � � 

E[L�� (� )] = E ��,� + ��,� − ��,� 
��,� � � 

��,� − ��,� � � 
= E[L����� (� )] + E ��,� − ��,� 

��,� � � 
��,� − ��,� 

= E[L����� (� )] + Cov , ��,� − ��,� . 
��,� 

The last equation follows by noting that � � � � �� 
��,� − ��,� ��,� − ��,� 

E = E E | ��,� = 0,
��,� ��,� 

and E[��,� − ��,� ] = 0. In the presence of hidden confounding, 
Cov((��,� − ��,� )/��,� , ��,� − ��,� ) ≠ 0. The conclusions of the IPS 
estimator can be obtained directly from taking ��,� = 0 in DR. □ 

In addition, the existing methods using bi-level optimization, as 
shown in Eq. (2) and Eq. (3), simply uses unbiased ratings for pa-
rameter tuning of the propensity and imputation models. It follows 
that the prediction models in hypothesis space H� = {LB (�, �) |
� ∈ Φ} are as a subset of DR, where Φ is the parameter space of 
� . Though the unbiased ratings correct partial bias, in the pres-
ence of unobserved confounding or model misspecifcation, i.e., 
L����� ∉ H� , it is still biased due to the limited H� . 

Proposition 2. The IPS and DR estimators are biased, in the 
presence of (a) unobserved confounding or (b) model misspecifcation. 

Proposition 2 concludes the biased property of IPS and DR in the 
presence of unobserved confounding or model misspecifcation. 

3.2 Training Objective 
To combat unobserved confounding and model misspecifcation on 
biased ratings, we propose a balancing approach to fully leverage 
the unbiased ratings for debiased recommendations. First, when 
there is no unobserved confounding, we have 

E[LB (�, � ; B)] = E[LU (� (�); U)] . 

To obtain unbiased estimates in the presence of unmeasured con-
founding or model misspecifcation, we propose to enlarge the 
hypothesis space to include the ideal loss, from H� to H��� = 

{�� LB(�; �, �) | � ∈ Φ,� ∈ R |D | }, where LB(�; �, �) ∈ R |D |

consists of the contribution of (�, �) to LB . The efects of the unob-
served confounding and model misspecifcation can be balanced 
through introducing the coefcients ��,� for each (�, �), by making 

E[�� LB(� ; �, �)] = E[LU (� (�); U)] = E[L����� (� )] . (4) 

Proposition 3 is the empirical version of Eq. (4) in terms of the 
balanced IPS, DR, and AutoDebias loss. 

Proposition 3. (a) There exsits ��,� > 0, (�, �) ∈ B such that ∑ ∑ ��,� 1 
��,� = ��,� . 

(�,� ) ∈B 
�̂�,� |U| (�,� ) ∈U 

(b) There exsits ��,�,1 > 0, (�, �) ∈ D and ��,�,2 > 0, (�, �) ∈ B such 
that ∑ ∑ ∑ ��,� − �̂�,� 1 

��,�,1�̂�,� + ��,�,2 = ��,� . 
(�,� ) ∈D (�,� ) ∈B 

�̂�,� |U| (�,� ) ∈U 

(c) There exsits ��,�,1 > 0, (�, �) ∈ D and ��,�,2 > 0, (�, �) ∈ B such 
that ∑ ∑ ∑ �̂�,� ��,� 1 

��,�,1 + ��,�,2 = ��,� . 
(�,� ) ∈D 

�̂�,�,1 (�,� ) ∈B 
�̂�,�,2 |U| (�,� ) ∈U 

From Proposition 3(a), when ��,� ≡ |D|−1, the left-hand side 
(LFS) degenerates to the standard IPS with maximal entropy of the 
balancing weights. The training objectives of the balanced IPS are ∑ 

max ��,� log(��,� ) (5) 
� ∈R|B| (�,� ) ∈B 

s.t. ��,� > 0, (�, �) ∈ B (6) ∑ 1 1 
��,� = (7)|B| |D|(�,� ) ∈B ∑ ∑ ��,� 1 

��,� = ��,� , (8) 
(�,� ) ∈B 

�̂�,� |U| (�,� ) ∈U 

where the training objective in Eq. (5) is to maximize the empirical 
entropy of the balancing weights and to be able to prevent extreme 
weights. The positivity and normality of the balancing weights are 
guaranteed by Eq. (6) and Eq. (7), respectively, and the infuence of 
unobserved confounding and model misspecifcation is balanced 
out by reweighting the IPS estimates on biased ratings in Eq. (8). 

Similarly, for balanced DR and AutoDebias in Proposition 3(b) 
and 3(c), the estimators are re-weighted by ��,�,1 and ��,�,2 on 
the entire and biased user-item pairs, respectively, to combat un-
observed confounding and model misspecifcation. The training 
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objectives of the balanced DR are∑ ∑ 
max ��,�,1 log(��,�,1) + ��,�,2 log(��,�,2) (9)
�1,�2 (�,� ) ∈D (�,� ) ∈B 

s.t. ��,�,1 > 0, (�, �) ∈ D, ��,�,2 > 0, (�, �) ∈ B (10) ∑ ∑ 1 1 
��,�,1 = 1, ��,�,2 = (11)|B| |D| (�,� ) ∈D (�,� ) ∈B ∑ ∑ ∑ ��,� − �̂�,� 1 
��,�,1�̂�,� + ��,�,2 = ��,� , 

(�,� ) ∈D (�,� ) ∈B 
�̂�,� |U| (�,� ) ∈U

(12) 

where �1 = [��,�,1 | (�, �) ∈ D], �2 = [��,�,2 | (�, �) ∈ B], and the 
diference in balanced AutoDebias is that Eq. (12) comes to ∑ ∑ ∑ �̂�,� ��,� 1 

��,�,1 + ��,�,2 = ��,� , (13) 
(�,� ) ∈D 

�̂�,�,1 (�,� ) ∈B 
�̂�,�,2 |U| (�,� ) ∈U 

where the LFS of Eq. (12) and Eq. (13) degenetates to standard 
DR and AutoDebias, respectively, when ��,�,1 ≡ |D|−1 on D and 
��,�,1 ≡ |D|−1 on B. Theorem 4 proves the existence of global 
optimal solutions corresponding to the proposed balanced IPS, DR 
and AutoDebias using Karush-Kuhn-Tucker conditions. 

Theorem 4. There exists global optimal solutions to the optimiza-
tion problem in balanced IPS, DR and AutoDebias. 

Proof. Note that the empirical entropy as the optimization ob-
jectives in Eq. (5) and Eq. (9) are strictly convex. The inequality 
constraints in Eq. (6) and Eq. (10) are strictly feasible, i.e., there ex-
ists ��,� in D such that ��,� > 0. The equality constraints are afne 
in Eq. (7), Eq. (8), Eq. (11), and Eq. (12). By the Karush-Kuhn-Tucker 
condition, there exist global optimal solutions. □ 

Theoretically, due to the convexity of the objective function, 
its local optimal solution is same as the global optimal solution. 
The generalized Lagrange multiplier method can be used to solve 
the primal and the dual problem, and such balancing weights can 
efectively combat the unobserved confounding as in Proposition 3. 

3.3 Training Algorithm 
Next, we propose an efcient mode-agnostic training algorithm to 
achieve the training objective in Section 3.2. The algorithm con-
sists of three parts: frst, training the propensity and imputation 
models using a bi-level optimization, but without updating the pre-
diction model; then, reparameterizing and updating the gradients 
of the balancing weights to combat the efects of unobserved con-
founding and model misspecifcation; and fnally, minimizing the 
estimated balancing loss, named Bal-IPS, Bal-DR, or Bal-AutoDebias, 
and updating the prediction model to achieve unbiased learning. 

3.3.1 Propensity and Imputation Model Training. Diferent from 
LTD and AutoDebias that use bi-level optimization to update the 
prediction model, we only perform assumed updates of the pre-
diction model parameters � (�) using bi-level optimization by Eq. 
(3), and updates of the propensity and imputation model parame-
ters � by Eq. (2). Since there may exist unobserved confounding 
or model misspecifcation, we postpone the true update of the pre-
diction model parameters � to Section 3.3.3, after performing the 

Algorithm 1: Propensity and Imputation Model Training 

Input: � , RB , RU , �0, �0, � 
1 for � = 0, . . . , � − 1 do 
2 Sample mini-batches B� ⊆ B and U� ⊆ U; 
3 Compute the lower loss in Eq. (3) on B� ; 
4 Compute an assumed update 

��+1 (�� ) ← �� − �∇�� LB(�, � ; B� ); 
5 Compute the upper loss in Eq. (2) on U� ; 
6 Update the propensity and imputation model 

��+1 ← �� − �∇�� LU(��+1 (�); B� ); 
7 end 
Output: �� 

balancing steps in Section 3.3.2. We summarized the propensity and 
imputation model training algorithm in Alg. 1. 

3.3.2 Balancing Unobserved Confounding Training. One challenge 
in solving the balancing optimization problem is that as the number 
of user-item pairs increases, the number of balancing weights also 
increases, resulting in a signifcant increase in solution time for 
large-scale datasets. To address this issue, we propose to reparame-
terize ��,� in the balanced IPS, i.e., ��,� = �(��,� ; �), where � is the 
balancing model parameter. To satisfy the optimization constraints 
Eq. (6) and Eq. (7), the last layer of �(��,� ; �) uses Sigmoid as the 
activation function to guarantee positivity and batch normalization 
to guarantee normality. The balancing weights in the balanced IPS 
are trained by minimizing the negative empirical entropy with the 
violation of the balanced constraint Eq. (8) as regularization ∑ 

L� −��� (�) = − ��,� log(��,� )
(�,� ) ∈B " #2∑ ∑ ��,� 1 + � ��,� − ��,� ,

�̂�,� |U| (�,� ) ∈B (�,� ) ∈U 

where � > 0 is a hyper-parameter, for trade-of the original loss 
estimation with the correction due to the unobserved confounding. 

Similarly, ��,�,1 and ��,�,2 in the balanced DR and balanced 
AutoDebias are also reparameterized as ��,�,1 = �(��,� ; �1) and 
��,�,2 = �(��,� ; �2). The balancing weights in the balanced DR and 
balanced AutoDebias are trained by minimizing ∑ ∑ 
L� −�� (� ) = − ��,�,1 log(��,�,1 ) − ��,�,2 log(��,�,2 )

(�,� ) ∈D (�,� ) ∈B " #2∑ ∑ ∑ ��,� − �̂�,� 1 + � ��,�,1�̂�,� + ��,�,2 − ��,� ,
�̂�,� |U | (�,� ) ∈D (�,� ) ∈B (�,� ) ∈U 

and ∑ ∑ 
L� −���� (� ) = − ��,�,1 log(��,�,1 ) − ��,�,2 log(��,�,2 )

(�,� ) ∈D (�,� ) ∈B " #2∑ ∑ ∑ �̂�,� ��,� 1 + � ��,�,1 + ��,�,2 − ��,� , 
(�,� ) ∈D 

�̂�,�,1 (�,� ) ∈B 
�̂�,�,2 |U | (�,� ) ∈U 

where � > 0 is a hyper-parameter, and � ≡ {�1, �2} are the parame-
ters of the balancing model. 
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Algorithm 2: Balancing Unobserved Confounding Training 

Input: � , � , RB , RU , �0, �0, �0, �, � 
1 for � = 0, . . . ,� − 1 do 
2 Call Alg. 1 by �� +1 ← Alg. 1(�, RB , RU , �� , �� , �); 
3 for � = 0, . . . , � − 1 do 
4 Sample mini-batches D� ⊆ D, B� ⊆ B and� � 

U� 
� ⊆ U; 

5 Compute unmeasured confounding balancing loss; 
6 Update the balancing weight 

��+1 ← ��
� − �∇�� L� (�);� � 

7 Compute the balanced prediction error loss; 
8 Update the prediction model 

��
�+1 ← ��

� − �∇�� L��� (� );
� 

9 end 
10 Copy the balancing model’s parameters �

� 
0 
+1 ← �� ;� 

11 Copy the prediction model’s parameters �
� 
0 
+1 ← �� ;� 

12 end 
Output: �� 

3.3.3 Prediction Model Training. Since the optimization of the bal-
ancing weights aims to balance the prediction errors on the biased 
and unbiased ratings, which also depends on the prediction model, 
we propose to update the balancing model and the prediction model 
alternatively. Specifcally, given the balancing weights of IPS, the 
prediction model is trained by minimizing the balanced IPS (Bal-IPS) ∑ ��,� L��� −��� (� ) = ��,� . (14)

�̂�,� (�,� ) ∈B 

Similarly, for balanced DR (Bal-DR) or balanced AutoDebias 
(Bal-AutoDebias), the prediction model is trained by minimizing ∑ ∑ ��,� − �̂�,� L��� −�� (� ) = ��,�,1�̂�,� + ��,�,2 , (15)

�̂�,� (�,� ) ∈D (�,� ) ∈B 

or ∑ ∑ �̂�,� ��,� L��� −���� (� ) = ��,�,1 + ��,�,2 . (16)
�̂�,�,1 �̂�,�,2(�,� ) ∈D (�,� ) ∈B 

Next, given the prediction model, the balancing weights are up-
dated again as described in Section 3.3.2. The balancing weights 
and the prediction model are updated alternately, allowing a more 
adequate use of unbiased ratings, resulting in unbiased learning of 
the prediction model. 

The main diference compared with LTD [43] and AutoDebias [5] 
is that we do not only use unbiased ratings to select the parameters 
of the propensity and imputation models, and then use standard IPS 
or DR for the prediction model update. Instead, we combat the ef-
fects of unobserved confounding by introducing a balancing model, 
and then perform prediction model updates based on the balanced 
losses. Remarkably, the proposed method is model-agnostic and can 
be applied to any of the debiased recommendation methods. Here 
we use IPS, DR and AutoDebias for illustration. We summarized 
the whole training algorithm in Alg. 2. 

Figure 1: The proposed workfow for balancing unobserved 
confounding consists of four steps: (1) assumed updating the 

′
prediction model parameters from � (�) to � (�) using RB 

(green arrow); (2) updating the propensity and imputation 
model parameters � using RU 

(blue arrow); (3) updating the 
balancing model parameters � using both RB 

and RU 
(red 

arrow); (4) actually updating the prediction model parame-

ters � using the balanced loss �� LB (red arrow). 

Table 1: Summary of the datasets. 

Users Items Training Uniform Validation Test 

Music 15,400 1,000 311,704 2,700 2,700 48,600 
Coat 290 300 6,960 232 232 4,176 

3.3.4 Training Eficiency. The proposed workfow for balancing 
the unobserved confounding is shown in Figure 1. In Section 3.3.1, 
our algorithm performs two forward and backward passes for the 
prediction model on RB and RU , respectively, and one forward and 
backward pass for the propensity and imputation model on RB . The 
backward-on-backward pass is used to obtain the gradients of the 
propensity and imputation models. In Section 3.3.2, one forward and 
one reverse pass are performed for the balancing model. In Section 
3.3.3, a backward pass is used to actually update the prediction 
model. We refer to [33, 43] that the running time of a backward-
on-backward pass and a forward pass are about the same. As a 
result, the training time of the proposed algorithm does not exceed 
3x learning time compared to two-stage learning and about 1.5x 
learning time compared to LTD and AutoDebias. 

4 REAL-WORLD EXPERIMENTS 
In this section, We conduct extensive experiments on two real-world 
datasets to answer the following research questions (RQs): 
RQ1. Do the proposed Bal-methods improve the debiasing perfor-

mance compared with the existing methods? 
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Table 2: Performance comparison in terms of AUC, NDCG@5, and NDCG@10. The best results to each base method are bolded. 

Music Coat Method 
AUC RI NDCG@5 RI NDCG@10 RI AUC RI NDCG@5 RI NDCG@10 RI 

CausE 0.731 - 0.551 - 0.656 - 0.761 - 0.500 - 0.605 -
KD-Label 0.740 - 0.580 - 0.680 - 0.750 - 0.504 - 0.610 -
MF (biased) 0.727 - 0.550 - 0.655 -
MF (uniform) 0.573 - 0.449 - 0.591 -
MF (combine) 0.730 - 0.554 - 0.659 -

Bal-MF 0.739 1.23% 0.579 4.51% 0.679 3.03% 

0.747 - 0.500 - 0.606 -
0.579 - 0.358 - 0.482 -
0.750 - 0.503 - 0.611 -
0.761 1.47% 0.511 1.59% 0.620 1.47% 

IPS 0.723 - 0.549 - 0.656 - 0.760 - 0.509 - 0.613 -
Bal-IPS 0.727 0.55% 0.564 2.73% 0.668 1.83% 0.771 1.45% 0.521 2.36% 0.628 2.45% 

DR 0.724 - 0.550 - 0.656 - 0.765 - 0.521 - 0.620 -
Bal-DR 0.731 0.97% 0.569 3.45% 0.669 1.98% 0.770 0.65% 0.523 0.38% 0.628 1.29% 

AutoDebias 0.741 - 0.645 - 0.725 - 0.766 - 0.522 - 0.621 -
Bal-AutoDebias 0.749 1.08% 0.670 3.88% 0.744 2.62% 0.772 0.78% 0.544 4.21% 0.640 3.06% 

Note: RI refers to the relative improvement of Bal-methods over the corresponding baseline. 

RQ2. Do our methods stably perform well with diferent initializa-
tions of the prediction model? 

RQ3. How does the balancing model afect the performance of our
methods? 

RQ4. What factors infuence the efectiveness of our methods?

4.1 Experimental Setup 
Dataset and preprocessing. Following the previous studies [5,
35, 42, 43], we conduct extensive experiments on the two widely 
used real-world datasets with both missing-not-at-random (MNAR) 
and missing-at-random (MAR) ratings: Music

1 and Coat2. In par-
ticular, Music dataset contains 15,400 users and 1,000 items with 
54,000 MAR and 311,704 MNAR ratings. Coat dataset contains 
290 users and 300 items with 4,640 MAR and 6,960 MNAR ratings. 
Following [5, 28], we take all the biased data as the training set and 
randomly split the uniform data as three parts: 5% for balancing 
the unobserved confounding, 5% for validation set and 90% for test 
set. We summarize the datasets and splitting details in Table 1. 
Baselines. In our experiments, we compare the proposed Bal-
methods with the following baselines: 
• Base Model [21]: the Matrix Factorization (MF) model is trained
on biased data, uniform data and both of them respectively, denoted
as MF (biased), MF (uniform) and MF (combine).
• Inverse Propensity Scoring (IPS) [37]: a reweighting method
using inverse propensity scores to weight the observed events.
• Doubly Robust (DR) [35, 42]: an efcient method combining
imputations and inverse propensities with double robustness.
• CausE [28]: a sample-based knowledge distillation approach to
reduce computational complexity.
• KD-Label [28]: an efcient framework for knowledge distillation
to transfer unbiased information to teacher model and guide the
training of student model.
• AutoDebias [5]: a meta-learning based method using few unbi-
ased data to further mitigate the selection bias.

1http://webscope.sandbox.yahoo.com/
2https://www.cs.cornell.edu/~schnabts/mnar/

Experimental protocols and details. Following [5, 43], AUC,
NDCG@5 and NDCG@10 are adopted as the evaluation metrics to 
measure the debiasing performance. Formally, ∑ �� �� �� ��� � �( 𝑍 �) ∈ ˆ +− � � ++ 𝑢,𝑖 U · (�U �U + 1)/𝑢,𝑖 2

𝐴𝑈𝐶 = ,|U+ | · ( |U| − |U+ |)
and NDCG@k measures the quality of ranking list as∑ 

 ≤ � 
I(�̂�,� � ) 1 ∑ ����

� �
� @�

� � @� = , � ���@� = ,
log( ˆ � ������ @�(�,� ) ∈U ��,� + 1) �=1 

where U+ ⊆ U denotes the positive ratings in the uniform dataset, 
�̂�,� is the rank position of (�, �) given by the rating predictions,
and ������ @� is the ideal ����� @� .

All the methods are implemented on PyTorch. Throughout, Adam 
optimizer is utilized for propensity and imputation model with 
learning rate and weight decay in [1e-4, 1e-2]. SGD optimizer is uti-
lized for prediction model and balancing model with learning rate 
in [1e-7, 1] and weight decay in [1e-4, 1]. We tune the regularization 
hyper-parameter � in {0, 2−9, 2−6, 2−3, 1}. All hyper-parameters are
tuned based on the performance on the validation set. 

4.2 Real World Performance Comparison (RQ1) 
Table 2 compares the prediction performance of the various meth-
ods on two real-world datasets Music and Coat. We fnd that the 
proposed model-agnostic Bal-methods have signifcantly improved 
performance when applied to MF, IPS, DR and AutoDebias with 
respect to all metrics. Overall, Bal-AutoDebias exhibits the best 
performance. Impressively, although AutoDebias hardly improves 
the performance on Coat compared with DR as reported in [5], the 
proposed Bal-AutoDebias improves 4.21% and 3.06% on NDCG@5 
and NDCG@10 compared with the best baseline, respectively, vali-
dating the efectiveness of the proposed balancing approach. 

In addition, MF using only uniform data exhibits the worst per-
formance, due to its small size which causes unavoidable overftting. 
Directly combining the biased and unbiased ratings increases the 
MF performance slightly and insignifcantly. As in [5], AutoDebias 
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Table 3: Performance of the Bal-methods under diferent prediction models as initializations on Music and Coat. 

Initial Method Initial with IPS Initial with DR Initial with AutoDebias 
Dataset Method AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10 

Baseline 0.723 0.549 0.656 
Bal-IPS 0.7260.4%↑ 0.5612.2%↑ 0.6661.5%↑Music Bal-DR 0.7250.3%↑ 0.5561.3%↑ 0.6651.4%↑ 

Bal-AutoDebias 0.7392.2%↑ 0.5846.4%↑ 0.6834.1%↑ 

0.724 0.550 0.656 
0.7260.3%↑ 0.5622.2%↑ 0.6661.5%↑ 
0.7260.3%↑ 0.5591.6%↑ 0.6671.7%↑ 
0.7402.2%↑ 0.5866.5%↑ 0.6844.3%↑ 

0.741 0.645 0.725 
0.7470.8%↑ 0.6561.7%↑ 0.7331.1%↑ 
0.7480.9%↑ 0.6582.0%↑ 0.7341.2%↑ 
0.7491.1%↑ 0.6703.9%↑ 0.7442.6%↑ 

Baseline 0.760 0.509 0.613 
Bal-IPS 0.7711.4%↑ 0.5212.4%↑ 0.6282.4%↑Coat Bal-DR 0.7701.3%↑ 0.5232.8%↑ 0.6282.4%↑ 

Bal-AutoDebias 0.7711.4%↑ 0.5314.3%↑ 0.6323.1%↑ 

0.765 0.521 0.620 
0.7700.7%↑ 0.5230.4%↑ 0.6271.1%↑ 
0.7710.8%↑ 0.5220.2%↑ 0.6291.5%↑ 
0.7720.9%↑ 0.5393.5%↑ 0.6372.7%↑ 

0.766 0.522 0.621 
0.7700.5%↑ 0.5230.2%↑ 0.6291.3%↑ 
0.7700.5%↑ 0.5230.2%↑ 0.6291.3%↑ 
0.7720.8%↑ 0.5444.2%↑ 0.6403.1%↑ 

Table 4: Efects of balancing models on Bal-AutoDebias. 

Method Music Coat 

��,�,1 ��,�,2 AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10 

MF MF 0.749 0.670 0.744 0.772 0.544 0.640 
MF NCF 0.745 0.667 0.742 0.769 0.539 0.635 
NCF MF 0.762 0.675 0.748 0.774 0.548 0.646 
NCF NCF 0.749 0.671 0.745 0.771 0.545 0.639 

has the most competitive performance among the existing methods, 
due to the use of unbiased ratings for the parameter selection of 
the propensity and imputation models. However, as discussed in 
previous sections, the previous methods were unable to combat the 
potential unobserved confounding in the biased data. The proposed 
Bal-methods address this issue by further utilizing unbiased ratings 
to balance the loss estimates from biased ratings. 

4.3 In-depth Analysis (RQ2) 
We further conduct an in-depth analysis by using the pre-trained 
prediction model parameters given by IPS, DR and AutoDebias as 
initialization in Alg. 2, respectively, to verify that the proposed 
Bal-methods can be efectively applied to any existing debiasing 
methods. The results are presented in Table 3. We fnd that all Bal-
methods show signifcant performance improvement in all metrics 
compared to the pre-trained prediction models. Notably, applying 
the Bal-methods to any initialized predictions can stably boost the 
performance compared with AutoDebias on Coat, which can be 
explained by the possible presence of unobserved confounding and 
model misspecifcation in the biased data, while our method can 
mitigate the potential bias via a model-agnostic manner. 

4.4 Ablation Study (RQ3) 
To explore the impact of the proposed balancing model on the 
debiasing performance, we conduct ablation experiments using 
varying regularization hyperparameters � for trade-ofs between 
the original loss estimation and the correction due to the unob-
served confounding. Note that when � = 0, the globally optimal 
balancing weights equal to 1/|D| with maximum entropy, degen-
erating to the standard IPS, DR and AutoDebias. We tune � in {0, 
2−9, 2−6, 2−3, 1} on Bal-IPS, Bal-DR and Bal-AutoDebias, and the 
results are shown in Figure 2, where the black dashed line is used 
as the most competitive baseline for reference. We fnd that the 
AUC and NDCG@K of all methods frst increase and then decrease 
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Figure 2: Efect of regularization strength � on Music and 
Coat, degenerating to standard AutoDebias when � = 0. 

with the increasing constraint strength, with optimal performance 
around � = 2−6. This is interpreted as the best tradeof between 
estimated loss and unobserved confounding. All methods using 
� > 0 stably outperform the standard AutoDebias and the case 
without considering unobserved confounding, i.e., � = 0, so it can 
be concluded that the proposed balancing model plays an important 
role in the debiasing. 
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Figure 3: Efect of varying size of uniform data. 

4.5 Exploratory Analysis (RQ4) 
Efect of balancing model selections. We further explore the 
efect of model selections on the balanced weights to the debiasing 
performance. Specifcally, we take diferent combinations of MF and 
NCF as balancing models for ��,�,1 on D and ��,�,2 on B, and the 
results are shown in Table 4. The performance can be signifcantly 
improved when NCF and MF are used to model ��,�,1 and ��,�,2, 
respectively. We argue that the main reason is that |D| ≫ |B|, lead-
ing to a reasonable reparameterization of ��,�,1 using deep models 
(e.g., NCF), and ��,�,2 using simple models (e.g., MF). 

Efect of uniform data size. Figure 3 shows the sensitivity of the 
debiasing methods to the size of the uniform data ranging from 1% 
to 10%. We fnd that the proposed Bal-AutoDebias stably outper-
forms the existing methods for varying sizes of unbiased ratings. 
For the previous methods, AutoDebias has a more competitive per-
formance compared with KD-label and CausE. When providing 
with a small size (e.g., 1%) of the unbiased ratings, CausE performs 
even worse than the biased MF, while Bal-AutoDebias achieves the 
optimal performance. Compared with AutoDebias, our methods 
make signifcant improvements on both NDCG@5 and NDCG@10, 
validating the efectiveness of the proposed balancing learning. 

5 RELATED WORK 
Debiased Recommendation. Recommender algorithms are often 
trained based on the historical interactions. However, the histor-
ical data cannot fully represent the user’s true preference [6, 44], 

because user behavior is afected by various factors, such as con-
formity [29] and item popularity [46], etc. Many methods were 
developed for achieving unbiased learning, aiming to capture the 
true user preferences with biased data. For example, [37] noticed the 
missing data problem in RS and recommended using the IPS strat-
egy to remove the bias, [42] designed a doubly robust (DR) loss and 
suggested adopting the joint learning method for model training. 
Subsequently, several approaches enhanced the DR method by pur-
suing a better bias-variance trade-of [9, 14], leveraging parameter 
sharing and multi-task learning technique [30, 39, 45], combing a 
small uniform dataset [4, 5, 28, 43], addressing the problem of small 
propensities and weakening the reliance on extrapolation [24], and 
reducing bias and variance simultaneously when the imputed er-
rors are less accurate [23]. In addition, [22] proposed a multiple 
robust learning method that allows the use of multiple candidate 
propensity and imputation models and is unbiased when any of 
the propensity or imputation models is accurate. [6, 44] reviewed 
the recent progress in debiased recommendation. To mitigate the 
efects of unobserved confounding, [10] proposed an adversarial 
learning method that uses only biased ratings. Unlike the existing 
methods, this paper combats the efect of unmeasured confounding 
with a small uniform dataset to achieve exact unbiasedness. 
Causal Inference under Unmeasured Confounding. Unmea-
sured confounding is a difcult problem in causal inference and the 
main strategies for addressing it can be divided into two classes [3, 
17, 19, 25]. One is the sensitivity analysis [8, 20, 34] that seeks 
bounds for the true causal efects with datasets sufering from 
unmeasured confounders. The other class methods aim to obtain 
unbiased causal efect estimators by leveraging some auxiliary in-
formation, such as instrument variable methods [2, 16], front door 
adjustment [32], and negative control [27]. In general, fnding a 
reliable instrument variable or a mediator that satisfes the front 
door criterion [16, 18] is a challenging task in practice. Diferent 
from these methods based on an observational dataset, this paper 
considers a more practical scenario in debiased recommendations, 
i.e., addressing unmeasured confounding by fully exploiting the 
unbiasedness property of a small uniform dataset. 

6 CONCLUSION 
This paper develops a method for balancing unobserved confound-
ing with few unbiased ratings. We frst show theoretically that previ-
ous methods that simply using unbiased ratings to select propensity 
and imputation model parameters is not sufcient to combat the 
efects of unobserved confounding and model misspecifcation. We 
then propose a balancing optimization training objective, and fur-
ther propose a model-agnostic training algorithm to achieve the 
training objective using reparameterization techniques. The bal-
ancing model is alternately updated with the prediction model to 
combat the efect of unobserved confounding. We conduct exten-
sive experiments on two real-world datasets to demonstrate the 
superiority of the proposed approach. To the best of our knowledge, 
this is the frst paper using a few unbiased ratings to combat the 
efects of unobserved confounding in debiased recommendations. 
For future works, we will derive theoretical generalization error 
bounds for the balancing approaches, as well as explore more efec-
tive ways to leverage the unbiased ratings to enhance the debiasing 
performance of the prediction models. 
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