Download PDFOpen PDF in browserPriestley duality for (modal) N4-lattices4 pages•Published: July 28, 2014AbstractN4-lattices are the algebraic semantics of paraconsistent Nelson logic, which was introduced as an inconsistency-tolerant counterpart of the better-known logic of Nelson. Paraconsistent Nelson logic combines interesting features of intuitionistic, classical and many-valued logics (e.g., Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as one member of the wide family of substructural logics.The work we present here is a contribution towards a better topological understanding of the algebraic counterpart of paraconsistent Nelson logic, namely a variety of involutive lattices called N4-lattices. Keyphrases: esakia duality, n4 lattices, paraconsistent nelson logic, priestley duality, twist structures In: Nikolaos Galatos, Alexander Kurz and Constantine Tsinakis (editors). TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic, vol 25, pages 105-108.
|