Download PDFOpen PDF in browserThe finite embeddability property for some noncommutative knotted extensions of FL4 pages•Published: July 28, 2014AbstractWe consider the knotted structural rule x<sup>m</sup>≤x<sup>n</sup> for n different than m and m greater or equal than 1. Previously van Alten proved that commutative residuated lattices that satisfy the knotted rule have the finite embeddability property (FEP). Namely, every finite partial subalgebra of an algebra in the class can be embedded into a finite full algebra in the class. In our work we replace the commutativity property by some slightly weaker conditions. Particularly, we prove the FEP for the variety of residuated lattices that satisfy the equation xyx=x<sup>2</sup>y and the knotted rule. Furthermore, we investigate some generalizations of this noncommutative property by working with equations that allow us to move variables. We also note that the FEP implies the finite model property. Hence the logics modeled by these residuated lattices are decidable.Keyphrases: finite embeddability property, finite model property, noncommutative residuated lattices, well partially ordered sets In: Nikolaos Galatos, Alexander Kurz and Constantine Tsinakis (editors). TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic, vol 25, pages 39-42.
|