Download PDFOpen PDF in browserIdempotent generated algebras and Boolean powers of commutative rings4 pages•Published: July 28, 2014AbstractFor a commutative ring R, we introduce the notion of a Specker R-algebra and show that Specker R-algebras are Boolean powers of R. For an indecomposable ring R, this yields an equivalence between the category of Specker R-algebras and the category of Boolean algebras. Together with Stone duality this produces a dual equivalence between the category of Specker R-algebras and the category of Stone spaces.Keyphrases: boolean power, compact hausdorff space, specker algebra In: Nikolaos Galatos, Alexander Kurz and Constantine Tsinakis (editors). TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic, vol 25, pages 31-34.
|